

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 3, No.3 (Sep-2014)

E-mail: hidehiko@cc.kyoto-su.ac.jp

Evolving Fuzzy Neural Networks by Particle Swarm

Optimization with Fuzzy Genotype Values

Hidehiko Okada

Department of Intelligent Systems, Faculty of Computer Science and Engineering, Kyoto Sangyo University, Kyoto, Japan

Received 25 Apr. 2014, Revised 14 May 2014, Accepted 1 Jun. 2014, Published 1 Sep. 2014

Abstract: Particle swarm optimization (PSO) is a well-known instance of swarm intelligence algorithms and there have been many

researches on PSO. In this paper, the author proposes an extension of PSO for solving fuzzy-valued optimization problems. In the

proposed extension, genotype values (i.e. values in particle position vectors) are not real numbers but fuzzy numbers. Search

processes in PSO are extended so that PSO can handle genotype instances with fuzzy numbers. The proposed method is

experimentally applied to evolution of neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural

networks evolved by the proposed method could model hidden target fuzzy functions despite the fact that no training data was

explicitly provided.

Keywords: Evolutionary algorithm, Swarm intelligence, Particle swarm optimization, Fuzzy number, Feedforward neural network,

Neuroevolution

1. INTRODUCTION

A multi-layered feed forward neural network (NN)

with fuzzy-valued weights and biases was proposed in

literature [1]. The fuzzy NN (FNN) approximately models

a fuzzy function , where is a fuzzy number

and is a real vector, by learning given data (),

(), …. The FNN can learn the data in which , ,

… include both of real numbers and fuzzy numbers,

because a real number can be specified as a fuzzy number

with zero width (i.e., with the same value of upper and

lower limits). As the learning method for the FNNs, a

supervised learning method was also proposed [1] which

is an extension of the traditional back propagation (BP),

but a method that does not require training data has yet

not been proposed.

Besides, evolutionary algorithms have recently been

applied to the reinforcement training of NNs, known as

neuroevolution (NE) [2-5]. In NE, weights and biases are

tuned by evolutionary operations, not by the BP

algorithm. Because NE does not utilize BP, NE does not

require errors between NN output values and their target

signals but only require each NN to be ranked based on

the performance of the NN for a given task. Thus, NE is

applicable to problems in which the error function is

difficult or impossible to be determined, such as

controlling autonomous robots. EAs have been applied to

NE of traditional NNs with real-valued weights and

biases, where the genotypes (chromosomes) consist of

real numbers or bit strings that encode real numbers. The

ordinary EAs have not employed fuzzy numbers as their

genotype values because their evolutionary operations are

designed to handle genotypes with crisp values and thus

the operations cannot handle genotypes with fuzzy values.
The author previously proposed an extension of

genetic algorithm which can handle fuzzy-valued
genotypes [6]. In this paper, the author proposes a similar
extension of another EA, particle swarm optimization
(PSO). PSO [7,8] is a well-known instance of the EAs
(more specifically, an instance of swarm intelligence
algorithms [9]). Researchers have applied PSO to the
training of NNs [10-19], but the NNs are traditional ones
with real-valued weights and biases. On the contrary, the
extended PSO proposed in this paper can be applied
directly to fuzzy optimization problems by employing
fuzzy variables in a fuzzy optimization problem as
genotype values. The author experimentally applies the
proposed method (fuzzy-valued PSO: FPSO) to
reinforcement training of FNNs and compares the
experimental result with the result by the previously
proposed fuzzy-valued GA [6].

182 Hidehiko Okada: Evolving Fuzzy Neural Networks by Particle …

2. NEURAL NETWORKS WITH FUZZY WEIGHTS

AND BIASES

The FNN employed in this research is the same as in
the literature [1], which is a three-layered feed forward
NN with fuzzy weights and biases. Fig.1 shows its
structure. An FNN receives an input real vector and
calculates its output fuzzy value (for simplicity, the
output layer includes a single unit) as follows [1]:

Figure 1. Neural network with fuzzy weights and biases [1].

Figure 2. Input-output relation of each unit in the hidden and output

layers [1].

Input Layer:

 (1)

Hidden Layer:

(2)

 (3)

Output Layer:

(4)

 (5)

In (1)-(5), and are real values, while , ,

 , , , , and are fuzzy values. is the unit

activation function which is typically the sigmoidal one:
 . maps a fuzzy input number to
a fuzzy output number as illustrated in Fig.2.

The feed-forward calculation of the FNN is based on
the extension principle [20] and the interval arithmetic
[21] (for more detail, see the literature [1]). Let us denote
two closed intervals as and , where =[] and
=[]. In this case,

 (6)

 (7)

 (8)

The FNN includes weights (i.e., weights
between input units and hidden units, and weights
between hidden units and an output unit) and
biases (= the total number of units in the hidden and
output layers). Thus, the FNN includes
fuzzy variables in total. The FPSO handles these fuzzy
variables as a genotype where is a
fuzzy number and .

Suppose each is a symmetric triangular fuzzy
number (Fig.3) as in [6]. In this case, can be specified
by its upper and lower limits or by its center and width

(radius):

 or

 where
 ,

 ,
 ,

 denote the upper, lower, center and width of

respectively.

3. FUZZY PSO: PSO WITH FUZZY-VALUED

GENOTYPES

The proposed FPSO consists of the same processes as
those in the ordinary PSO with real-valued genotypes.
Processes of initialization of population, fitness evaluation
and updates of particles are extended so that these
processes can handle fuzzy-valued genotypes.

A. Initialization of Population

In the initialization process, are
randomly initialized where is the population size.

Because the elements in (i.e.,) are

weights and biases in an FNN in this research, smaller
absolute values of are preferable as initial values.

Thus, the initial values for are randomly sampled

Figure 3. Symmetric triangular fuzzy number and its real-valued
parameters [6].

 Int. J. Com. Dig. Sys. 3, No. 3, 181-187 (Sep-2014) 183

from the normal distribution or uniformly from
an interval where is a small positive number. In
the case of employing the [lower, upper] model (the LU

model), two values are sampled per

 : the

smaller (larger) one is set to
 (

). In the case of

employing the (center, width) model (the CW model), two
values are sampled per

 : one of the two

values is set to
 and the absolute value of the other is

set to
 .

B. Fitness Evaluation

To evaluate fitness of an FNN as a phenotype instance
of the corresponding genotype instance
 where , the

FNN is supplied with several samples of input real vectors
and calculates output values. The input values are sampled
within the variable domain of application problem. Fitness
of the genotype instance is evaluated based on the
output values. The method for scoring the fitness based on
the output values depends on the problem to which the
FNN is applied. For example, in a case where the FNN is
applied to controlling an automated system, some
performance measure of the system can be used as the
fitness score of the genotype instance corresponding to the
FNN.

C. Updates of Particles

Let the position vector of a particle, its personal best
and the global (or its local) best be denoted as ,
 , (or). In the case of using the LU

model, and

 .

Let the velocity for
 and

 be denoted as and

 respectively. Note that () is not the lower

(upper) limit of an interval so that can be smaller

than . and are updated as:

 (9)

 (10)

employing the global best model, or as:

 (11)

 (12)

employing the local best model. The constant values
 , , and the random values , are the same as
those in the ordinary PSO with the real-valued genotypes.

Similarly, in the case of using the CW model,

 and and are the velocity for

 and

 respectively. and are updated as:

 (13)

 (14)

employing the global best model, or as:

 (15)

 (16)

employing the local best model.

By using the updated and , is updated

as:

 (17)

 (18)

or as:

 (19)

 (20)

Note that
 must not be larger than

 because

and
 are the lower and upper limits of the fuzzy

number . Similarly,
 must not be negative because

 is the width of . If the value of

 becomes larger

than the value of
 after the updates by (17) and (18),

these values must be repaired to meet the constraint. The
repair method can be as follows:

 the value of
 is assigned to

 ,

 the value of
 is assigned to

 ,

 the mean value of
 and

 is calculated and

assigned to both of
 and

 , or

 the two values for
 and

 are switched.

Similarly, if the value of
 becomes negative after

the updates by (20), the value must be repaired to meet the
constraint. The repair method can be as follows:

 the value of
 is assigned to 0, or

 the absolute value of
 is assigned to

 .

4. APPLICATION TO EVOLVING FUZZY NEURAL

NETWORKS

The author experimentally evaluates the ability of the
proposed FPSO by applying it to evolution of FNNs, in
the same manner as in [6]. The FNNs are challenged to
model hidden fuzzy functions. The author adopts the same
two functions [6] as the targets for FNNs to model so that
the author can compare the experimental result with that
by the fuzzy GA [6]. For simplicity, the input of the

184 Hidehiko Okada: Evolving Fuzzy Neural Networks by Particle …

target functions is not a real vector but a real scalar (so
that the FNN includes only a single input unit) and
 1, as in the literature [1]. The outputs of the target
functions are symmetric triangular fuzzy numbers. The
functions and
 are as follows:

 (21)

 (22)

 (23)

 (24)

Figs.4 and 5 show these two functions, where:

 F0.0L and F0.0U denote and , i.e.,
the lower and upper limits of the support interval
of ,

 F0.5L and F0.5U denote the lower and upper
limits of the 0.5-level interval of , i.e.,
 , and

 F1.0 denotes the peak of , i.e., .

The FNN is designed as follows [6]:

 Number of units: 1 input, 10 hidden, 1 output.

 .

 .

The FPSO is designed as follows:

 Total number of FNNs evolved in a single run:
1,000,000.

 Population size and number of iterations: (100,
10,000), (500, 2,000)

 , , .

 Initial values of

 for the fuzzy weights

and biases: uniformly random within .

 Initial values for
 : uniformly random within

 .

 Initial values of , : 0.0.

The number of iterations is 10,000 (or 2,000) for the
FPSO with 100 (or 500) particles so that the total number
of FNNs evaluated in a single run is consistently
1,000,000 (= 100 10,000 = 500 2,000).

Particles are ranked by utilizing the
same error function as that in literature [1,6]. As the
values for the h-level intervals of fuzzy numbers, the
author employs in this experiment.
A phenotype instance FNN which corresponds to a
genotype instance is supplied with a real input value
and calculates its output fuzzy number . is sampled
within the input domain as
 . Besides, each value of is
supplied to the target function and the output fuzzy
number is obtained. Then, the cost for the input
 is calculated as:

 (25)

where,

 and

 are the lower and upper limits of the

h-level interval of , i.e.,

 , and

 and

 are the lower and upper limits of the

h-level interval of , i.e.,

 .

For each genotype instance , is calculated 101
times (, ,…,) for the 101 input values
 , and the sum of is used for
ranking . An instance with a smaller sum of is
ranked better. Note that scores are not utilized for
calculating the values of updating the weights and biases
but only for determining and (or
and).

Figs.6 and 7 show the results of this experiment. Fig.6
shows the output fuzzy function of the best FNN among
the total 20,000,000 FNNs (= [1,000,000 FNNs in each
run] [five runs] [two variations for population

Figure 4. Target Function [6].

Figure 5. Target Function [6].

 Int. J. Com. Dig. Sys. 3, No. 3, 181-187 (Sep-2014) 185

sizes] [two variations for the interval model]) evolved by
the FES for modeling . Fig.7 shows those for
modeling in the same manner as Fig.6. In Figs.6
and 7,

 F0.0L, F0.0U, F0.5L, F0.5U and F1.0 are the
same as those in Figs.4 and 5,

 NN0.0L and NN0.0U denote the lower and upper
limits of the support interval of the FNN output
fuzzy number,

 NN0.5L and NN0.5U denote the lower and upper
limits of the 0.5-level interval of the FNN output
fuzzy number, and

 NN1.0 denotes the peak of the FNN output fuzzy
number.

Fig.8 shows the membership functions of and
for the input values and , where is the
output fuzzy number of the best FNN. In this figure,

 NN(0.3) and NN(0.7) show the membership
functions of the output fuzzy number of the best
FNN for the input values 0.3 and 0.7, while

 F(0.3) and F(0.7) show the membership functions
of for the input values 0.3 and 0.7.

Fig.9 shows those for in the same manner as Fig.8.
The shapes of the FNN output fuzzy numbers (the solid
curves in Figs.8 and 9) are similar to those of the target
fuzzy numbers (the dotted lines in the same figures) for
larger values of the membership score. These results
shown in Figs.6-9 reveal that the best FNNs evolved by
the FPSO approximate their target functions (especially
for larger membership scores because the error is
weighted more for the larger scores, see (25)), despite the
fact that no training data is explicitly provided.

Fig.10 shows the error values of the best FNN for
 among each number of FNNs evolved (e.g.,
500,000 FNNs are evolved in total at the 5,000th
generation by the FPSO with 100 particles). In this figure,
“FPSO” shows the result by FPSO proposed in this paper,
and “FGA” shows the result by FGA [6]. The error values
are the averaged ones over five runs. Fig.11 shows the
error values for in the same manner as Fig.10.
Figs.10 and 11 reveal that, for both of the two target
functions, FGA contributed better than FPSO in evolving
better FNNs: after the evolution of 1,000,000 FNNs, the
dotted curves for FGA went below the solid curves for
FPSO. This result will be because PSO tends to
prematurely converge particles into a local minimum
while GA can explorer the search space well by the
crossover and mutation operations. Although the result
indicate FGA is superior to FPSO in evolving neural
networks with fuzzy weights, several researchers have
reported that PSO can outperform GA [22-26]. The author
will further compare FPSO with FGA by applying them to

Figure 6. Output fuzzy function of the best FNN evolved by FPSO

for modeling .

Figure 7. Output fuzzy function of the best FNN evolved by FPSO

for modeling .

Figure 8. Output fuzzy numbers of the best FNN evolved by FPSO

and target fuzzy numbers for the inputs values of 0.3 and 0.7.

Figure 9. Output fuzzy numbers of the best FNN evolved by FPSO

and target fuzzy numbers for the inputs values of 0.3 and 0.7.

186 Hidehiko Okada: Evolving Fuzzy Neural Networks by Particle …

other fuzzy optimization problems, e.g., optimizing fuzzy
if-then rules for fuzzy inference systems.

Besides, several methods have been proposed [27-32]
for improving the traditional PSO. These improvements
can be adopted to our FPSO. The author will evaluate
how well these methods can improve our FPSO for
solving fuzzy optimization problems.

5. CONCLUSION

In this paper, the author proposed the fuzzy-valued
extension of PSO, and applied it to the evolution of neural
networks with fuzzy weights and biases. In the proposed
FPSO, genotype values are not real numbers but fuzzy
numbers. To handle the fuzzy genotype values, the FPSO
extends its processes of updating particles. The FPSO was
challenged to evolve FNNs which model each of the two
fuzzy functions. The experimental results showed that the
best FNNs evolved by the FPSO approximated the target
functions (especially for larger membership scores)
despite the fact that no training data was explicitly
provided.

In the future work, the author will further evaluate the
ability of the FPSO by applying it to problems other than
neuroevolution, e.g., evolving fuzzy if-then rules for fuzzy
inference systems.

ACKNOWLEDGMENT

This research was supported by Kyoto Sangyo
University Research Grant.

REFERENCES

[1] H. Ishibuchi, H. Tanaka and H. Okada, Fuzzy neural networks

with fuzzy weights and fuzzy biases, IEEE International
Conferences on Neural Networks, 1650-1655 (1993).

[2] D.B. Fogel, L.J. Fogel and V.W. Porto, Evolving neural networks,
Biological Cybernetics, 63, 6, 487-493 (1990).

[3] X. Yao, Evolving artificial neural networks, Proceedings of the
IEEE, 87, 9, 1423-1447 (1999).

[4] K.O. Stanley and R. Miikkulainen, Evolving neural networks
through augmenting topologies, Evolutionary Computation, 10, 2,
99-127 (2002).

[5] D. Floreano, P. Durr and C. Mattiussi, Neuroevolution: from
architectures to learning, Evolutionary Intelligence, 1, 1, 47-62
(2008).

[6] H. Okada, Genetic algorithm with fuzzy genotype values and its
application to neuroevolution, International Journal of Computer,
Information Science and Engineering, 8, 1, 1-7 (2014).

[7] J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE
International Conference on Neural Networks, IV, 1942-1948
(1995).

[8] R. Eberhart and J. Kennedy, A new optimizer using particle
swarm theory, 6th International Symposium on Micro Machine
and Human Science, 39-43 (1995).

[9] J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan
Kaufmann (2001).

[10] H. Akkar, Optimization of artificial neural networks by using
swarm intelligent, 6th International Conference on Networked
Computing, 1-5 (2010).

[11] R. Mendes, P. Cortez, M. Rocha and J. Neves, Particle swarm for
feedforward neural network training, IEEE International Joint
Conference on Neural Networks, 1895-1899 (2002).

[12] K. Serkan, I. Turker, Y. Alper and G. Moncef, Evolutionary
artificial neural networks by multi-dimensional particle swarm
optimization, Neural Networks, 22, 10, 1448-1462 (2009).

[13] J. Yu, L. Xi and S. Wang, An improved particle swarm
optimization for evolving feedforward artificial neural networks,
Neural Processing Letters, 26, 3, 217-231 (2007).

[14] M. Carvalho and T.B. Ludermir, Particle swarm optimization of
neural network architectures and weights, 7th International
Conference on Hybrid Intelligent Systems, 336-339 (2007).

[15] B. Al-Kazemi and C.K. Mohan, Training feedforward neural
networks using multi-phase particle swarm optimization, 9th
International Conference on Neural Information Processing, 5,
2615-2619 (2002).

[16] F. Zaho, Z. Ren, D. Yu and Y. Yang, Application of an improved
particle swarm optimization algorithm for neural network training,
International Conference on Neural Networks and Brain, 3, 1639-
1698 (2005).

[17] J. Salerno, Using the particle swarm optimization technique to
train a recurrent neural model, IEEE International Conference on
Tools with Artificial Intelligence, 45-49 (1997).

[18] M. Zamani and A. Sadeghian, A variation of particle swarm
optimization for training of artificial neural networks, chapter 9,
131-144, in A-D. Ali (ed), Computational intelligence and modern
heuristics, InTech (2010)

[19] M. Meissner, M. Schmuker and G. Schneider, Optimized particle
swarm optimization (OPSO) and its application to artificial neural
network training, BMC Bioinformatics, 7, 125 (2006).

Figure 10. Error value of the best FNN at each number of FNNs

evolved for modeling .

Figure 11. Error value of the best FNN at each number of FNNs

evolved for modeling .

 Int. J. Com. Dig. Sys. 3, No. 3, 181-187 (Sep-2014) 187

[20] L.A. Zadeh, The concept of a linguistic variable and its

application to approximate reasoning - I, II, and III, Information
Sciences, 8, 199-249, 301-357, and 9, 43-80 (1975).

[21] G. Alefeld and J. Herzberger, Introduction to Interval
Computation, Academic Press (1983).

[22] C. Ou and W. Lin, Comparison between PSO and GA for
parameters optimization of PID controller, IEEE International
Conference on Mechatronics and Automation, 2471-2475 (2006).

[23] Y. Duan, R.G. Harley and T.G. Habetler, Comparison of particle
swarm optimization and genetic algorithm in the design of
permanent magnet motors, IEEE 6th International Power
Electronics and Motion Control Conference, 822-825, (2009).

[24] D. cada, A. Rosa, L.C. Duarte and V.V. Lopes, Comparison of
GA and PSO performance in parameter estimation of microbial
growth models: a case-study using experimental data, IEEE
Congress on Evolutionary Computation, 1-8 (2010).

[25] K.V.S.R. Murthy, M. Ramalinga Raju and G.G. Rao, Comparison
between conventional, GA and PSO with respect to optimal
capacitor placement in agricultural distribution system, Annual
IEEE India Conference, 1-4 (2010).

[26] I. Kecskes, L. Szekacs, J.C. Fodor and P. Odry, PSO and GA
optimization methods comparison on simulation model of a real
hexapod robot, IEEE 9th International Conference on
Computational Cybernetics (ICCC), 125-130 (2013).

[27] F. Zhao, Z. Ren, D. Yu and Y. Yang, Application of an improved
particle swarm optimization algorithm for neural network training,
International Conference on Neural Networks and Brain,
\textbf{3}, 1693-1698 (2005).

[28] F. Nian, W. Li, X. Sun and M. Li, An improved particle swarm
optimization application to independent component analysis,
International Conference on Information Engineering and
Computer Science, 1-4 (2009).

[29] J. Guo and T. Sheng-jing, An improved particle swarm
optimization with re-initialization mechanism, International
Conference on Intelligent Human-Machine Systems and
Cybernetics, 437-441 (2009).

[30] X. Xiao, C. Mei and G. Liu, Improved particle swarm
optimization algorithm based on random perturbations, Third
International Joint Conference on Computational Science and
Optimization, 1, 404-408 (2010).

[31] Y.V. Pehlivanoglu and O. Baysal, Improved particle swarm
optimization: catching the big wave on the surf, IEEE Congress
on Evolutionary Computation, 1-8 (2012).

[32] Y. Cai, Z. Chen and H. Min, Improving particle swarm
optimization algorithm for distributed sensing and search, Eighth
International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 373-379 (2013).

Hidehiko Okada is currently a

Professor with the Department of

Computer Science and Engineering,

Kyoto Sangyo University, Kyoto,

Japan. He received the B.S. degree in

industrial engineering and the Ph.D.

degree in engineering from Osaka

Prefecture University in 1992 and

2003, respectively. He had been a

researcher with NEC Corporation

from 1992 to 2003, and since 2004 he

has been with the university. His current research interests

include computational intelligence and human-computer

interaction. He is a member of Information Processing Society

of Japan, Institute of Electronics, Information and

Communication Engineers, Society of Instrument and Control

Engineers, Japanese Society for Artificial Intelligence, Japan

Society for Fuzzy Theory and Intelligent Informatics and

Human Interface Society. He received the best paper award in

the 1st International Conference on Industrial Application

Engineering 2013.

