
Int. J. Com. Dig. Sys. 2, No. 2, 53-62 (2013) 53

© 2013 UOB SPC, University of Bahrain

Performance Analysis of a Flexible, Optimized and Fully

Configurable FPGA Architecture for Two-Channel Filter

Banks

Anthony C. Karloff and Esam Abdel-Raheem

Dept. of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario N9B 3P4, Canada

e-mail: karloff@uwindsor.ca, eraheem@uwindsor.ca

Received 23 Sep. 2012, Revised 9 Feb. 2013, Accepted 15 Mar. 2013

Abstract: This paper presents a fully configurable FPGA architecture for two-channel filter banks which enables rapid

quantization error and hardware performance analysis. Lattice designs that eliminate the effects of quantization error do

not necessarily exhibit linear phase and may result in excessive delay. This can make them ill-suited for applications

such as digital audio. Thus, the effects of quantization on an optimized direct form FIR based filter bank are analyzed.

This is accomplished by using a high-level, configurable architecture and parameter driven synthesis for varying

coefficient and channel quantization, and filter types. Overall, the presented design targets high-speed optimization

through a fully pipelined architecture that reduces complexity by uniquely multiplexing coefficients. This flexible

architecture and its supporting tools have enabled rapid filter bank prototyping and analysis of the effects of

quantization on performance that drastically reduces design time and cost for realization.

Keywords: FPGA; filter banks; signal processing.

I. INTRODUCTION

Filter banks have a variety of applications in digital

signal processing including audio/image compression [1],

sub band encoding [2] and adaptive systems [3].

Specifically, the quadrature mirror filter (QMF) is most

commonly used to split a signal into separate bands,

performed in the analysis bank. The simplest QMF bank

is the two-channel filter bank, where the original signal is

split into two bands at half the input frequency. The basic

architecture for the two-channel filter bank, shown in Fig.

1, was reported on in [4, 5]. Its polyphase decomposition

and transform using noble identities (shown in Fig. 2) is

well known for reducing the complexity of the QMF.

Under perfect reconstruction (PR) conditions, the two

channels of the filter bank can be recombined via the

synthesis bank to reproduce the original delayed signal

with a constant gain. Perfect reconstruction and near

perfect reconstruction two-channel filter banks can be

achieved in a number of ways, most notably by:

factorization, design of complementary filters, Lagrange

multiplier approaches [6] and lattice structures [4, 7, 8].

 The most basic implementation uses the direct form

of the polyphase decomposition of the QMF bank finite

impulse response (FIR) filters. This form suffers from

high computational complexity since the number of

multiplications increases with filter order. To reduce

computational complexity, dynamically distributed

arithmetic (DDA) implementations of the FIR filters have

been proposed that replace the summing of product terms

during filtering with a lookup table. However, the look-

up table size increases dramatically with increased filter

orders and is thus only efficient for low order filters.

Field programmable gate array (FPGA) based

architectures for DDA, direct form and a hybrid

implementation, are reported in [9] and [10]. A variety of

application specific integrated circuit (ASIC) lattice

structures have been proposed with more recent designs

and optimized implementations are reported in [11].

Other recent implementations are reported in [12, 13, 14].

International Journal of Computing and Digital Systems

http://dx.doi.org/10.12785/ijcds/020201

mailto:eraheem@uwindsor.ca
http://dx.doi.org/10.12785/ijcds/020201

54 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…

Fig. 1. Quadrature mirror filter bank

Fig. 2. Polyphase decomposition of QMF bank filters H0 and G0.

With the exception of some lattice realizations, which

are not always suitable for applications that require linear

phase and low-delay filters (e.g. [15]), the two-channel

filter bank is susceptible to quantization error. This error

can have a significant effect on the response of the filters

and perfect reconstruction. Quantization error can be

reduced by using higher bit representations of filter

coefficients at the expense of increased resources and

reduced performance. However, this is not always easily

addressable for the variety of QMF bank structures that

can be realized with different hardware optimization

methods. Thus, one of the main challenges in

implementing such filter banks is being able to rapidly

evaluate the cost, performance and effects of quantization

that result from hardware implementation. For this

reason, a fully configurable architecture is proposed that

automatically generates a low-complexity, high-

performance system based on reconfigurable system

parameters that include filter order and coefficients, bit

representation for input data, coefficients, channels and

output. The proposed flexible VHDL model is fully

capable of automatically synthesizing any FIR based

two-channel filter bank using these parameters. This

VHDL model for two-channel filter banks currently

targets FPGA devices, but has the potential to extend to

M-channel filter banks and ASIC implementation.

As hardware multipliers are becoming faster and

readily available in FPGAs, the proposed architecture

revisits the direct form implementation with

optimizations to reduce size and complexity compared to

existing hardware designs. The architecture employs a

standard cell array, fully pipelined architecture and

reduces the number of required multipliers by exploiting

the multi-rate nature of the filter bank as well as any

symmetry in the filter coefficients (e.g. linear phase

filters.) A single high-level FIR building block is used to

implement the FIR filters in an optimized direct form.

Multipliers share filter coefficients to take advantage of

extra clock cycles as a result of the difference in high and

low rate clocking schemes in both the analysis and

synthesis banks, as well as an input folded path that

exploits symmetric coefficients as common factors to

delayed inputs. The result is a single, flexible architecture

that can implement any FIR based two-channel filter

bank in a compact and high-speed design that

reduces the number of multiplications by up to a factor of

four. The reduction in multipliers allows for higher order

filters to be implemented without an excessive increase in

memory and resources characteristic of DDA methods,

and the fully pipelined results of these multipliers allow

for high speed operation of high bit representations

comparable to lattice structures and ASIC designs. This

optimized direct form structure is later examined in

further detail and compared to

alternative forms such as DDA QMF bank

implementation [10] and its hybrid equivalent [16], as

well as recent FPGA implementations of wavelet filters

[17].

The main benefit of such a flexible, configurable

system in terms of cost and time for implementation is

that a wide range of different filters and levels of

quantization can be quickly compared without having to

spend significant time focusing on the hardware

implementation and the performance trade-offs of each

system. In addition, a more resource efficient

implementation can permit greater bit representations to

reduce the effects of quantization. This paper first

discusses the proposed architecture and how the various

properties of the FIR filters that compose the QMF bank

can be exploited to form a low-complexity, high-

performance system. Next, various example filter banks

are synthesized to demonstrate the flexibility of the

reconfigurable system with respect to bit representation

for filter coefficient and data quantization. Finally, results

for quantization error and performance from various

synthesized filter banks are presented for comparison as

well as a complexity comparison of the proposed

architecture and similar FPGA and hardware targeted

implementations.

II. ANALYSIS OF FILTER IMPLEMENTATION AND

OPTIMIZATION

A brief analysis of each filter case (even/odd order

filters that are symmetric, anti-symmetric and non

symmetric) for both the analysis and synthesis banks was

performed to determine the best manner for

implementing the desired FIR filters in hardware. The

most common simplification is the polyphase

decomposition of each filter, requiring N/2 multipliers for

each filter bank [5]. Further savings can be made if

symmetric coefficients are selected, however, the

hardware implementation that can best exploit these

 A.C. Karloff and E. Abdel-Raheem: Performance Analysis… 55

additional savings for every order and symmetry FIR

filter case is not always straight forward. To address this,

an investigation was performed to replace the polyphase

decomposition of an FIR filter by exploiting a

combination of extra clocks and filter symmetry while

multiplexing filter coefficients. The result is a common

structure that further reduces the number of required

multipliers in both the analysis and synthesis banks for

any order FIR filter with symmetric, anti-symmetric or

non-symmetric coefficients.

A. Non-Symmetric FIR Optimization

Instead of decimating and interpolating filter input or

output data to reduce the number of multipliers, the FIR

filters are optimized by multiplexing coefficients to a

multiplier on alternating clocks. By multiplexing even

and odd coefficients into one multiplier, the optimized

filter has a similar effect to the polyphase decomposition.

The direct form block shown in Fig. 3 can be used to

implement any FIR filter in a fully pipelined architecture

where the partial sum (P SUM) cumulates successive

even and odd clock outputs. For non-symmetric

coefficients, this structure only increases multiplier

savings in the filter bank by a factor of two, but for

symmetric and anti-symmetric filter coefficients, the

savings in multipliers increases further.

Fig. 3. Basic FIR cell with multiplexed coefficients and a partial sum (P

SUM) input to cumulate successive even and odd output results. The

basic FIR cell can be connected to pipelined adders for computing the
sum of products.

B. Optimized Direct Form Symmetric FIR

Implementation

When the coefficients of an FIR filter are either

symmetric or anti-symmetric, the number of required

multipliers can be further reduced by identifying common

factors in the output and reusing previous multiplier

outputs. One or both of these methods can be employed

depending on the order of the desired filter, and whether

it appears in the synthesis or analysis bank. To best

demonstrate how this is possible, the polyphase form

must be re-expressed. Using an analysis bank filter as an

example, instead of splitting the input signal into even

and odd samples, filter coefficients are divided into even

and odd coefficients with neighboring pairs assigned to a

single multiplier as:

 () () (1)

 () () (2)

where,
 of Equation (1) denotes multiplication of the

even coefficient of the i
th

 multiplier and
 of Equation

(2) denotes multiplication of the odd coefficient of the i
th

multiplier. Input data can be streamed directly into a

series of pipelined multipliers such that Equation (1) is

performed on alternating clocks with Equation (2). Note

that Equations (1) and (2) are not performed

simultaneously.

On even clocks, when the even coefficients are

multiplexed as multiplier inputs, the even result () is

generated as the sum of products. On odd clocks, when

the odd coefficients are multiplexed, the odd result

 ()is generated similarly. The result of even and odd

outputs are summed in the partial sum block of each FIR

cell shown in Fig. 3 and the result is generated at the

appropriate clock depending on the position of the filter

cell in either the analysis or synthesis bank. In this

manner, the same multiplier architecture for the analysis

and synthesis banks can be utilized to implement the

optimized direct form structure, operating on the same

input/output clock and channel half clock. Fig. 4

demonstrates the multiplier configuration for a 7th order

symmetric or anti-symmetric FIR filter for both an

analysis and synthesis FIR filter. Although seemingly

incomplete, the correct output of this multiplier

configuration depends on redundancies in either the

multiplier results or input folded data that will be

discussed in the next sections.

To determine the configuration of the multipliers for

any order and symmetric form, an expression can be

written for the equivalent optimized direct form. For

example, the odd ordered, symmetric (or anti-symmetric)

7th order filter of Fig. 4 can express even and odd clock

outputs as:

 ()

 ()

 ()

 ()

 ()
 (3)

 ()
 ()

 ()
 () (4)

where the complete output for the analysis and synthesis
banks is expressed as:

 () () () (5)

 () {
 ()

 (())
 (6)

In Equation (3) and Equation (4), the filter output is

either a delayed and summed output of the two terms at

half the input clock rate for the analysis bank as shown in

56 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…

Equation (5), or an alternating switched output of the two

terms at the normal clock rate for the synthesis bank as

shown in Equation (6).

Fig. 4. Multiplier configurations for an analysis and synthesis 7th
order symmetric FIR filter using two multipliers. In the analysis bank,
coefficients multiplex at the same rate as the input data and add at half
the rate. In the synthesis bank, coefficients are multiplexed and results
added at twice the channel rate (same as the input data). Folded paths for
complete filter implementation are omitted.

The outputs for an odd order symmetric filter

generated on alternating clocks (shown in equation 3) can

be expressed in a more general form for a Nth order filter

as:

 () ∑
 ()

()

 ∑
 ()

()

 ()

 ()

 () ∑
 ()

()

 ()

 ∑
 (())

()

 ()

where () indicates the center coefficient

index and () identifies an even or odd

number of shared multipliers, where N indicates the filter

length. Similarly, an even order symmetric filter can be

described by:

 () ∑
 ()

()

 ()

 ∑
 ()

()

 ()

 ()

 () ∑
 ()

()

 ∑
 ()

()

 ()

with and () . The anti-symmetric

variants of these two cases simply impose a subtraction

of multiplier sums instead of addition. The main

observation that can be made is that the total number of

required multipliers is equal to () since

multiplier blocks are re-used as delayed outputs. These

redundant, delayed occurrences omitted in Fig. 4 can be

implemented in two manners: as either delayed results to

be summed, or delayed inputs to be added before

multiplication by a common coefficient. The first is quite

apparent in Equation (3) and Equation (4). The later

becomes apparent when the expansion of the

multiplication term is expressed as:

 ()

 () () () (11)

C. Delayed Multiplier Outputs (DMO)

The main premise behind delayed multiplier outputs is

that for filters with symmetric coefficients, the sum of

products of future outputs often includes some of the

products of the current output. In this case, it is not

necessary to compute the same product twice, but to

simply delay the existing products to be included in later

sums. This is shown demonstratively for the cases of

even and odd symmetric filters in both the analysis and

synthesis banks shown in Fig. 5. In this tabular

representation, each row represents a new clock cycle.

On each clock, inputs are shifted to the right. Columns

are labeled by multipliers and delayed multiplier outputs

are shown in bold boxes with an arrow indicating the

source of the output.

The problem that arises from this method is that even

order symmetric filters in the analysis bank require that

some of the delayed products be calculated on extra

clocks, making it impossible to multiplex the coefficients.

D. Common Coefficient (CC)

Another way to eliminate a multiplication operation

in a symmetric filter is by summing input values that

share a coefficient in the output before performing

multiplication. The multiplier expansion of Equation (11)

can be expressed in general as:

 () ∑ () [() (

)]

 (12)

 A.C. Karloff and E. Abdel-Raheem: Performance Analysis… 57

 () ∑ () [()

 (

)]

(13)

Fig. 5. Summary of DMO computations. Multipliers M0 and M1
multiplex coefficients on alternating clocks. Delayed products are

boxed.

Equations (12) and (13) show how folded input can result

in N/4 multipliers sharing N/2 unique coefficients. Again,

 () and () are computed on alternate clock cycles

which permits this sharing, as previously discussed for

Equation (7) and Equation (8). Examples of this can be

observed in Fig. 6 where some common coefficients are

highlighted in bold boxes.

Fig. 6. Summary of CC computations. Multipliers M0 and M1
multiplex coefficients on alternating clocks. Terms with common

coefficients are boxed.

This is extremely effective for all cases of odd order

filters, but further minimizing even order synthesis filters

fails since each coefficient of the symmetric filters

appears once in every output on every clock cycle. In this

case, the number of multiplications is still only reduced

by a factor of two and cannot be reduced further for even

symmetric filters in the synthesis bank.

E. Complexity Comparison

Since the DMO and CC methods of filter implementation

fail to further optimize a different filter, a combination of

these two methods can be used to reduce all cases of

symmetric filters. To determine which method to use

predominately, the complexity of implementing each

method must be compared.

Since the CC method uses feedback of previous

coefficients, N registers of the same bit width of the input

data are required to store the feedback plus a number of

output registers equal to:

 () (14)

for fully pipelined computation of the sum.

Alternatively, to implement the DMO method, results

from the multipliers must be stored with bit width equal

to twice the input data width and require twice as many

of these output registers when compared to CC,

expressed as:

 (15)

where Equation (14) and Equation (15) were derived

from the multiplier structures that result from Equation

(7) through Equation (10). As a result, it is far more

efficient to implement the CC method, however, this does

not mean that the DMO method cannot be used for an

even symmetric filter in the synthesis bank. In fact, for

this specific case, since the multiplexing of multiplier

coefficients is achievable, the number of required delayed

registers for the product outputs is slightly less than

Equation (15), although still not comparable to the fully

pipelined summation block required for implementing the

CC method, seen in Equation (14).

F. DMO and CC Architectures

For CC, the cell shown in Fig. 3 was modified to

include a folding path and extra adder before

multiplication. This modification is shown in Fig. 7. The

resulting cell can be arrayed to suit the desired filter order

with a specific feedback path of the last cell configured

according to the filter type being implemented. This new

implementation can effectively replace the polyphase and

direct form implementation as well as DDA methods

with greater hardware savings. Fig. 8 shows the various

foldings depending on the type of filter being

implemented for analysis and synthesis bank filters, as

determined by Equation (7) through Equation (10). The

VHDL implementation of this proposed architecture can

easily array the required number of such cells and add the

58 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…

appropriate ending accordingly. Pipelined addition is then

performed on the partial sum outputs.

Fig. 7. Modified FIR cell and its variant. The new cell can
accommodate both common factor feedback and multiplexed

coefficients with a partial sum register for addition of products

calculated on extra clocks.

The dominate advantage of this architecture is that

any bit width can be utilized for the channel data and

parameters of the FPGA synthesizer can optimize the

data paths, multipliers and supporting logic to suit the

targeted device. In this regard, the effects of data

quantization on overall resource utilization and

performance across a number of devices is not easy to

directly determine, but it can now be quickly evaluated

with an overall optimized structure.

For a more general and flexible architecture overall,

the CC block was solely implemented. However, it

should be noted that there are some features of the DMO

block architecture that can be highly advantageous in

certain PR filter bank designs. Specifically, the DMO had

the unique feature that the same filter realization for the

analysis block can be used for the synthesis block and

vice versa under certain conditions. This effectively

permits the half implementation of a filter bank that can

perform both the functions of the analysis and synthesis

banks with minimal supporting hardware. This is not

investigated in further detail in this paper.

III. FPGA IMPLEMENTATION

The proposed architecture was implemented in

VHDL using Xilinx ISE 10.1. Synthesis of the VHDL

core targeted the Xilinx Virtex 5 for estimation of

resource utilization and timing, however, it is flexible

enough to accommodate any FPGA device with sufficient

resources. In order to create configurable VHDL code, a

library file was generated that contained the parameters

of the filter bank, including bit representation, filter

lengths, symmetries and quantized filter coefficient

values. This library file was generated via a MATLAB

interface, in which filters could be designed and

converted into the appropriate fixed point representation.

Arrangement of the filter structures shown in Fig. 8 were

automatically generated based on filter length and

symmetric properties.

Fig. 8. Configurations of the modified FIR cell for filter bank
implementations.

The VHDL module was organized into the following

structure. The top level module utilized generic

parameters to configure the data input, channel

input/output, and output data bus widths accordingly. The

top level filter bank module then created four instances of

FIR filters for the analysis and synthesis bank filters

using filter property parameters and coefficients specified

in the library file (generated by MATLAB).

The next level module was the analysis FIR and

synthesis FIR. This module instantiated and connected

the FIR cell blocks using generic parameters and generate

statements according to the configurations shown in Fig.

8. Depending on the filter lengths and symmetry, various

generic parameters were passed to FIR cell blocks and

the DATA x and P SUM folding were connected

accordingly.

Generic parameters allowed for either of the two

structures shown in Fig. 7 to be implemented with

positive or negative input folded data depending on

symmetry of the filter being implemented. Finally, the

size of multipliers and adders was determined based on

the specified coefficient and data channel bit

representations, and implemented according to variable

device synthesis parameters (ideally DSP multipliers).

A. Testing VHDL code

A VHDL testbench was developed to implement the

top level module. The testbench read input data from a

binary file and wrote the resulting output to another

binary file. The test data was generated via MATLAB

where the input data was represented in the appropriate

 A.C. Karloff and E. Abdel-Raheem: Performance Analysis… 59

signed fixed point representation. The same MATLAB

program read the resulting output data from the VHDL

testbench and calculated the signal to noise ratio (SNR).

Any arbitrary input data can be specified to test the

effects of quantization on compression or perfect

reconstruction.

B. Critical Path, Timing, and Latency

Since the filter bank operates in a fully pipelined

architecture, critical timing is limited by the speed of the

most complex operation; the multiplication of a signed

fixed point number with a constant signed fixed point

number. In this case, the maximum speed of the filter

bank is affected by the bit length of the values being

multiplied and the speed of the targeted FPGA device.

For 16 bit signed fixed point numbers, the maximum

operating frequency of the filter bank on a Virtex 5 is 200

MHz. For smaller bit representation, such as 12 bit signed

fixed point, the maximum operating frequency can run as

fast as 260 MHz. Another implication of the filter’s fully

pipelined nature is that latency is a function of filter

length. Exact latency depends on the order and symmetry

of each filter.

C. Quantization and Resource Utilization

Resource utilization is a function of both the filter

length and the desired bit representation. It should be

noted that the odd order filters dramatically reduce the

overall complexity, because far less FIR cells were

required to implement the desired filters in the CC

architecture. Since a variety of parameters exist for

synthesis in FPGA devices, it is difficult to accurately

predict the effects different levels of quantization will

have on the size of implementation. Having a flexible

architecture that inherently optimizes the general

structure can be very useful for fine tuning the size and

performance requirements of implementing a two-

channel filter bank for a specific application.

D. Signal and Noise

Signal to noise ratio (SNR) is independent of

synthesis and a direct function of bit representation

(assuming filter coefficients adhere to perfect

reconstruction requirements.) SNR was measured using a

ramp input to the filter bank and compared to the output

with pertinent delay compensation as described in [6].

E. Complexity Comparison

To demonstrate the flexibility and advantages of the

proposed architecture, a few applications of two-channel

filter banks were compared to recent FPGA based

architectures in literature. Table I shows a comparison

with the Biorthogonal 9/7 Tap filter reported on in [17].

For the full CDF-9/7 implementation, the proposed

architecture reduces the number of multipliers and

significantly improves performance of the filter at the

expense of larger implementation for speed optimized

synthesis on a Virtex 5 device. Table II shows a

comparison with two DDA methods that utilize look up

tables in place of multipliers. The proposed architecture

reduces size and increases speed for the targeted Virtex

device even for a low order filter realization. Savings will

continue to increase as filter orders increase.

TABLE I: COMPARISON WITH BIORTHOGONAL 9/7 TAP

IMPLEMENTATION ON VIRTEX 5 DEVICE [17].

FEATURES CDF-9/7 [17] PROPOSED

MULTIPLIERS

COEFFICIENT BITS

SLICES (REGISTERS)
CLOCK FREQUENCY

RECONFIGURABLE

16

7

144
106.98 MHZ

N

10

7

749
239.257 MHZ

Y

TABLE II: COMPARISON WITH HYBRID DDA* [16] AND DDA

[10] WITH 4 TAP FILTERS. *EXTRAPOLATED FROM SINGLE
FIR

RESULTS.

FEATURES HYBRID DDA DDA PROPOSED

MULTIPLIERS
COEFFICIENT BITS

SLICES

(REGISTERS)
CLOCK FREQUENCY

RECONFIGURABLE

0
4

584

188 MHZ

N

0
4

364

75 MHZ

N

4
4

223

56.881 MHZ

Y

IV. QUANTIZATION OF PERFECT

RECONSTRUCTION TWO-CHANNEL FILTER

BANKS

The main drawback of any variant of a direct form

implementation or spectral factorization is that

quantization of filter coefficients affects the perfect

reconstruction condition. However, unlike lattice

realizations, symmetry in filter coefficients will still

guarantee linear phase response. The problem is being

able to measure the effect of quantization on the filter

bank’s perfect reconstruction and weigh the compromise

of performance for using higher bit representations in

hardware realization of the system. This is now fast and

simple, since the proposed architecture can easily

implement any FIR based filter bank for any user

specified quantization within the capacity of the target

FPGA device for synthesis. To demonstrate, a few

perfect reconstruction two-channel filter banks were

synthesized for the Virtex 5 with varying levels of

quantization in both the channels and the filter co-

efficients.

A. Example PR Two-Channel Filter Banks in [6]

Two sets of perfect reconstruction Wilson filter

coefficients [6] were implemented with various different

bit representations (analysis bank input bits : channel bits

: synthesis bank output bits) where filter coefficient

quantization was matched to the input channel. The direct

form complexity of the two different Wilson filters

considered is shown in Table III. The results of each

implementation, shown in Table IV, clearly shows the

reduction in multipliers achievable with the proposed

60 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…

architecture and how there is a greater reduction for odd

order filters. In addition, the FPGA utilization in terms of

slices is shown. Channel and output bit representation

were selected to reduce truncation error so that the SNR

was representative of filter quantization.

TABLE III: FILTER COMPLEXITY.

Filter Bank Filter N Total QMF Multipliers

Example 2.1 [6] H0

H1

23

25

96

Example 2.3 [6] H0

H1

16

28

88

TABLE IV: RESULTS OF COEFFICIENT IMPLEMENTATION.

Filter

Bank

MCUS # Bits SNR

(dB)

Max. Clock

Slices

Ex.2.1

[6]

26

6:8:10

8:12:16

10:18:32

39.9792

86.0192

121.1571

250.815 MHZ

242.742 MHZ

238.960 MHZ

1697

2507

3672

Ex. 2.3

[6]

33

6:8:10

8:12:16

10:18:32

46.6023

85.7358

142.1724

250.611 MHZ

241.838 MHZ

238.975 MHZ

1735

2667

3985

Observations can now be made regarding the

performance and size compromise for obtaining a higher

SNR with higher bit representations. In this particular

case, the synthesizer targeted performance, maximizing

the operating frequency at the expense of resources.

Thus, as bit representation increases, so do resources

without significantly affecting the maximum operating

frequency. Fig. 9 and Fig. 10 show two example outputs

from the behavioral simulation of the proposed VHDL

filter bank architecture from Table IV.

Fig. 9. Results for Example 2.1 in [6] with 8:12:16 bits used for input
data, channel data and output data, respectively.

Fig. 10. Results for Example 2.3 in [6] with 10:18:32 bits used for input
data, channel data and output data, respectively.

 Finally, the timing diagram generated in ISE 11.1 for

the implementation of Example 2.3 filter bank in [6] is

shown in Fig. 11. Here, the registers for first FIR CELL

of the H0 synthesis filter is shown in addition to the data

input and Y1 and Y0 outputs. The m_reg0 register holds

the current multiplier coefficient and the results of the

delays and summed cumulated multiplier outputs are

present in c_sum_in and c_sum_out.

V. CONCLUSION

This paper has shown the successful design and

implementation of a FPGA architecture for two-channel

filter banks in VHDL. The architecture of the VHDL

module optimizes the complexity depending on the

length and symmetry of the filters being used for the

analysis and synthesis banks of the filter bank. In

addition to the multiplier optimization, the design also

has the flexibility to implement any bit representation for

the input data, channel data and output data. The VHDL

module and test bench have been tested with a variety of

different two-channel filter banks including perfect

reconstruction, DDA implementation of 4 tap filters and a

CFM-9/7 filter, all showing improvement in size and/or

speed. Test results for the two perfect reconstruction

filters in [6] were implemented with various bit

representations, showing the great reduction of

multipliers made possible by multiplexing coefficients to

exploit extra clocks and filter coefficient symmetry. The

analysis of quantization and its effects on FPGA resource

utilization, speed and SNR were examined for different

synthesis parameters. In addition, with minimal work, the

current two-channel architecture can be easily adapted for

the M-channel case using the new optimized

implementation of FIR filters. Overall, the proposed

structure proved not only to be an ideal implementation

for filter banks, but a valuable tool for rapid evaluation of

quantization.

 A.C. Karloff and E. Abdel-Raheem: Performance Analysis… 61

REFERENCES

[1]. S. Bishop, S. Rai, B. Gunturk, J. Trahan, and R.

Vaidyanathan, “Reconfigurable implementation of

wavelet interger lifting transforms for image

compression,” in IEEE International Conference on

Reconfigurable Computing and FPGAs, September 2006,

pp. 1–9.

[2]. D. LeGall, “U.S. Pat. 4 829 378: Sub-band coding of

images with low computational complexity,” Patent,

May, 1989.

[3]. A. Wu, K. Liu, and A. Raghupathy, “System architecture

of an adaptive reconfigurable DSP computing engine,”

IEEE Transactions on Circuits and Systems for Video

Technology, vol. 8, no. 1, pp. 54–73, 1998.

[4]. P. P.Vaidyanathan, “Multirate digital filters, filter banks,

polyphase networks, and applications: A tutorial,” IEEE

Proceedings, vol. 78, no. 1, pp. 56–93, 1990.

[5]. P. P.Vaidyanathan, “Quadrature mirror filter banks, M-

Band extensions and perfect-reconstruction techniques,”

IEEE ASSP Magazine, pp. 4–20, 1987.

[6]. B. Horng and A. Willson, “Lagrange multiplier

approaches to the design of two-channelperfect-

reconstruction linear-phase FIR filter banks,” IEEE

Transactions on Signal Processing, vol. 40, no. 2, pp.

364–374, 1992.

[7]. P. P. Vaidyanathan, T. Nguyen, and T. Saramaki,

“Improved approach for design of perfect reconstruction

FIR QMF banks, with lossless lattice structures,” in

Proceedings of the IEEE International Conference

Acoustics, Speech, and Signal Processing, April 1988,

pp. 1471–1474.

[8]. S. Park and N. Cho, “Design of multiplierless lattice

QMF: Structure and algorithm development,” IEEE

Transaction on Circuits and Systems-II: Express Briefs,

vol. 55, no. 2, pp. 173–177, 2008.

[9]. A. Al-Haj, “FPGA-based parallel distributed arithmetic

implementation of the 1-D discrete wavelet transform,” J.

Inform., vol. 29, pp. 241–247, 2005.

[10]. T. Vigneswaran and P. Reddy, “Design of digital FIR

filter based on dynamic distributed arithmetic algorithm,”

J. Applied Sciences, vol. 7, no. 19, pp. 2908–2910, 2007.

[11]. C. Lu and S. Summerfield, “Design and VLSI

implementation of QMF banks,” IEE Proc. Vision, Image

and Signal Processing, vol. 151, no. 5, pp. 421–427,

2004.

[12]. M. D. Valdes, M. J. Moure, J. Dieguez, and S. Antelo,

“Hardware solution of a polyphase filter bank for MP3

audio processing,’ IEEE Int. Symp. on Industrial

Electronics, 2008, pp. 1225 – 1229.e

[13]. X. Huang, L. Zhang, Z. Wei, and F. Fang,

“Implementation of DFT filter banks based on FPGA,”

Int. Conf. on Comp. Distributed Control and Intelligent

Environmental Monitoring, 2012, pp. 369 – 372.

[14]. D. –M. Pham, A. B. Premkumar and A. S. Madhukumar,

“Design of low hardware complexity filter banks for

communications systems employing folding number

systems,” IEEE GLOBECOM, 2009.

Fig. 11. Timing results for Example 2.3 in [6] showing FIR CELL 1 of Fig. 3. In this graph, h0 and h1 indicate even and odd coefficients of the

filter H0, respectively.

62 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…

[15]. P. P. Vaidyanathan and P. Hoang, “Lattice structures for

optimal design and robust implementation of two-channel

perfect-reconstruction QMF banks,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, vol. 36, no.

1, pp. 81–94, 1988.

[16]. A. Al-Haj, “FPGA-based quadrature mirror filters for

DSP applications,” in Third International IEEE

Conference on Signal-Image Technologies and Internet-

Based Systems, December 2007, pp. 581–584.

[17]. A. Pande and J. Zambreno, “Design and analysis of

efficient reconfigurable wavelet filters,” in IEEE

International Conference on Electro/Information

Technology, December 2008, pp.327 – 33.

