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Abstract: Software error detection is about finding and prediction software logical error before deliver it to customers 

by some of automatic approaches. Some of logical errors are hidden in source code and cannot be found simply and no 

piece of software is free of logical errors. As software is written by humans, errors can always occur. So, finding and 

prediction of errors is one of most important issues in software development cycle.  

Program logical error localization and program testing are two of the most important sections in software engineering. 

Programmers or companies that produce programs will lose their credit and profit effectively if one of their programs 

delivered to a customer has any drawback. Nowadays there are many methods to test a program. Invariant are program 

valuable properties and relations which are true in all executions. This paper suggests a framework to localize the 

program logical errors by extraction of knowledge from invariants using a clustering technique. 
 

Keywords: Invariant Rules, Dynamic Detection, Variable Relations, Software engineering, Verification 

 

1. INTRODUCTION 

Software error detection is about finding and prediction software logical error before delivering it to customers by 
some of automatic approaches. Some of logical errors are hidden in source code and cannot be found simply and no piece 
of software is free of logical errors. As software is written by humans, errors can always occur. So, finding and prediction 
of errors is one of most important issues in software development cycle. 

Program error localization is one of the most important fields in program production and software engineering. 
Programmers or companies that produce programs will lose their credit and profit effectively if one of their programs 
delivered to a customer has any drawback. While there are many methods to test a program, it is the lack of an 
appropriate method for localizing a program logical errors using extraction of knowledge from invariants [3]. This paper 
will offer a framework to localize the program logical errors before its release. This method is based on extracting the 
knowledge from program invariants called Logical Error localizator Based on Program Invariants (LELBPI). 

Invariant are program valuable properties and relations which are true in all executions. For example in a sort function 
such as bubble sort, while leaving the function, all the elements of the array are sorted so invariant (array a sorted >=) is 
reported. Such properties might be used in formal specification or assert statement. Invariant is introduced by Robert and 
Floyd [13]. They are a set of rules that govern among the values of variables in the programs in such a way that they 
remain unchanged in the light of different values of the input variables in the consecutive runnings of a program. There 
are three types of invariant generally: pre-condition, loop-invariant and post-condition. However post-conditions are 
considered as a kind of invariants. In this paper, where it is addressed invariant, it only implies to the invariant of post-
condition type.  

Since invariants repeat the properties and relations of program variables, invariants can express the behavior of a 
program. Therefore after an updating to the code, invariants can determine which properties of the code remain 
unchanged and which properties are changed. Invariants are kind of documentation and specification [6]. Since 
specification and documentation are essentials in software engineering, Invariants can be used in all processes of software 
engineering from design to maintenance [9]. There are two different approaches to detent invariants, static and dynamic. 

In the static approach the syntactic structure and runtime behavior of program are checked without actually running of 
code [1]. Data-flow is a kind of invariant which is traditionally used in compilers for optimizing of codes. Data-flow 
analysis can determine the properties of program points. Abstract interpretation is a theoretical framework for static 
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analysis [7] and [11]. The most precise imaginable abstract interpretation is called the static semantics or accumulating 
semantics. 

In contrast to static analysis, dynamic invariant detection tools elicit invariants by actually executing of the code with 
different test suits and inputs. Properties and relations are extracted through the execution of the code. Dynamic invariant 
detection emerged to software engineering realm during recent ten years by Daikon [9]. By using different test suits in 
different executions, in each program point, variable properties and relationships are extracted. These Program points are 
usually the points of entry and exits of program functions. Extracted properties and relations are invariants. These 
invariants are not certainly true but indeed they are true in all executions in test suits. One of the most important 
advantages of this approach is that what invariant reports not only shows the properties and relations of variables via 
execution but also utters the inputs properties and relations. This advantage of dynamic invariants doubles its usage. 

Invariants have significant impact on software testing. Also, invariants are useful in comparing two programs by 
programmers and can help them check their validity. For instance, when a person writes a program for sorting a series of 
data, s/he can conclude that his program are correct or has some bugs by comparing his program invariants against the 
invariants of a famous reliable sort program; such as Merge Sort. Here, the presupposition is that in two sets (a) 
invariants detected in the program and (b) invariants detected in the merge sort program, must be almost the same. 
Additionally, invariants are useful in documentation and introduction of a program attributes; i.e. in cases where there are 
no documents and explanations on a specific program and a person wants to recognize its attributes for correcting or 
expanding program, invariants will be very helpful to attain this goal, especially if the program is big and has huge and 
unstructured code.  

Specification by invariant is one of the best methods to show the behavior of a program. Many programmers use 
invariants to test programs and identify their bugs. Indeed, invariants are a set of rules between the values of variables 
that are extracted in such a way that they remain unchanged in the light of different values of the input variables in the 
consecutive runnings of a program. 

Invariants are usually extracted in three types: pre-condition, loop-invariant and post-condition. Post-conditions are a 
set of rules between the values of variables when program is executed and finished. However post-conditions are 
considered as a kind of invariants. In this paper, where it is addressed invariant, it only implies to the invariant of post-
condition type. 

Daikon is the suitable software for dynamic invariant detection developed until now in comparing other dynamic 
invariant detection methods. However this method has some problems and weaknesses and thus, many studies have been 
carried out with the aim of improving Daikon performance which has resulted in several different versions of Daikon up 
to now [5] and [10]. For instance latest version of Daikon includes some new techniques for equal variables, dynamically 
constant variables, variable hierarchy and suppression of weaker invariants [5]. 

Jose and Majumdar have presented a new algorithm for error cause localization based on a reduction to the maximal 
satisfiability problem called MAX-SAT, which asks what is the maximum number of clauses of a Boolean formula that 
can be simultaneously satisfied by an assignment [16]. They have just used Boolean Invariants. Konighofer and Bloem 
have presented a novel debugging method for imperative software, featuring both automatic error localization and 
correction. The input of our method is an incorrect program and a corresponding specification, which can be given in 
form of assertions or as a reference implementation. They have used symbolic execution for program analysis [17]. This 
paper suggests a framework to localize program logical errors by using a serie of tools such as Daikon which derives 
program invariants [10].  

The some invariant-extractor methods will be explained in following section. Briefly, the used method is to first 

collect a repository of the evaluated programs. Then using their reliabilities with regard to the invariants assigned by an 

expert the programs are clustered. The clustering is done regarding to their invariants likeliness. For example, all types of 

sorting programs including bubble sort, merge sort, insertion sort, etc and their invariants stand in the same cluster. 

LELBPI checks its tested program invariants with all sets of cluster invariants that are available in its repository. After 

that LELBPI calculates their similarity measures with the clusters and selects the cluster with maximum similarity. If 

difference number with one set of the clusters invariants in the repository is zero then the program will be true else it will 

be a new one or belongs to another of the pre-defined clusters; besides it has some error(s) that must be eliminated. 

2. INVARIANTS 

Invariants in programs are formulas or rules that are emerged from source code of program and remain unique and 
unchanged with respect to running of program with different input parameters. For instance, in a sort program that its job 
is to sort array of integers, the first item in the array must be bigger than the second item and the second item must be 
bigger than the third, etc. Invariants have significant impact on software testing. Daikon is the suitable software for 
dynamic invariant detection developed until now in comparing other dynamic invariant detection methods. However this 
method has some problems and weaknesses and thus, many studies have been carried out with the aim of improving 
Daikon performance which has resulted in several different versions of Daikon up to now [5] and [10]. For instance latest 
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version of Daikon includes some new techniques for equal variables, dynamically constant variables, variable hierarchy 
and suppression of weaker invariants [5]. 

Invariants in programs are sets of rules that govern among the values of variables and remain unchanged in the light 
of different values of the input variables in consecutive runnings of the program. Invariants are very useful in testing 
software behavior, based on which a programmer can conclude that if its program behavior is true [6] and [15]. For 
instance, if a programmer, considering invariants, realizes that the value of a variable is unwillingly always constant, s/he 
may conclude that its codes have some bugs. 

Also, invariants are useful in comparing two programs by programmers and can help them check their validity. For 
instance, when a person writes a program for sorting a series of data, s/he can conclude that his program are correct or has 
some bugs by comparing his program invariants against the invariants of a famous reliable sort program; such as Merge 
Sort. Here, the presupposition is that in two sets (a) invariants detected in the program and (b) invariants detected in the 
Merge Sort program, must be almost the same. Additionally, invariants are useful in documentation and introduction of a 
program attributes; i.e. in cases where there are no documents and explanations on a specific program and a person wants 
to recognize its attributes for correcting or expanding program, invariants will be very helpful to attain this goal, 
especially if the program is big and has huge and unstructured code. 

There are two ways for invariant detection that are called static and dynamic. In the static way, invariants are detected 
with the use of techniques based on compiler issues (for example, extraction of data flow graphs of the program source 
code). Dynamic way, on the other hand, detects invariants with the help of several program runnings by different input 
parameter values and based on the values of variables and relations between them. Dynamic methods will be explained in 
more detail in next section [8]. 

Every method has some advantages and disadvantages which will be debated in this paper. There are some tools as 
Key & ESC for java language and LClint for C language for static invariant detection [1] and [4]. In static detection, the 
biggest problem is the difficulty with which a programmer can discover the invariants. Tracing of codes and detection of 
rules between variable values are a difficult job especially if the programmer wants to consider such cases as pointers, 
polymorphisms and so on. 

In dynamic methods, the biggest problem is that they are careless and time-consuming and, more importantly, do not 
provide very reliable answers 

First, confirm that you have the correct template for your paper size. This template has been tailored for output on the 
21cm X 28cm Paper Size. 

3. RELATED WORKS 

A. Background 

There are many machine learning based and statistical based approaches to fault prediction. Software fault prediction 
models have been studies since 1990s until now [3]. According to recent studies, the probability of detection (71%) of 
fault prediction models may be higher than probability of detection of software reviewer (60%) if a robust model is built 
[14]. 

Software fault prediction approaches are much more cost-effective to detect software faults compared to software 
reviews. Although benefits of software fault prediction are listed as follows [2] and [12]: 

 Reaching a highly dependable system 

 Improving test process by focusing on fault-prone modules 

 Selection of best design from design alternative using object-oriented metrics 

 Identifying refactoring candidates that are prediction as fault-prone 

 Improving quality by improving test process 
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Figure 1.  Suggested framework for LELBPI 

B. Daikon Algorithm 

Daikon first runs program with several different input parameters. Then it instruments program and finally in every 
running of the program saves variable values on a file called data trace file. Daikon continues its work with extracting the 
values of variables from data trace files and by using a series of predefined relations discovers the invariants and saves 
them. Daikon discovers unary, binary and ternary invariants. Unary invariants are invariants defined on one variable; for 
instance, X>a presents variable X is bigger than a constant value. For another example X  (mod b)=a shows X mod b=a. 
X>Y, X=Y+c are also samples of binary invariants and Y=aX+bZ is a sample of ternary invariant considered in Daikon 
in which X, Y, Z are variables and a & b are constant values. 

Daikon will check invariants on the next run of the program on the data trace file and will throw them out from list of 
true invariants if it is not true on current values of variables. Daikon continues this procedure several times while 
concluding proper reliability of invariants [8]. 

C. Problem Definition and Motivation 

None of previous approaches cannot predict and localize the all of software faults and failures because, the all of 
impact factors have not been known yet. By the way, data mining and statistical methods essentially have not 100% 
accuracy. Whereas software failure prediction is very valuable, so many researchers have been doing wide efforts about 
it. On the other hand, software testing is the most critical and time consuming phase in software development. This paper 
will be offered a proper model to failure localizes based on invariants. 

Programmers or companies that produce programs will lose their credit and profit effectively if one of their programs 
delivered to a customer has any drawback. While there are many methods to test a program, it is the lack of an 
appropriate method for localizing a program logical errors using extraction of knowledge from invariants [3]. Also, 
existent methods cannot assurance that software will be error free. Suggested framework tries to predict all of software 
logical errors. 

4. SUGGESTED FRAMEWORK 

Since the similar programs with the same functionalities have more or less the same invariants, such invariants may 
be considered as behaviors of the programs. Although it is highly probable that there is a program with job similar to job 
of another program plus an auxiliary job, these two programs are not considered as the same programs. This is due to 
high rate differences in their invariants. In other words, if the two programs just do the same job, their invariants are 
almost the same. Suggested framework is explained in this section. Informally, the LELBPI is shown in Figure 1. 

Figure 1 depicts that program invariants detected by Daikon software are sent to LELBPI and machine then 
processes them and give a feedback to programmer. Then a label indicating the validation of LELBPI prediction is 
returned to it. It is notable that the rules included in the Data Base of the learner machine must be in the general forms. 
For example to show that an array is sorted, the corresponding rule is similar to "array_name sorted by >=" (denoted 
by rule 1); besides the invariants similar to "array_name[1]<= array_name[2]" (denoted by rule 2) is eliminated 
provided that the rule 1 is available. Details of framework are illustrated in activity diagram which is shown in Figure 2. 
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Figure 2.  Error localizator framework activity diagram 

First, program invariants are sent to LELBPI then invariants are compared with all of clusters agent and select cluster 
with minimum difference. If all of cluster agents are far away then it will be asked from programmer that "This program 
is unknown, is it new and reliable?" If user answers ok s/he is sure that program is true, however invariants will insert to 
the database located in LELBPI and then we update its clusters. 

While entered invariants by user is resemblant with some cluster, head of cluster which has minimum difference will 
be shown to user and if user confirms it, provided that difference number is zero (or be less than a pre-defined threshold) 
then tested program invariants inserted in the database which locates the right machine learner and updates machine 
learner clusters, else if difference number is more than zero (or be greater than the pre-defined threshold) then just sends 
an alarm to user which program has some logical error(s). 

While the presented cluster to the user dissatisfies programmer then LELBPI selects the next minimum cluster and 
sends its matter to user. If all similar clusters presented to user can not satisfy programmer then user is asked again if 
"This program is unknown, is this program new and reliable?" Again if user answers ok and s/he is sure that program is 
true, nevertheless invariants will insert to database located in LELBPI and updates its clusters. 

 

Figure 3.  Some exemplary programs 
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It is clear that learner machine database is empty initially and it will gradually be filled by adding true and reliable 
programs manually by user feedbacks. The greater the number of record in database, the more accurate and valid results 
of suggested framework 

A. Variable Matching 

Suppose that the agent of cluster that must be compared with the tested program invariants had two integer variables 
denoted by i and j. Also assume that entered invariable to learner machine had two different integer variable denoted by 

m, n. Before comparing invariants, LELBPI must match either im and jn or vice versa. Algorithm that is used in 
LELBPI matches all possible permutations of i, j to m, n and amount of difference on each combination will be computed 
and software will select combination which has minimum difference in compare with other combination. More detailed 
explanation is offered in section five. 

 

Figure 4.  Second set of exemplary programs 

For decreasing runtime, LELBPI standardizes variable names before invariants of true program are added to database, 
it means that all variables with the same data type rename to one series of standard and recorded name. For example all 
integer variables in all programs are renamed to int_a, int_b... sequentially and all integer arrays in programs are renamed 
to array_int_a, array_int_b… sequentially, and for each invariant set, the numbers of variables in all data types are 
buffered. Machine can permute variables with higher speed. 

B. Scalability 

For justifying this method is convenient and efficient, run time of this method is estimated on this section. 
Informally run time can be characterized as: 

 

( , )

( , )

Max f r

Min f r
Inv K m g

 
    

 
    

where Inv is the run time for extracting tested program invariants, K is cluster number, f is maximum of number of 
variables of one type in tested program, r is the maximum number of variables if one type in agent of clusters, m is 
maximum number of invariants in agent of clusters, and finally g is maximum of invariants number in tested program 
invariants. As you saw, first of all, the framework must extract tested program invariants with an appropriate tool as 
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Daikon. Then, these invariants must be compared with invariants of every clusters agent. Also, every combine of 
variables in invariants must be matched with variables in same type in agent of clusters. 

Pay attention that f and r are limited because as is said in section 4.1, before than adding invariants in database 
variables are standardized. So, run time is acceptable. 

5. EXPERIMENTAL RESULTS 

For validating this framework, software is implemented and their results are shown in this section. Invariants of six 
true programs including bubble sort, merge sort, insertion sort, shell sort, compute sum of array elements and search 
into array are added to software database initially. Used algorithms are shown in Figure 3 and Figure 4. 

The results of pre-mentioned algorithms with this supposition that every used array in programs have random values 
collected in Table 1. It is necessary to note that all of invariants in this paper come from Daikon software. 

In Table 1 "a sorted by <=" means that a[i]<=a[i+1]. Also "a=orig (a [])" means that "a" array elements remain 
unmodified in exit of program. 

With respect to invariants in Table 1, two clusters are created and programs are grouped in the two. These two 
clusters are related to sort and search. Agent of sort cluster is "a sorted by <=" and agent of search cluster is "a=orig (a 
[])". 

Now consider below code which is bubble sort that programmer don’t check last element of array. As you know, it 
is a common error in programming. This code has an array that its name is b and two integer value with names m, n. 

TABLE I.  PROGRAMS AND THEIR INVARIANTS 

Invariants Program Name Row 

1. a sorted by >= 

2. i= Length(a) 

3. J=Length(a)-1 

Bubble Sort 1 

1. a sorted by >= 

2. i= Length(a)-1 

Insertion 

sort 

2 

1. a sorted by >= 

2. interval=1 

Shell Sort 3 

1. a sored by >= 

2. b sorted by >= 

3. c sorted by >= 

4. i < k 

5. j <k 

6. k= Length(c) 

7. a=orig(a[]) 

8. b=orig(b[]) 

Merge Sort  

 

 

 

4 

 

1. a =orig(a[]) 

2. i= Length(a)-1 

Sum of array 

elements 

5 

1. a=orig(a[]) 

2. i<= Length(a)-1 

Search array 6 

 

Invariants for algorithm 1 in Figure 5 that are calculated by Daikon software with this supposition that length of array 
is six is shown at below: 

1. m= Length(b)-1 

2. n= Length(b)-1 

3. b[0]<=b[1] 

4. b[1]<=b[2] 

5. b[2]<=b[3] 

6. b[3]<=b[4]. 
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Figure 5.  Algorithm 1: Faulty version of bubble sort 

Number of differences in invariants of every cluster agent and these invariants are shown in Table 2. Here, machine 
just compares invariants which exist on variables in cluster agent. It is because tested program may do anything as well as 
agent function. So if tested program has any invariants on those variables that are missing in set of variables in comparing 
agent of cluster then these invariants can't be considered as differences. Also because invariants of an agent include 
intersection of invariants of all programs in the cluster, some invariants may be in invariants of the current programs 
while they are not in the invariant of its cluster agent. However invariants on variables in cluster agent must be strictly in 
tested program invariants. 

Table 2 presents that tested program stands in sort cluster and it have sort matter. Now tested program will be 
compared with all of program invariants in sort cluster. Results of these comparisons are collected in Table 3. 

TABLE II.  COMPARE INVARIANTS 

Differences Variable 

Matching 

Cluster Name 

3 b[]=a[] Sort 

10 b[]=a[] Search 

 

It is clear from Table 3 that tested program has minimum differences from bubble sort provided that m variable be 
assigned to i variable and n be assigned to j. It is clear that it is a valid result. Terminal result is: program subject is 
"sorting" and has some logical errors because number of differences is not zero. 

TABLE III.  TABLE TYPE STYLES 

Program Name Row Variables Matching Differences 

Bubble Sort 1 b[]=a[] 

m=i 

n=j 

1 

Bubble Sort 2 b[]=a[] 

m=j 

n=i 

3 

Insertion Sort 3 b[]=a[] 

m=i 

2 

Insertion Sort 4 b[]=a[] 

n=i 

3 

Merge Sort 5 b[]=a[] or b[]=b[] 

m=k 

n=i 

10 

Merge Sort 6 b[]=a[] or b[]=b[] 

m=k 

10 
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n=j 

Merge Sort 7 b[]=a[] or b[]=b[] 

m=i 

n=j 

10 

Merge Sort 8 b[]=a[] or b[]=b[] 

m=j 

n=i 

10 

Merge Sort 9 b[]=c[] 

m=i 

n=k 

4 

Merge Sort 10 b[]=c[] 

m=j 

n=k 

4 

Merge Sort 11 b[]=c[] 

m=k 

n=i 

4 

Merge Sort 12 b[]=c[] 

m=k 

n=j 

4 

Merge Sort 13 b[]=c[] 

m=i 

n=j 

4 

Merge Sort 14 b[]=c[] 

m=j 

n=i 

4 

6. CONCLUSION AND FURTHER WORKS 

Daikon is a method to discover likely invariants by dynamic methods. Also Daikon's team has been doing many 
researches about invariants application. They also do some researches to test software based on execution program with 
several different input parameters and extract and check invariants on every run of program. In this paper a new 
framework based on Daikon, is proposed to incrementally detect errors of different programs. In this framework, one 
cluster is produced per invariants of each program type. The suggested framework is gradually reinforced. It can predict 
every error that has been learned until now. One of this framework limitations are that the user who learn it must be 
expert. If the user was expert and learner machine has been learned sufficiently, it can predict and identify programs 
that have logical error(s). 

For future direction of research will focus on program filtering in every cluster that may reduce efficiently comparing 
tasks. For example as one of filtering, machine can just compare programs which have same variable data type for 
example have three integer values and two array data types. Another action that can be done is that machine as well as 
true program invariants can learn from false program invariants and machine learns that programmer where and how 
have fault in program commonly. 
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