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Abstract: Particle swarm optimization (PSO) is a well-known instance of swarm intelligence algorithms and there have been many 

researches on PSO. In this paper, the author proposes an extension of PSO for solving fuzzy-valued optimization problems. In the 

proposed extension, genotype values (i.e. values in particle position vectors) are not real numbers but fuzzy numbers. Search 

processes in PSO are extended so that PSO can handle genotype instances with fuzzy numbers. The proposed method is 

experimentally applied to evolution of neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural 

networks evolved by the proposed method could model hidden target fuzzy functions despite the fact that no training data was 

explicitly provided. 

 

Keywords: Evolutionary algorithm, Swarm intelligence, Particle swarm optimization, Fuzzy number, Feedforward neural network, 
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1. INTRODUCTION 

A multi-layered feed forward neural network (NN) 

with fuzzy-valued weights and biases was proposed in 

literature [1]. The fuzzy NN (FNN) approximately models 

a fuzzy function       , where   is a fuzzy number 

and   is a real vector, by learning given data (     ), 

(     ), …. The FNN can learn the data in which   ,   , 

… include both of real numbers and fuzzy numbers, 

because a real number can be specified as a fuzzy number 

with zero width (i.e., with the same value of upper and 

lower limits). As the learning method for the FNNs, a 

supervised learning method was also proposed [1] which 

is an extension of the traditional back propagation (BP), 

but a method that does not require training data has yet 

not been proposed. 

Besides, evolutionary algorithms have recently been 

applied to the reinforcement training of NNs, known as 

neuroevolution (NE) [2-5]. In NE, weights and biases are 

tuned by evolutionary operations, not by the BP 

algorithm. Because NE does not utilize BP, NE does not 

require errors between NN output values and their target 

signals but only require each NN to be ranked based on 

the performance of the NN for a given task. Thus, NE is 

applicable to problems in which the error function is 

difficult or impossible to be determined, such as 

controlling autonomous robots. EAs have been applied to 

NE of traditional NNs with real-valued weights and 

biases, where the genotypes (chromosomes) consist of 

real numbers or bit strings that encode real numbers. The 

ordinary EAs have not employed fuzzy numbers as their 

genotype values because their evolutionary operations are 

designed to handle genotypes with crisp values and thus 

the operations cannot handle genotypes with fuzzy values. 
The author previously proposed an extension of 

genetic algorithm which can handle fuzzy-valued 
genotypes [6]. In this paper, the author proposes a similar 
extension of another EA, particle swarm optimization 
(PSO). PSO [7,8] is a well-known instance of the EAs 
(more specifically, an instance of swarm intelligence 
algorithms [9]). Researchers have applied PSO to the 
training of NNs [10-19], but the NNs are traditional ones 
with real-valued weights and biases. On the contrary, the 
extended PSO proposed in this paper can be applied 
directly to fuzzy optimization problems by employing 
fuzzy variables in a fuzzy optimization problem as 
genotype values. The author experimentally applies the 
proposed method (fuzzy-valued PSO: FPSO) to 
reinforcement training of FNNs and compares the 
experimental result with the result by the previously 
proposed fuzzy-valued GA [6]. 
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2. NEURAL NETWORKS WITH FUZZY WEIGHTS 

AND BIASES 

The FNN employed in this research is the same as in 
the literature [1], which is a three-layered feed forward 
NN with fuzzy weights and biases. Fig.1 shows its 
structure. An FNN receives an input real vector   and 
calculates its output fuzzy value   (for simplicity, the 
output layer includes a single unit) as follows [1]:   

 

Figure 1.  Neural network with fuzzy weights and biases [1]. 

 

Figure 2.  Input-output relation of each unit in the hidden and output 

layers [1]. 

Input Layer:   

 (1) 

Hidden Layer:   

 

(2) 

 (3) 

Output Layer:  

 

(4) 

 (5) 

 

In (1)-(5),    and    are real values, while     ,    , 

    ,   ,   ,  ,    and   are fuzzy values.      is the unit 

activation function which is typically the sigmoidal one: 
              .      maps a fuzzy input number to 
a fuzzy output number as illustrated in Fig.2. 

The feed-forward calculation of the FNN is based on 
the extension principle [20] and the interval arithmetic 
[21] (for more detail, see the literature [1]). Let us denote 
two closed intervals as   and  , where   =[     ] and   
=[     ]. In this case,  

 (6) 

 (7) 

 (8) 

The FNN includes      weights (i.e.,    weights 
between   input units and   hidden units, and   weights 
between   hidden units and an output unit) and     
biases (= the total number of units in the hidden and 
output layers). Thus, the FNN includes         
fuzzy variables in total. The FPSO handles these fuzzy 
variables as a genotype                where    is a 
fuzzy number and          .  

Suppose each    is a symmetric triangular fuzzy 
number (Fig.3) as in [6]. In this case,    can be specified 
by its upper and lower limits or by its center and width 

(radius):       
    

   or       
    

   where   
 ,   

 ,   
 , 

  
  denote the upper, lower, center and width of    

respectively.  

3. FUZZY PSO: PSO WITH FUZZY-VALUED 

GENOTYPES 

The proposed FPSO consists of the same processes as 
those in the ordinary PSO with real-valued genotypes. 
Processes of initialization of population, fitness evaluation 
and updates of particles are extended so that these 
processes can handle fuzzy-valued genotypes. 

A. Initialization of Population 

In the initialization process,            are 
randomly initialized where   is the population size. 

Because the elements in    (i.e.,                  ) are 

weights and biases in an FNN in this research, smaller 
absolute values of      are preferable as initial values. 

Thus, the initial values for      are randomly sampled 

 

 

Figure 3.  Symmetric triangular fuzzy number and its real-valued 
parameters [6].  
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from the normal distribution         or uniformly from 
an interval        where   is a small positive number. In 
the case of employing the [lower, upper] model (the LU 

model), two values are sampled per           
      

  : the 

smaller (larger) one is set to     
  (    

 ). In the case of 

employing the (center, width) model (the CW model), two 
values are sampled per           

      
  : one of the two 

values is set to     
  and the absolute value of the other is 

set to     
 . 

B. Fitness Evaluation 

To evaluate fitness of an FNN as a phenotype instance 
of the corresponding genotype instance    
                   where                , the 

FNN is supplied with several samples of input real vectors 
and calculates output values. The input values are sampled 
within the variable domain of application problem. Fitness 
of the genotype instance    is evaluated based on the 
output values. The method for scoring the fitness based on 
the output values depends on the problem to which the 
FNN is applied. For example, in a case where the FNN is 
applied to controlling an automated system, some 
performance measure of the system can be used as the 
fitness score of the genotype instance corresponding to the 
FNN. 

C. Updates of Particles 

Let the position vector of a particle, its personal best 
and the global (or its local) best be denoted as   , 
      ,       (or       ). In the case of using the LU 

model,                       and           
      

  . 

Let the velocity for     
  and     

  be denoted as       and 

      respectively. Note that       (     ) is not the lower 

(upper) limit of an interval so that       can be smaller 

than      .       and       are updated as:  

 (9) 

 (10) 

employing the global best model, or as:  

 (11) 

 (12) 

employing the local best model. The constant values 
 ,   ,     and the random values   ,    are the same as 
those in the ordinary PSO with the real-valued genotypes. 

Similarly, in the case of using the CW model, 
          

      
   and       and       are the velocity for 

    
  and     

  respectively.       and       are updated as:  

 (13) 

 (14) 

employing the global best model, or as:  

 (15) 

 (16) 

employing the local best model.  

By using the updated       and      ,      is updated 

as:  

 (17) 

 (18) 

or as:  

 (19) 

 (20) 

Note that     
  must not be larger than     

  because     
  

and     
  are the lower and upper limits of the fuzzy 

number     . Similarly,     
  must not be negative because 

    
  is the width of     . If the value of     

  becomes larger 

than the value of     
  after the updates by (17) and (18), 

these values must be repaired to meet the constraint. The 
repair method can be as follows:  

 the value of     
  is assigned to     

 , 

 the value of     
  is assigned to     

 , 

 the mean value of     
  and     

  is calculated and 

assigned to both of     
  and     

 , or 

 the two values for     
  and     

  are switched.  

Similarly, if the value of     
  becomes negative after 

the updates by (20), the value must be repaired to meet the 
constraint. The repair method can be as follows:  

 the value of     
  is assigned to 0, or 

 the absolute value of     
  is assigned to     

 .  

4. APPLICATION TO EVOLVING FUZZY NEURAL 

NETWORKS 

The author experimentally evaluates the ability of the 
proposed FPSO by applying it to evolution of FNNs, in 
the same manner as in [6]. The FNNs are challenged to 
model hidden fuzzy functions. The author adopts the same 
two functions [6] as the targets for FNNs to model so that 
the author can compare the experimental result with that 
by the fuzzy GA [6]. For simplicity, the input   of the 
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target functions is not a real vector but a real scalar (so 
that the FNN includes only a single input unit) and 
    1, as in the literature [1]. The outputs of the target 
functions are symmetric triangular fuzzy numbers. The 
functions                       and       
                are as follows:  

 (21) 

 (22) 

 (23) 

 (24) 

Figs.4 and 5 show these two functions, where:  

 F0.0L and F0.0U denote       and      , i.e., 
the lower and upper limits of the support interval 
of     , 

 F0.5L and F0.5U denote the lower and upper 
limits of the 0.5-level interval of     , i.e., 
        , and 

 F1.0 denotes the peak of     , i.e.,         . 

The FNN is designed as follows [6]: 

 Number of units: 1 input, 10 hidden, 1 output. 

           
      

      
      . 

         
      . 

The FPSO is designed as follows: 

 Total number of FNNs evolved in a single run: 
1,000,000. 

 Population size and number of iterations: (100, 
10,000), (500, 2,000) 

      ,       ,       . 

 Initial values of     
      

      
  for the fuzzy weights 

and biases: uniformly random within           . 

 Initial values for     
 : uniformly random within 

         . 

 Initial values of      ,      : 0.0. 

                      

The number of iterations is 10,000 (or 2,000) for the 
FPSO with 100 (or 500) particles so that the total number 
of FNNs evaluated in a single run is consistently 
1,000,000 (= 100 10,000 = 500 2,000). 

Particles            are ranked by utilizing the 
same error function as that in literature [1,6]. As the 
values for the h-level intervals of fuzzy numbers, the 
author employs                   in this experiment. 
A phenotype instance FNN which corresponds to a 
genotype instance    is supplied with a real input value    
and calculates its output fuzzy number   .    is sampled 
within the input domain       as 
                      . Besides, each value of    is 
supplied to the target function      and the output fuzzy 
number       is obtained. Then, the cost    for the input 
   is calculated as:  

 (25) 

where,  

     
  and     

  are the lower and upper limits of the 

h-level interval of   , i.e.,           
      

  , and 

     
  and     

  are the lower and upper limits of the 

h-level interval of      , i.e.,         
     

      
  .  

For each genotype instance   ,    is calculated 101 
times (  ,    ,…,      ) for the 101 input values    
                   , and the sum of    is used for 
ranking   . An instance with a smaller sum of    is 
ranked better. Note that    scores are not utilized for 
calculating the values of updating the weights and biases 
but only for determining        and       (or        
and       ).  

Figs.6 and 7 show the results of this experiment. Fig.6 
shows the output fuzzy function of the best FNN among 
the total 20,000,000 FNNs (= [1,000,000 FNNs in each 
run]  [five runs]  [two variations for population 

 

 

Figure 4.  Target Function       [6].  

 

Figure 5.  Target Function       [6].  
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sizes] [two variations for the interval model]) evolved by 
the FES for modeling      . Fig.7 shows those for 
modeling       in the same manner as Fig.6. In Figs.6 
and 7,  

 F0.0L, F0.0U, F0.5L, F0.5U and F1.0 are the 
same as those in Figs.4 and 5,  

 NN0.0L and NN0.0U denote the lower and upper 
limits of the support interval of the FNN output 
fuzzy number, 

 NN0.5L and NN0.5U denote the lower and upper 
limits of the 0.5-level interval of the FNN output 
fuzzy number, and  

 NN1.0 denotes the peak of the FNN output fuzzy 
number.  

Fig.8 shows the membership functions of   and       
for the input values       and      , where   is the 
output fuzzy number of the best FNN. In this figure,  

 NN(0.3) and NN(0.7) show the membership 
functions of the output fuzzy number of the best 
FNN for the input values 0.3 and 0.7, while  

 F(0.3) and F(0.7) show the membership functions 
of       for the input values 0.3 and 0.7. 

Fig.9 shows those for       in the same manner as Fig.8. 
The shapes of the FNN output fuzzy numbers (the solid 
curves in Figs.8 and 9) are similar to those of the target 
fuzzy numbers (the dotted lines in the same figures) for 
larger values of the membership score. These results 
shown in Figs.6-9 reveal that the best FNNs evolved by 
the FPSO approximate their target functions (especially 
for larger membership scores because the error is 
weighted more for the larger scores, see (25)), despite the 
fact that no training data is explicitly provided.  

Fig.10 shows the error values of the best FNN for 
      among each number of FNNs evolved (e.g., 
500,000 FNNs are evolved in total at the 5,000th 
generation by the FPSO with 100 particles). In this figure, 
“FPSO” shows the result by FPSO proposed in this paper, 
and “FGA” shows the result by FGA [6]. The error values 
are the averaged ones over five runs. Fig.11 shows the 
error values for       in the same manner as Fig.10. 
Figs.10 and 11 reveal that, for both of the two target 
functions, FGA contributed better than FPSO in evolving 
better FNNs: after the evolution of 1,000,000 FNNs, the 
dotted curves for FGA went below the solid curves for 
FPSO. This result will be because PSO tends to 
prematurely converge particles into a local minimum 
while GA can explorer the search space well by the 
crossover and mutation operations. Although the result 
indicate FGA is superior to FPSO in evolving neural 
networks with fuzzy weights, several researchers have 
reported that PSO can outperform GA [22-26]. The author 
will further compare FPSO with FGA by applying them to 

 

Figure 6.  Output fuzzy function of the best FNN evolved by FPSO 

for modeling      .  

 

Figure 7.  Output fuzzy function of the best FNN evolved by FPSO 

for modeling      .  

 

Figure 8.  Output fuzzy numbers of the best FNN evolved by FPSO 

and target fuzzy numbers       for the inputs values of 0.3 and 0.7.   

 

Figure 9.  Output fuzzy numbers of the best FNN evolved by FPSO 

and target fuzzy numbers       for the inputs values of 0.3 and 0.7.   
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other fuzzy optimization problems, e.g., optimizing fuzzy 
if-then rules for fuzzy inference systems.  

Besides, several methods have been proposed [27-32] 
for improving the traditional PSO. These improvements 
can be adopted to our FPSO. The author will evaluate 
how well these methods can improve our FPSO for 
solving fuzzy optimization problems. 

5. CONCLUSION 

In this paper, the author proposed the fuzzy-valued 
extension of PSO, and applied it to the evolution of neural 
networks with fuzzy weights and biases. In the proposed 
FPSO, genotype values are not real numbers but fuzzy 
numbers. To handle the fuzzy genotype values, the FPSO 
extends its processes of updating particles. The FPSO was 
challenged to evolve FNNs which model each of the two 
fuzzy functions. The experimental results showed that the 
best FNNs evolved by the FPSO approximated the target 
functions (especially for larger membership scores) 
despite the fact that no training data was explicitly 
provided.  

In the future work, the author will further evaluate the 
ability of the FPSO by applying it to problems other than 
neuroevolution, e.g., evolving fuzzy if-then rules for fuzzy 
inference systems. 

ACKNOWLEDGMENT 

This research was supported by Kyoto Sangyo 
University Research Grant. 

REFERENCES 

 
[1] H. Ishibuchi, H. Tanaka and H. Okada, Fuzzy neural networks 

with fuzzy weights and fuzzy biases, IEEE International 
Conferences on Neural Networks, 1650-1655 (1993). 

[2] D.B. Fogel, L.J. Fogel and V.W. Porto, Evolving neural networks, 
Biological Cybernetics, 63, 6, 487-493 (1990). 

[3] X. Yao, Evolving artificial neural networks, Proceedings of the 
IEEE, 87, 9, 1423-1447 (1999). 

[4] K.O. Stanley and R. Miikkulainen, Evolving neural networks 
through augmenting topologies, Evolutionary Computation, 10, 2, 
99-127 (2002). 

[5] D. Floreano, P. Durr and C. Mattiussi, Neuroevolution: from 
architectures to learning, Evolutionary Intelligence, 1, 1, 47-62 
(2008). 

[6] H. Okada, Genetic algorithm with fuzzy genotype values and its 
application to neuroevolution, International Journal of Computer, 
Information Science and Engineering, 8, 1, 1-7 (2014). 

[7] J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE 
International Conference on Neural Networks, IV, 1942-1948 
(1995). 

[8] R. Eberhart and J. Kennedy, A new optimizer using particle 
swarm theory, 6th International Symposium on Micro Machine 
and Human Science, 39-43 (1995). 

[9] J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan 
Kaufmann (2001). 

[10] H. Akkar, Optimization of artificial neural networks by using 
swarm intelligent, 6th International Conference on Networked 
Computing, 1-5 (2010). 

[11] R. Mendes, P. Cortez, M. Rocha and J. Neves, Particle swarm for 
feedforward neural network training, IEEE International Joint 
Conference on Neural Networks, 1895-1899 (2002). 

[12] K. Serkan, I. Turker, Y. Alper and G. Moncef, Evolutionary 
artificial neural networks by multi-dimensional particle swarm 
optimization, Neural Networks, 22, 10, 1448-1462 (2009). 

[13] J. Yu, L. Xi and S. Wang, An improved particle swarm 
optimization for evolving feedforward artificial neural networks, 
Neural Processing Letters, 26, 3, 217-231 (2007). 

[14] M. Carvalho and T.B. Ludermir, Particle swarm optimization of 
neural network architectures and weights, 7th International 
Conference on Hybrid Intelligent Systems, 336-339 (2007). 

[15] B. Al-Kazemi and C.K. Mohan, Training feedforward neural 
networks using multi-phase particle swarm optimization, 9th 
International Conference on Neural Information Processing, 5, 
2615-2619 (2002). 

[16] F. Zaho, Z. Ren, D. Yu and Y. Yang, Application of an improved 
particle swarm optimization algorithm for neural network training, 
International Conference on Neural Networks and Brain, 3, 1639-
1698 (2005). 

[17] J. Salerno, Using the particle swarm optimization technique to 
train a recurrent neural model, IEEE International Conference on 
Tools with Artificial Intelligence, 45-49 (1997). 

[18] M. Zamani and A. Sadeghian, A variation of particle swarm 
optimization for training of artificial neural networks, chapter 9, 
131-144, in A-D. Ali (ed), Computational intelligence and modern 
heuristics, InTech (2010) 

[19] M. Meissner, M. Schmuker and G. Schneider, Optimized particle 
swarm optimization (OPSO) and its application to artificial neural 
network training, BMC Bioinformatics, 7, 125 (2006). 

 

Figure 10.  Error value of the best FNN at each number of FNNs 

evolved for modeling      .   

 

Figure 11.  Error value of the best FNN at each number of FNNs 

evolved for modeling      .   



 

 

                                                                         Int. J. Com. Dig. Sys. 3, No. 3, 181-187 (Sep-2014)                          187 

 
[20] L.A. Zadeh, The concept of a linguistic variable and its 

application to approximate reasoning - I, II, and III, Information 
Sciences, 8, 199-249, 301-357, and 9, 43-80 (1975). 

[21] G. Alefeld and J. Herzberger, Introduction to Interval 
Computation, Academic Press (1983). 

[22] C. Ou and W. Lin, Comparison between PSO and GA for 
parameters optimization of PID controller, IEEE International 
Conference on Mechatronics and Automation, 2471-2475 (2006). 

[23] Y. Duan, R.G. Harley and T.G. Habetler, Comparison of particle 
swarm optimization and genetic algorithm in the design of 
permanent magnet motors, IEEE 6th International Power 
Electronics and Motion Control Conference, 822-825, (2009). 

[24] D. cada, A. Rosa, L.C. Duarte and V.V. Lopes, Comparison of 
GA and PSO performance in parameter estimation of microbial 
growth models: a case-study using experimental data, IEEE 
Congress on Evolutionary Computation, 1-8 (2010). 

[25] K.V.S.R. Murthy, M. Ramalinga Raju and G.G. Rao, Comparison 
between conventional, GA and PSO with respect to optimal 
capacitor placement in agricultural distribution system, Annual 
IEEE India Conference, 1-4 (2010). 

[26] I. Kecskes, L. Szekacs, J.C. Fodor and P. Odry, PSO and GA 
optimization methods comparison on simulation model of a real 
hexapod robot, IEEE 9th International Conference on 
Computational Cybernetics (ICCC), 125-130 (2013). 

[27] F. Zhao, Z. Ren, D. Yu and Y. Yang, Application of an improved 
particle swarm optimization algorithm for neural network training, 
International Conference on Neural Networks and Brain, 
\textbf{3}, 1693-1698 (2005). 

[28] F. Nian, W. Li, X. Sun and M. Li, An improved particle swarm 
optimization application to independent component analysis, 
International Conference on Information Engineering and 
Computer Science, 1-4 (2009). 

[29] J. Guo and T. Sheng-jing, An improved particle swarm 
optimization with re-initialization mechanism, International 
Conference on Intelligent Human-Machine Systems and 
Cybernetics, 437-441 (2009). 

[30] X. Xiao, C. Mei and G. Liu, Improved particle swarm 
optimization algorithm based on random perturbations, Third 
International Joint Conference on Computational Science and 
Optimization, 1, 404-408 (2010). 

[31] Y.V. Pehlivanoglu and O. Baysal, Improved particle swarm 
optimization: catching the big wave on the surf, IEEE Congress 
on Evolutionary Computation, 1-8 (2012). 

[32] Y. Cai, Z. Chen and  H. Min, Improving particle swarm 
optimization algorithm for distributed sensing and search, Eighth 
International Conference on P2P, Parallel, Grid, Cloud and 
Internet Computing, 373-379 (2013). 

 

Hidehiko Okada is currently a 

Professor with the Department of 

Computer Science and Engineering, 

Kyoto Sangyo University, Kyoto, 

Japan. He received the B.S. degree in 

industrial engineering and the Ph.D. 

degree in engineering from Osaka 

Prefecture University in 1992 and 

2003, respectively. He had been a 

researcher with NEC Corporation 

from 1992 to 2003, and since 2004 he 

has been with the university. His current research interests 

include computational intelligence and human-computer 

interaction. He is a member of Information Processing Society 

of Japan, Institute of Electronics, Information and 

Communication Engineers, Society of Instrument and Control 

Engineers, Japanese Society for Artificial Intelligence, Japan 

Society for Fuzzy Theory and Intelligent Informatics and 

Human Interface Society. He received the best paper award in 

the 1st International Conference on Industrial Application 

Engineering 2013.  

 

 


