

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 5, No.6 (Nov-2016)

E-mail address: dg.harkut@gmail.com, softalis@hotmail.com

 http://journals.uob.edu.bh

Adaptive Fuzzy Hardware Scheduler for

Real Time Operating System

D. G. Harkut
1
and M. S. Ali

2

1 Department of Computer Science & Engineering, Prof Ram Meghe College of Engineering & Management,

Badnera-Amravati (M.S.) India.
2 Prof Ram Meghe College of Engineering & Management, Badnera-Amravati (M.S.) India.

Received 21 Dec.2015, Revised 16 Jan. 2016, Accepted 19 Feb. 2016, Published 1 Nov. 2016

Abstract: In embedded system, a real-time operating system (RTOs) is often used to structure the application code and ensure that

the deadlines are met by reacting on events in the environment by executing the functions within precise time. Most embedded

systems are bound to real-time constraints with determinism and latency as a critical metrics. Generally RTOs are implemented in

software, which in turns increases computational overheads, jitter and memory footprint which can be reduced even if not remove

completely by utilizing latest FPGA technology, which enables the implementation of a full featured and flexible hardware based

RTOs. Scheduling algorithms play an important role in the design of real-time systems. This paper proposes the novel FIS based

adaptive hardware task scheduler for multiprocessor systems that minimizes the processor time for scheduling activity which uses

fuzzy logic to model the uncertainty at first stage along with adaptive framework that uses feedback which allows processors share of

task running on multiprocessor to be controlled dynamically at runtime. This Fuzzy logic based adaptive hardware scheduler

breakthroughs the limit of the number of total task and thus improves efficiency of the entire real-time system. The increased

computation overheads resulted from proposed model can be compensated by exploiting the parallelism of the hardware as being

migrated to FPGA.

Keywords: Task Scheduling, Scheduling Algorithms, Fuzzy Inference System, Hardware Scheduler, Real-time Operating System,

Determinism, Jitter, Reconfigurable Computing, FPGA, Priority Queue.

1. INTRODUCTION

Today’s consumer market is driven by technology

innovations. Many technologies that were not available a

few years ago are quickly being adopted into common

use. Equipment for these services requires

microprocessors inside and can be regarded as embedded

system. Embedded devices are often designed to serve

their unique purpose and are included in a variety of

products within different technical areas such as

industrial automation, consumer electronics, automotive

industry and communications and multimedia systems.

Embedded systems find application in almost all the

product ranging from train and airplanes to microwave

ovens and washing machines. As semiconductor prices

drop and their performance improves, there is a rapid

increase in the complexity of embedded applications. The

increased complexity of embedded applications and the

intensified market pressure to rapidly develop cheaper

product have caused the industry to streamline software

development. Use of embedded operating system or Real

Time Operating System (RTOS) is one technique used to

reduce development time of such system as it has effects

on hardware abstraction, multitasking, code size, learning

curve and the initial investment. Unfortunately, operating

systems do introduce several forms of overheads.

FPGAs have been the reconfigurable computing

mainstream in recent time. Gate-level reconfigurability

supports of FPGA results in reducing the development

time to market and cost as compared to ASIC’s which

can be exploited to harness the benefit of developing the

full featured and flexible hardware based RTOs.

Real time systems are embedded systems in which the

correctness of application implementations is not only

dependent upon the logical accuracy of its computations,

but its ability to meet its timing constraints as well [1].

Thus the design of the RTOses have dual goal of

minimizing the overheads and maximizing the

determinism.

http://dx.doi.org/10.12785/ijcds/050606

474 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

This paper is organized as follows. Section 2 is an

overview of the Hardware/Software co-design

approaches. Section 3 describes related work of other

research projects, proposed model is discussed in section

4 and section 5 covers summary and conclusion from

mainly previous work and related work.

2. HARDWARE SOFTWARE CO-DESIGN

ARCHITECTURE

RTOs are often used in embedded systems to

structure the application code to ensure that deadlines are

met. The notions of best-effort and real-time processing

have fractured into a spectrum of processing classes with

different timeliness requirements including desktop

multimedia, soft real-time, firm real-time, adaptive soft

real-time and traditional hard real-time [2-4]. Many Real-

Time systems are hard and missing deadline is

catastrophic where as in soft real-time system, occasional

violation of deadline may not result in useless execution

of the application but decreases utilization [5].

Traditionally RTOS’s are implemented in software,

but major drawbacks of standard software based RTOS’s

is that they suffer from computational overheads,

indeterminism, jitter and often a large memory footprint.

RTOS computational overheads is caused mainly by tick

interrupt management, which get even worse with more

task and high tick frequencies, but also task scheduling ,

resource allocation and de-allocation, deadlock detection

and various other OS/API functions take execution time

from the task running on the CPU.

Embedded system always consists of software and

hardware components and can no longer depend in

independent hardware or software solutions to real time

problem due to cost, efficiency, flexibility, upgradability,

scalability and development time.

Task implemented as software programs running on

microprocessor have the properties of high flexibility but

poor performance. On the other hand, task implemented

as hardware modules placed in Hardware have the

characteristics of high performance along with low

flexibility and high cost. The FPGA technology, which

can be programmed virtually an n number of times

(depends upon the technology), which paved the way for

enhanced flexibility and made it possible to implement

established software algorithms in hardware i.e. real-time

kernel activity like scheduling, inter-process

communications, interrupt management, resource

management, synchronization and time management

controls. Algorithm implemented in hardware has unique

characteristics of high level parallelism and improved

determinism that consequently decreases system

overhead, improve predictability and increases response

time.

As a tradeoffs, reconfigurable and hardware/software

co-design approaches that offer real time capabilities

while maintaining flexibility to support increasing

complex systems become more feasible solution to allow

software tasks running on a microprocessor along with

hardware task running in an FPGA device (Figure 1). This

hardware/software co-design approach reach a level of

maturity that are allowing system designers to perform

operating systems core and housekeeping functionality

such as time management and task scheduling in hardware

harness the advantages of higher level program

development while achieving the performance potential

offered by executions of these functions in parallel

hardware circuits.

Figure 1 – Hw/Sw System Architecture

3. RELATED WORK

The main source of indeterminism in real time

systems are varying instruction cycle time caused by

pipeline, caches, varying execution time of RTOs kernel

functions, external asynchronous interrupts etc. By

migrating real time kernel from software to hardware it is

possible to remove jitter, lessen CPU overhead and

improve the indeterminism due to cache and pipeline

problems. Various models and systems have been

proposed [6] to overcome this problem and some of them

were discussed in remaining section.

Lennart Lindh et al. [7] proposed a system

FASTCHART, an RISC based uniprocessor system

which puts ID of tasks into various queues. It consists of

hardware based RT kernel capable of handling 64 tasks

with 8 different priorities.

POLIS - proposed by F. Balarin, G. Berry, F.

Boussinot et al. [8], is an HW SW Co-Design Finite State

Machine (CSFM) synthesis model, which supports

globally asynchronous and locally synchronous

computation. Implementation is splits between Software

Hardware
(FPGA/ASIC)

Resource

Manager

Task

Manager

IRQ

Manager

Processor

S/W API

I S R

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 475

http://journals.uob.edu.bh

and ASICs and Co-simulation is provided using Ptolemy

environment [9]. Complexity of processors makes static

estimation is difficult and does no support for large

design as it generates customized C-code for selected

processors only.

Lennart Lindh et al. [10] also proposed FASTHARD

which supports features like rendezvous, external

interrupts, periodic start and termination of task without

CPU interference. However system is limited in supports

for customization and scalability. It is extension to earlier

work FASTCHART, based on general purpose

processors. Paper does not provided any benchmarks or

test results.

The COSYMA system proposed by [11] uses

simulated annealing for partitioning which can be fine or

coarse grained, to speedup software executions to meet

timing constraints. It does not support burst-mode

communication. List and path based techniques are used

to estimate execution time of hardware.

J. Adomat et al. [12] come up with RTU (Real Time

Unit), a multi-processor system which uses single

interrupt input of each CPU to control and context

switching. Lindh et al. [13] also proposes extensible

multiprocessor system - SARA, which can be used

together with RTU to remove the all scheduling and tick

processing overheads.

STRON system, based on µTRON project proposed

by T. Nakano et al. [14] come up with hardware kernel

which implements system calls and functionality results

in increasing speedup and reducing jitter. This hardware

kernel is supported by small micro kernel has been

implemented to take care of the features not implemented

in hardware. This system has tick frequency limitations

and does not have hardware support to prevent

unbounded priority inversion.

In order to minimize hardware cost while maintaining

timing constraints, R. Gupta et al. developed VULCAN

[15] Hardware/Software partitioning tool, which uses

heuristic graph partitioning algorithm that runs in

polynomial time. The original description was in

Hardware-C [16], which is mapped to fine grained

Control-Data Flow Graph.

Hardware software co-design framework for

embedded system- CHINOOK, proposed by P. Chou et

al. [17,18] is an automated interface synthesis which

supports mapping of an embedded system model to one

or more processor and peripherals. Though more

emphasis is put on distributed architecture which

ensuring timing constraints but system is inflexible and

more complex.

A heterogeneous hardware/software DSP system

CoWare in [19] proposed by H. De. Man et al., is basis of

commercial CoWare N2C [20]. This system supports the

re-use and encapsulation of hardware and software by a

clear separation between functional and communication

behavior of a system components. Though this system

allows co-specification using VHDL, DFL, Sliage & C

languages, but imposes increased demands on generation

of exhaustive library elements.

Bjorn B. Brandenburg et al. [21] discuss a soft real-

time extension of the Linux kernel, the LITMUS
RT

project with focus on multiprocessor real-time scheduling

and synchronization. It supports the sporadic task model

with both partitioned and global scheduling [22]. The

primary goal is to provide a useful experimental platform

for applied real-time systems research but LITMUS
RT

failed to establish as stable interfaces.

F-Timer framework suggested by A. Parisoto et al.

[23] is FPGA based task scheduler capable of managing

32 tasks with 64 different priorities which is targeted at

general purpose processor. System does not have any

hardware support for task synchronization and resource

handling. Paper does not discussed about scheduling

algorithm employed.

Spring kernel is basically designed for large and

complex multiprocessor based RTOS proposed by J.

Stankovic et al. [24,25] takes a radically different

approach to task scheduling which is based on dynamic

and speculative planning implemented through heuristic

algorithm and tree search. Fine granularity of task

deadlines is possible at the cost of large amount of pre-

calculation overheads which affects the performance.

Hardware scheduling accelerator which can be

configured for several different algorithms is proposed by

J. Hildebrandt et al in [26,27]. This hardware

implementation of dynamic scheduling coprocessor also

supports advanced Enhanced Least Laxity First (ELLF)

algorithm. This system could not address trashing of task

but increases the overall determinism at the cost of higher

complex logic.

δ-Framework- a hardware/software co-design RTOs

framework proposed by V. Mooney et al. in [28],

supports 30 different processors. The system is cost

effective as far as overall speedup and hardware area

(number of gates) is concerned. This framework

generates all HDL code which can be implemented in

FPGA. More work on SOC was conducted [29] to

integrate priority inheritance and deadlock avoidance

mechanism.

Configurable hardware scheduler with improved

response time, interrupt latencies, CPU utilization has

been design and developed by V. Mooney et al. [30],

476 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

which also supports high tick frequency. This model

supports three different algorithms which can be change

at run time dynamically and interrupt controller in

scheduler supports 8 external interrupts each can be

configured for dispatching a specific task.

Issues of extension to OS and flexibility arises out of

moving entire OS to hardware can be overcome in model

propose by Z. M. Wirthlin et al. in [31]. The nano-

processor provides upgradability, flexibility and also

enhancing the execution time by moving selected

inefficient OS services in hardware to save on power

consumption to a great extent as shown in [32].

Paul Kohot et al. in [33], developed Real-Time

Manager (RTM) which leverages the potential of

hardware parallelism, In this system, routine

housekeeping tasks are implemented in hardware and

thus free the processor for critical functions which boosts

the overall performance. RTM supports static priority

scheduling and handles task, time and event

management. The author claims RTM decreases RTOS

overheads by 90% decreases response latency by 81%.

Problem arises out of low tick granularity can which

cause jitter and result in deadline misses is overcome by

M.Vetromille et al. [34] in their proposed system

HaRTS. The HaRTS supports high tick frequency and

thus reduce jitter without lower CPU available time for

task to process. Though it is more complex to implements

but it requires less chip area and uses less power than

additional processor.

The Hardware RTOS implemented for accelerating

eCos, HW-eCos is interfaced to an ARM processor

requires fewer gates to implement and provides better

speedup. Communication speed between RTOS and

hardware overshadowed the speed gain by hardware

scheduler is overcome by S. Chandra et al. in [35] by

intelligent design. Paper does not discuss the number of

tasks and resources supported by this system.

SRTOS proposed by Z. Murtaza, S. Khan et al. [36]

aims at real-time DSP application which is targeted on

AVZ21 DSP processor. Though this paper doesn’t

provide any experimental test result but system supports

additional instruction for fast resource allocation and

context switching.

M. Song et al. [37] come up with H-Kernel, an

outcome of through use of FPGA and thoughtful HW/SW

co-design for specific application. Though system

become more complex and bulky as number of task

increases but increase in performance in the tune of 50-

60%, is achievable with the system with small numbers

of task.

Sebastien Pillement et al. [38] proposed DART – an

FPGA based reconfigurable architecture which deals

concurrently with high-performance, flexibility and low-

energy constraints. Flexibility of FPGAs is achieved at a

very high silicon cost interconnecting huge amount of

processing primitives. These interconnection and

configuration overheads result in energy waste. DART

was designed as a platform-based architecture which

define cluster level interface to implement user dedicated

logic which allows for the integration of application-

specific operators which efficiently support bit-level

parallelism. The main concern of this class of

architectures is high reconfiguration overhead.

ARPA-MT multi-threading processor with five stage

pipeline system is proposed by A. S. R. Oliveira et

al.[39]. This system supports heterogeneous task and

context switches without hampering the processor

performance.

Latency introduced due to PLB bus interface in the

system can be removed by better and more direct

connections between CPU and coprocessor as proposed

by Luis Almeida et al. in [40,41] OReK_CoP i.e.

Hardware implementation of OReK Real-Time Kernel.

All kernel functions execute in absolute time and almost

in parallel, without interfering CPU which improves

determinism and improve resource utilization.

Xaingrong Zhou, Peter Petrov et al. [42] presented

model by converging compiler, micro-architecture and

OS kernel to reduce the context switching cost and

improve overall responsiveness which the main source of

performance degradation in most of the HW SW based

solutions. In this proposed model context switching may

be deferred until next switch point to limit the number of

context registers required to hold state. Though this

arrangement results in more deadline miss which can be

avoided by more complex and good RTOS kernel design.

ARTESSO architecture as proposed by N. Maruyama

et al. in [43], ported RTOS, checksum calculation,

memory copying and TCP header rearrangement to

hardware. It uses novel virtual queue instead of FIFO

based queues used in RTU and STRON, which are logic

expensive. The author claims that this system is 6-9 times

faster than STRON and 7 times more energy efficient

than its software counterpart.

Numbers of research projects have approached the

task of designing OS for FPGA based reconfigurable

computers (RC). By providing native kernel support for

FPGA hardware Hayden Kwok-Hay et al. [44-46]

proposed BORPH, an operating system designed for

FPGA-based RC. BORPH offers a homogeneous UNIX

interface for both software and hardware processes.

Hardware processes inherit the same level of service

from the kernel.

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 477

http://journals.uob.edu.bh

Static scheduling of DAGs (Direct Acyclic Graph) on

multi-reconfigurable-unit system under strict real-time

constraints and from a parallel processing perspective is

proposed by Ikbel Belaid et al. [47]. Clustering the task,

mapping the task in these clusters and placing these

clusters on reconfigurable devices, dynamic partial

reconfiguration and efficient placement are achieved.

However, this approach face difficulty in dealing with

nondeterministic systems with run-time characteristics

that are not well known before the DAG running and this

approach will work only for small DAGs.

HartOS- Hardware implemented Real-Time

Operating System is proposed by Lange A.B. et al.

[48,49] is designed to be very flexible and support most

of the features normally found in a standard software

RTOS directly in hardware without sacrificing flexibility.

The HartOS’s ability to run kernel at a higher clock

frequency than the microprocessor, enables more tasks to

be processed serially at the same tick frequency and thus

speed up the part of the API functions executed in the

kernel. Comparative study of various

methodologies/models reviewed in the literature is given

in the Table 1[50].

Methodology/ Model Architecture Used & Claims by Authors

FASTCHART (1991)

Hybrid [7]
RISC based processor with Load Store architecture. Migrated full kernel to Hardware to improve determinism and remove

jitter.

POLIS (1991)

Hybrid [8]
Co-design Finite State Machine (CFSM) design. Flexibility to evaluate HW/SW partitioning, architecture & scheduler

through mixed implementation of SW & ASICs.

FASTHARD (1992)

 Hybrid [10]
Memory mapped design (address/data bus). HW based RT Kernel to support external interrupts & rendezvous.

RTU (1994)

H/W based [12]
Memory mapped design (VME bus). Supports multiple task, binary semaphores, event flags, watchdogs with minimum

overheads and improved predictability.

Silicon TRON (1995)

Hybrid [14]
Memory mapped design (address/data bus). Improve determinism and supports task mgt., flags, semaphores, timers &

external interrupt.

VULCAN (1995)

 Hybrid [15]
CDFG based fine grained mapping design. Hardware/software partitioning results in reducing the overall cost.

CHINOOK (1996)

Hybrid [17]
Distributed Architecture. Supports mapping of processor & peripherals with strict timing constraints with automated

interface synthesis.

COWARE (1996)

Hybrid [19]
Memory mapped design (address/data bus). Supports re-use, encapsulation of HW & SW by separation of functional

behavior to supports heterogeneous HW/SW DSP systems.

COSYMA (1997)

Hybrid [11]
Memory mapped design (address/data bus). Uses novel list & path-based scheduling to estimate HW execution time &

speedup SW executions to meet timing constraints.

F-Timer (1997)

Hybrid [23]
Memory mapped design (address/data bus). Supports external interrupts by reducing overall RTOs overheads with improved

determinism.

Spring Coproc (1999)

Hybrid [25]
Memory mapped design (address/data bus). Supports fine granularity of task deadlines & multiprocessors with guaranteed

scheduling without blocking resources.

ELLF Sched. Coproc. (2000)

Hybrid [26]
Memory mapped design (address/data bus). Supports ELLF algorithm with dynamic priority calculation by exploring

parallelism in HW.

The δ-Framework (2002)

Hybrid [28]
Memory mapped design (address/data bus). Uses less nos. of gates for equivalent HW area targeted for HW/SW co-design.

Mooney (2003)

Hybrid [29]
Memory mapped and instruction set acceleration based design. Configurable scheduler which supports Priority based, Rate

monotonic & EDF algorithms & high tick rate.

Nano-processor (2003)

Hybrid [31]
Memory mapped design (address/data bus). Provides flexibility of choosing services to perform in HW with faster execution

with compatibility with range of hardware.

RT Task Manager (2003)

Hybrid [33]
Memory mapped design (address/data bus). Supports static priority & handles task, time & event mgt. with same tree by

migrating routine task to HW.

HaRTS (2006)

Hybrid [34]
OPB Bus Scheme based design. Requires less power, less chip area and supports high tick frequency and granularity with

lowering jitters.

LITMUSRT (2006)

S/W based [21]
Push/Pull approach. Effective testbed to evaluate diff RT Scheduler & also supports G-EDF based scheduling with private

queue for each processor.

HW- eCos (2006)

Hybrid [35]
Memory mapped design (address/data bus). Removes context switching overheads through interrupt line to CPU, reduce

code size and thus improve performance.

Silicon RTOS (2006)

Hybrid [36]
Memory mapped design (address/data bus). Supports external interrupt management & uses priority based scheduling to

make RT DSP applications efficient.

H-Kernel (2007)

Hybrid [37]
Memory mapped design (address/data bus). Supports priority based task, interrupt, event & time mgt through H-kernel and

performance through thoughtful HW/SW co-design.

OReK_CoP (2009)

Hybrid [41]
PLB bus interface with stack based priority ceiling design. Ported OReK kernel to HW to improve performance & supports

asynchronous interrupt handling which improve determinism

Xiangrong et al (2010)

S/W based [42]
Micro-architecture & OS kernel. Uses micro-architecture to lower context switching and improve responsiveness.

ARTESSO (2010)

Hybrid [43]
TCP/IP protocol. Improve throughput by moving TCP Header calculations to HW & supports priority based FCFS

scheduler by using novel virtual queue structure.

BORPH (2011)

S/W based [45]
OS uses Virtual file system. Reduces context switching drastically by exploiting the benefits of parallelism and FPGA

reconfigurability.

ARPA-MT (2011)

Hybrid [38]
Stack based priority ceiling design. Specialized, Predictable and customized Processor design which supports heterogeneous

task & schedules using RM or EDF protocol.

HartOS (2012)

 Hybrid [48]
FSL-AXI stream interface. Interrupt handled as task & mutex are protected by stack based priority ceiling which reduces

jitters and memory footprints.

Table 1 - Comparative study of various methodologies/models

478 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

Scheduling algorithm plays as important role in the

design of real-time systems which involves allocation of

resources and time to jobs in such way that certain

performance requirements are met.

Most of the model discussed and reviewed are mainly

focused on to improve the performance by migrating

some of the house keeping routine jobs from software to

hardware with a aim to leverage the potential of parallel

processing of hardware which can further be improved to

a greater extent if more realistic scheduling algorithm is

devise and migrate it on hardware to assist processor and

RTOs so as to increase the overall performance without

increasing memory footprint and power consumptions.

4. HARDWARE TASK SCHEDULER

Mostly researchers dealing with real-time system

scheduling, assumes scheduling constraints to be precise.

But in practical reality, the values of these parameters are

vague in most of the cases. To overcome these limitation

of vagueness of jobs scheduling parameters [51], Fuzzy

logic play important role in generating most optimal

scheduling which enhance the utilization of the resources

and thus increases the overall schedulability of the system

by treating these vague scheduling parameters are treated

as fuzzy variables. In this research paper, a two phase

adaptive scheduling algorithm is developed and migrated

on FPGA to harness the potential of parallel processing

which will compensate added computational cost for

executing of complex fuzzy algorithms.

4.1 Architecture

We proposed Fuzzy Inference System (FIS) based

adaptive hardware task scheduler framework which is

discussed in subsequent paragraph basically consists of:

1. Global Fuzzy scheduler – Long term scheduler.

(FIS 1)

2. Local Adaptive scheduler – Short term scheduler.

(FIS II)

Both of these scheduler work in cascade and are

migrated on hardware which will work in synchronous

with processor and RTOs to fulfill the overall systems

objectives as illustrated in figure 2.

To build a fuzzy system, inputs and output(s) to it

must be first selected and partitioned into appropriate

conceptual categories which actually represent a fuzzy set

on a given input or output domain. Parameters which

affects the schedulers performance are selected as input to

the Fuzzy Inference System (FIS) [52,53], which consist

of five stages:

1. Fuzzifying inputs

2. Applying fuzzy operators

3. Applying implication methods

4. Aggregating outputs

5. De-fuzzifying outputs

Here Madani’s Fuzzy inference method of TSK or

simply Sugeno method of fuzzy inference may be used

[54-56].

Block diagrams of FIS I and FIS II along with the

parameters selected as Input and Output are along with

surface viewer are shown in figure 3.

Input to FIS I are - Job Exterior Priority (JEP), Job

Processing Priority (JPT) & Job Waiting Time (JWT)

which generates Job Processing Priority (JPP).

Input to FIS II are – Job Processing Priority (JPP)

generated by FIS I and Job Worst Case Execution Time

(JWCET) which generates Job Final Priority (JFP).

Figure 2. Proposed FIS based Adaptive Hardware Task Scheduler

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 479

http://journals.uob.edu.bh

Job Processing

Priority (JPP)

Job Exterior

Priority (JEP)

Job Processing

Time (JPT)

Job Waiting

Time (JWT)

Mamdani’s Fuzzy Inference

System (FIS#1)

Job Final

Priority (JFP)

Job Processing

Priority (JPP)

Job Worst Case

Execution Time

(JWCET)

Mamdani’s Fuzzy Inference

System (FIS#2)

Figure 3. Fuzzy Inference System I & II block diagram

Output of the FIS I is single value which is treated as

Job Processing Priority (JPP) and maintained in global

queue in sorted order. This newly calculated JPP along

with task’s worst-case execution time (WCET)[57], feed

to FIS II, a second stage scheduler.

The working of proposed novel Two phase Fuzzy

Inference System based hardware task scheduler which

uses fuzzy logic to model is depicted as –

An arrival of new task in system initiates the

application. These new task are stored in Arrival Queue in

First-in-First-out manner (FIFO) waiting to be get

processed by the Fuzzy Inference System (Phase I). Task

entering the systems are tagged with some basic

parameters which play important role in scheduling these

task. These jobs are stored in sorted order as per newly

calculate Job Processing Priority (JPP). Task queued in

Global queue are feed to Fuzzy Inference System (Phase

II). Local Queue holds the task in sorted order as per the

Job Final Priority (JFP) calculated by FIS 2. Master

controller keeps track of actual execution time (AET) of

each task being processed and if the difference between

Worst Case Execution Time (WCET) and AET for a task

in beyond certain threshold value i.e. δ (t), then is it

notified back to FIS II which will update the value of

WECT by AET and consider this new updated value of

WCET during next scheduling cycle. Task blocks on

shared resources are stored in Block Queue where

semaphore is used to resolve the deadlock and task are

moved from block queue to Waiting Queue if the task is

yet to be complete. These tasks are then added back to

Arrival Queue along with newly entered task in FIFO

order.

4.1.1 Adaptive Fuzzy Scheduling

Under traditional task model like periodic, sporadic

etc., the schedulability of system is based on each task’s

worst-case execution time (WCET), which defined the

maximum amount of time each of its jobs can execute.

The disadvantage of using WCETs is that system may be

deemed un-schedulable even if they would function

correctly most of the time when deployed. This drawback

can be overcome by making our scheduler adaptive to the

runtime varying conditions, to allocate per-task processors

time share, instead of always using constant share

allocation based on constant WCET and readjusting the

priority of task. When there is variation in the WCET and

the actual execution time of a particular job beyond some

predetermined threshold value, adaptive task schedulers is

invoked with actual execution time and reschedule the

task and refresh and reorder the tasks in local queue

accordingly. This results into adjusting the per task

processor time share based on the runtime conditions

which will effectively increases the overall schedulability

and processor utilization. Overall quality-of-service (QoS)

can be improved by ignoring the transient overload

conditions. Dispatcher will dispatch the task from local

queue to processors bank to get serve.

Further resource synchronization is used to optimize

scheduling of the tasks blocked on shared resource which

are parked on blocked or waiting queue. Task blocks on

shared resources are stored in Block Queue are moved

480 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

Overall Process Flow –
DO

1. Incoming Task arrives and stores at Task Arrival Queue

2. Task came with following tags:

 Job External Priority (JEP)

 Job Processing Time (JPT)

 Job Waiting Time (JWT)

 Job Worst Case Execution Time (JWCET)

3. These tasks are fed to Fuzzy Inference System (FIS I) and Generates Task Processing Priority (JPP).

4. Tasks are stored in Global Queue as per newly calculated Processing Priority (JPP).

5. These tasks are having following tags:

 Job Worst Case Execution Time (JWCET)

 Job Processing Priority (JPP)

6. These tasks are now fed to Adaptive Fuzzy Inference System (FIS II) and Generates Jobs Final Priority (JFP).

7. Tasks are stored in Local Queue (Hardware based Priority Queue) as per newly calculated Jobs Final Priority (JFP).

8. Task Dispatcher will perform following tasks:

 Dispatches the ready task from Local Queue to Master Controller

 Collects the Finished or Blocked task from Master controller

 Forward the Blocked task to Block Queue

 Flush-out the finished task from System

9. Task Dispatcher will fetch the ready to run scheduled tasks from Local Queue and dispatch it to ISR and Master controller.

10. Master Controller will assign the task to pool of processors (multi-core) by maintaining the proper load balancing.

11. Task dispatcher collects and dispatches the blocked tasks (blocked on shared resources) from master controller and stored them on Blocked Queue.

12. Task dispatcher also flush-out the finished tasks

13. Task moves from Blocked Queue to the Waiting Queue, once shared resources are free after resolving the aging issue by resource synchronizer.

14. Task from Waiting Queue and Incoming task from outer environment are replenished in Task Arrival Queue in FIFO order.

LOOP

Feedback process – (Adaptive Scheduling)
DO

1. FIS II calculate the Job Final Priority (JFP) based on two tags: Worst Case Execution Time (WCET) and Job Processing Priority (JPP).

2. Master Controller keeps track of each task Actual Execution Time (AET) during execution.

3. If the difference between WCET & AET exceeds certain predefined τ, WCET of that job is updated by AET.

 i.e. (WCET –AET) >= τ, WCET AET

4. FIS II will use this modified value of WCET in next turn of this task for generating Job Final Priority (JFP) which is more rational.

LOOP

M
u

x
/

D
em

u
x

Q

u
eu

e
U

n
lo

ad
in

g

A
d

d
re

ss
 A

rb
it

ra
to

r

Block RAM

Priority Queue Controller

Level 0

Level 1

Level 2

Level 3

Figure 4. Hardware Priority Queue architecture

from block queue to Waiting Queue if the task is yet to

be complete. These tasks are then added back to Arrival

Queue along with newly entered task in FIFO order.

Resource synchronization module which implements

priority queue with aging to avoid the task starvation and

thus improve chance of fair treatments to all the tasks in

the queue is used to remove the deadlocks on resources

among task from block task queue which will increase

the overall performance of the RTOs. Processors share

allocations are adjusted using feedback and resource

synchronization techniques [58].

Fine grained time management and frequent sorting

and re-arrangements of tasks in Local Queue and Waiting

Queue increases the CPU overhead and thus affects the

processor utilization which can be overcome by

implementing these queues as hardware priority queue fig.4.

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 481

http://journals.uob.edu.bh

Queue Loading process – (Hardware Priority Queue)
DO

1. New task arrived

2. Calculate the path from vacant leaf node. This path includes all the ancestors from leaf node to the heap’s root. (Heap property always ensures that the

elements are sorted)

3. Address arbitrator generates the addresses of all the nodes from this identified path.

4. Nodes from this path from stored at Block RAM are mapped and loaded to enqueue cells in queue loader.

5. Newly arrived tasks priority is broadcasted to all the enqueue cells simultaneously in shift register.

6. Comparator in enqueue cells compares, swaps and latch the newly task at appropriate enqueue cell.

7. Updated Data from enqueue cells is loaded back to the Block RAM and thus the elements in heaps are sorted with accommodating the newly arrived task

LOOP

Queue Un-loading process – (Hardware Priority Queue)
DO

1. Remove the highest priority task stored at root node and replace it with last leaf to balance the heap.

2. In order to ensure the heap’s basic property, rearranged the elements

3. Compare and swap the root node with immediate child node so that heap is sorted.

4. Move to next child node level till all the nodes are exhausted.

LOOP

Resource Synchronization Process –
DO

1. Task Arrived in Task Blocked Queue on share resources.

2. Calculate the Task Unload Priority to move task from Task Blocked Queue to Task Waiting Queue.

i.e. UP = JPP * AP where UP = Task Unload Priority, JPP = Task Processing Priority and AP = Task Aging Priority (if AP > ῳ (t))

3. Migrate the task having highest UP from Task Blocked Queue to Task Waiting Queue.

4. At each migration from Task Blocked Queue to Task Waiting Queue, increase the AP of all remaining task in Task Blocked Queue by 1 i.e. AP = AP + 1

5. Move the Task from Task Waiting Queue to Task Arrival Queue in FIFO order.

LOOP

4.1.2 Queue Loading process

Queue loading is accomplished by inserting the newly

arrived task at the bottom of binary heap. Process of

repeatedly comparing and swapping with adjacent parent

node is performed until the priority of newly arrived task

is less than its parents. Shift register mechanism shown in

figure 4 inserts the newly arrived task in constant time.

The heap property ensures that elements are sorted in

order.

4.1.3 Queue Un-loading process

Remove the root task from the queue and

reconstruction of the heap constituted the queue un-

loading operation. Root element is removed by replacing

it with the last element in the queue to keep the heap

balanced. Process of repeatedly comparing and swapping

with smallest of the child node is perform until the

priority root node is less than its child. Highest priority

value is obtained in constant time and as priority queue is

managed in hardware, the processor is not required to

wait for the operation to complete.

4.1.4 Resource Synchronization Process

Task which are blocked on shared recourses are park

on blocked queue which is implemented as hardware

priority queue. To avoid the task starvation and fair share

of CPU time, Priority queue with aging technique is used.

Task upload priority is calculated, which will used to

decide which task next to be moved from blocked queue

to waiting queue.

It is observe that, generally to ensure tasks must meet

its deadline, the scheduler’s WCET are often

overestimated. This causes system to be under-utilise and

wastes CPU resources. Here we have examined how the

scheduler overheads and its variation can be reduced by

migrating the scheduling functionality to hardware logic.

Further by accommodating the varying WCET on

runtime, in scheduling, there is a twofold increase in the

idle time of CPU which can be utilised effectively and

thus results in increase in overall performance, enhance

system predictability and timing resolution.

An analytical result comparison of three different

cases namely:

1. RTOS with Software Scheduler

2. RTOS with Hardware Scheduler &

3. RTOS with Adaptive Hardware Scheduler is

depicted in figure 5.

CONCLUSION

The conclusion from a comprehensive literature

review of the publication throughout the last three

decades, is that the major drawback from software based

RTO’s can be removed by implementing the entire/

partial kernel of a real-time operating system in

hardware. All past attempts to design a hardware RTOS

482 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

 Case 1

Time required to execute special instruction

Case 2 Local Q

Case 3

 Task Actual
Execution

Task Worst Case
Execution

Idle time
of CPU

Task Release
Time

 Scheduler
Execution

Case 1: RTOS with Software Scheduler, Case 2: RTOS with Hardware Scheduler
Case 3: RTOS with Adaptive Hardware Scheduler

Figure 5. Scheduler Execution Time Variations

Figure 5. Scheduler Execution Time Variations

kernel has had limitations either in form of lacking key

RTOS features/resources, being inflexible in terms of

configurability or perhaps suffering from poor

performance. By addressing the set of desired features,

performance goals, clever design and utilization of the

latest FPGA technologies, the implementation of a full

featured and flexible hardware based RTOs is be possible

which could address the shortcomings found in the

literature.

A hardware Intellectual Property (IP) can be used for

implementing routine frequently used housekeeping

activities like scheduling, inter-process communication

and time management control from the software OS-

kernel to hardware unit. This result in significantly

reducing the overhead by migrating kernel services to

hardware which will improve the response time by

increasing the CPU utilization. A hardware kernel

executes in parallel to the CPU, minimizes the processor

time for scheduling activity and thus relieves pressure

from the CPU which gets almost full execution time for

the application tasks. There is less software code in

memory since the functionality is implemented in

hardware instead [23].

A software OS will generate a clock tick interrupt to

the CPU when either it is executed or the lists of tasks

(queues) are worked at or new periodic delay times are

calculated for the tasks. With the hardware kernel in the

system, it checks all queues concurrently and only

generates an interrupt to the CPU when there is to be a

task switch [59,60]. Another advantage of having the

kernel in hardware is the possibility to use complex

scheduling algorithms, unlimited of different queue types

without any performance loss.

When real-time kernels are implemented in software,

one of the disadvantages is that the execution time for the

service calls will have a minimum and a maximum time

[61,62]. The time gap can be big and the worst-case time

is one of the factors that will decide the utilization factor

of the system. The scheduling time varies with the

number of tasks and scheduling algorithm and must be

bounded by a pessimistic worst case execution time,

which decrease the determinism.

We have proposed two phase FIS based hardware

task scheduler which uses fuzzy logic to model the

uncertainty at first stage along with adaptive framework

that uses feedback in second stage. Scheduling based on

static WCET will results in lower utilization of

processors, which can be overcome by adaptive feedback

mechanism which will update the WCET parameter of

the task with AET, if the difference between the WCET

& AET is exceeding the pre define threshold value τ,

which allows processors share of task running on

multiprocessor to be controlled dynamically at runtime

and thus increases the overall processor utilization and

thus the schedulability. Further, Starvation of low priority

task problem is overcome by Resource synchronization

module which in turns avoids the aging of task. Because

of high granularity, frequent sorting and updation of the

tasks in queue increases the overhead which can be

reduced to greater extent by using Hardware Priority

Queue [63] to store the task which increase the sorting

speed and thus lessen the burden of CPU. This increases

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 483

http://journals.uob.edu.bh

the overall utilization of CPU and increases the

schedulability of the tasks.

Our future work is to map this proposed model on

MicroBlaze soft processor core as MicroBlaze FPGA

designs are readily available and can be implemented with

little effort. The FreeRTOS port in MicroBlaze is being

targeted to be modified and run tasks concurrently on

multiple processors as FreeRTOS provides simple, easy to

use and highly portable kernel. The aim to produce a

version of FreeRTOS that supports multi-core hardware

and efficient hardware based task scheduler.

REFERENCES

[1] D. Stewart, “Introduction to Real Time”, Embedded systems

programming, CMP Media, November 2001.

[2] Z. Deng, J.W. Liu and S. Sun, “Dynamic scheduling of hard real-
time application in open system environment”, Tech. Rep.,

University of Illinois at Urbana-Champaign 1996.

[3] G. Buttazzo and J. A. Stankovie, “RED: robust earliest deadline
scheduling”, in Proceeding of 3rd International Workshop

Responsive Computing Systems, Lincoln, NH, pp. 100-111, 1993.

[4] S. M. Petters, “Bounding the execution time of real-time task on
modern processors”, in Proceeding of 7th International Conference

Real-Time Computing Systems and Applications, Cheju Island,

pp. 498-502, 2000.
[5] J. Zhu, T.G. Lewis, W. Jackson and R.L. Wilson, “Scheduling in

hard real-time applications”, IEEE software, Volume 12, pp. 54-63,

1995.

[6] D. G. Harkut & M.S.Ali, “Hardware Support for Real Time

Operating System: A Review”, in Proceedings of IEEE

International Conference on Engineering and Technology
(ICETECH’15), 2015.

[7] L. Lindh, F. Stanischewski, “FASTCHART - Performance,

Benefits and Disadvantages of the Architecture”, in Proceeding of
5th Euromicro Workshop on Real-Time Systems, 1993.

[8] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, K. Suzuki and B. Tabbara. “Hardware-

Software Co-Design of Embedded Systems: The POLIS

Approach”, Kluwer Academic Publishers, 1997.

[9] J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt, “Ptolemy: A

Framework for Simulating and Prototyping Heterogeneous

Systems”, International Journal of Computer Simulation, special
issue on “Simulation Software Development”, pp.155-182, April

1994.

[10] L. Lindh, “FASTHARD - a fast time deterministic hardware based
real-time kernel”, in Proceedings of Real-Time Systems, 4th

Euromicro workshop, pp. 21-25, June 1992.

[11] R Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D Herrman
and M. Trawny, “The COSYMA environment for hardware

software co-synthesis of small embedded systems”, IEEE Micro,

pp.159-166, 1996.

[12] J. Adomat, J. Furunas, L. Lindh, and J. Starner, “Real-time kernel

in hardware RTU: a step towards deterministic and high-

performance real-time systems”, in Proceedings of the 8th
Euromicro Workshop on Real-Time Systems, L'Aquila, pp. 164-

168, Jun. 1996.

[13] L. Lindh, T. Klevin, L. L. T. Klevin, and J. Furunäs, “Scalable
architecture for real-time applications sara”, in CAD & CG’99, pp.

208-211, 1999.

[14] T. Nakano, A. Utama, M. Itabashi, A. Shiomi and M. Imai,
“Hardware implementation of a real-time operating system”, in

proceeding of IEEE International Symposium of 12th TRON

project, Tokoy, Japan, pp. 34-42, Nov. 1995.
[15] R. Gupta. “Co-Synthesis of Hardware and Software for Digital

Embedded Systems”, the Springer International Series in

Engineering and Computer Science, Volume 329, 1995.

[16] D.C. Ku and G. DeMicheli, “HardwareC - a language for hardware

design Ver 2.0” CSL Technical Report CSL-TR-90-419, Stanford,

April 1990.

[17] P. Chou, R. Ortega and G. Borriello, “The Chinook Hardware

Software Co-Synthesis System”, in Proceedings of the International

Symphosium on System Synthesis, pp. 22-27, Sept. 1995.

[18] P. Chou, E. Walkup and G. Borriello. “Scheduling for Reactive

Real-Time Systems”. IEEE Micro archive Journal, IEEE Computer

Society Press Los Alamitos, CA, USA. Volume 14, Issue 4, pp. 37-
47, August 1994.

[19] H. De Man, D. Verkest, K. Van Rompary and I. Bolsens, “Coware

- A Design Environment for Heterogeneous Hardware Software
Systems”, Design Automation of Embedded Systems, pp.357-386,

Oct. 1996.

[20] S. Michael, “CoWare revs tool for SoC platform design”,
Electronic Engineering Times, pp. 54-58, August 2000.

[21] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev

and J. Anderson, "LITMUSRT: A Status Report", in Proceedings
of the 9th Real-Time Linux Workshop, pp. 107-123, November

2007.

[22] B. Brandenburg , R. Spliet, M. Vanga and S. Dziadek, "Fast on

Average, Predictable in the Worst Case: Exploring Real-Time

Futexes in LITMUSRT", in Proceedings of the 35th IEEE Real-

Time Systems Symposium, Rome, Italy, pp. 96-105, Dec.2014.

[23] Parisoto, J. Souza, A., L. Carro, M. Pontremoli, C. Pereira, and A.

Suzim, “F-timer: Dedicated FPGS to real-time systems design

support”, in proceeding of 9th Euromicro Workshop on RTS,
Toledo, Spain, pp. 35-40, Jun.1997.

[24] J. Stankovic and K. Ramamritham, “The spring kernel: a new

paradigm for real-time systems”, Software, IEEE, Volume 8, Issue
3, pp. 62-72, May 1991.

[25] J. Stankovic, W. Burleson, J. Ko, D. Niehaus, K. Ramamritham, G.
Wallace and C. Weems, “The spring scheduling coprocessor: a

scheduling accelerator”, in IEEE Transactions on Very Large Scale

Integration Systems, Volume 7, pp. 38-47, Mar. 1999.

[26] J. Hildebrandt, F. Golatowski, and D. Timmermann, “Scheduling

coprocessor for enhanced least-laxity-first scheduling in hard real-

time systems”, in Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 208-215, 1999.

[27] J. Hildebrandt and D. Timmermann, “An FPGA based scheduling

coprocessor for dynamic priority scheduling in hard Real-Time
systems”, in Proceeding of 10th International Conference On Field

Programmable Logic & Applications, Villach, Austria, pp. 777-

780, 2000.

[28] V. Mooney, J. Lee, and K. Ryu, “A Framework for Automatic

Generation of Configuration Files for a Custom Hardware/Software

RTOS”, in Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms

(ERSA'02), pp. 31-37, June 2002.

[29] V. Mooney and J. Lee, “Hardware/Software Partitioning of
Operating Systems: Focus on Deadlock Detection and Avoidance”,

in IEEE Proceeding, Computer and Digital Techniques, UK, pp.

167-182, July 2005.

484 D.G. Harkut & M. S. Ali: Adaptive Fuzzy Hardware Scheduler for Real Time Operating System

http://journals.uob.edu.bh

[30] V. Mooney III, P. Kuacharoen and M. A. Shalan, “A configurable
hardware scheduler for real-time systems”, in Proceedings of the

International Conference on Engineering of Reconfigurable

Systems and Algorithms, CSREA Press , pp. 96-101, 2003.

[31] M. Wirthlin, B. Hutchings, and K. Gilson, “The Nano Processor: a

Low Resource Reconfigurable Processor”, in IEEE Workshop on

FPGAs for Custom Computing Machines, Napa, CA, pp.23-30,
April 2003.

[32] R. Dick, G. Lakshminarayana, A. Raghunathan, and N. Jha,

“Power Analysis of Embedded Operating Systems”, in proceedings
of the 37th Design Automation Conference, Los Angeles, CA, pp.

312-315, June 2000.

[33] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-
time operating systems”, in Proceeding of First IEEE/ACM/IFIP

International Conference on Hardware/Software Co-design and

System Synthesis (CODES+ISSS 2003), Newport Beach CA, pp.
45-51, Oct. 2003.

[34] M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “RTOS

scheduler implementation in hardware and software for real time
applications”, in 17th IEEE International Workshop on Rapid

System Prototyping, pp. 163-168, Jun. 2006.

[35] S. Chandra, F. Regazzoni, and M. Lajolo, “Hardware/software
partitioning of operating systems: a behavioral synthesis approach”,

in GLSVLSI ’06 Proceedings of the 16th ACM Great Lakes

symposium on VLSI, (NY, USA), pp. 324-329, ACM, 2006.

[36] Z. Murtaza, S. Khan, A. Rafique, K. Bajwa, and U. Zaman,

“Silicon real time operating system for embedded DSPs”, in ICET’

06: Proceedings of International Conference on Emerging
Technologies, (Peshwar), IEEE, pp. 188-191, Nov. 2006.

[37] M. Song, S. H. Hong, and Y. Chung, “Reducing the overhead of

real-time operating system through reconfigurable hardware”, in
proceedings of 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools, pp. 311-316, Aug.

2007.

[38] Sebastien Pillement, Olivier Sentieys and Raphael David “DART:

A Functional-Level Reconfigurable Architecture for High Energy

Efficiency”, EURASIP Journal on Embedded Systems, Volume
2008, Article ID 562326, Hindawi Publishing Corporation, 2008.

[39] A. S. R. Oliveira, L. Almeida, and A. B. Ferrari, “The ARPA-MT
embedded SMT processor and its RTOS hardware accelerator”,

Industrial Electronics, IEEE Transactions on, Volume 58, No. 3,

pp. 890-904, March 2011

[40] L. Almeida, A. S. R. Oliveira and A. B. Ferrari, “A specialized and

predictable processor for real-time systems”, in Workshop on

Application Specific Processors, pp. 32-38, Nov. 2009.

[41] L. Almeida, N. Silva, A. Oliveira and R. Santos, "The OReK real-

time micro kernel for FPGA-based systems-on-chip", in

proceedings of 6th Workshop on Embedded Systems for Real-time
Multimedia, (ESTImedia 2008), IEEE Xplore, Atlanta Georgia, pp.

75-80, Oct. 2008.

[42] Xiangrong Zhou, Peter Petrov “Rapid and low-cost context-switch
through embedded processor customization for real-time and

control applications” DAC San Francisco, CA, pp. 352-357, July

2006.

[43] N. Maruyama, T. Ishihara, and H. Yasuura, “An RTOS in hardware

for energy efficient software-based TCP/IP processing”, in IEEE
Symposium on Application Specific Processors, pp. 58-63, June

2010.

[44] H.K. Hay So, X. Changqing, W. Mei, W. Nan and Z. Chunyuan,
“Extending BORPH for shared memory reconfigurable computers

Field Programmable Logic and Applications (FPL)” in 22nd

International Conference on IEEE Improving Usability of FPGA-
Based Reconfigurable Computers Through Operating System

Support, Oslo. pp. 563-566, Aug. 2012.

[45] H.K. Hay So and R. W. Broderson, “BORPH: An Operating
System for FPGA-Based Reconfigurable Computers” DAC

University of California, Berkeley, Technical Report No.

UCB/EECS, pp. 92-96, July 2007.

[46] H.K.Hay So, and R. W. Brodersen, “A unified hardware/software

runtime environment for FPGA-based reconfigurable computers

using BORPH”, ACM Transactions on Embedded Computing
Systems (TECS) TECS Homepage archive Volume 7, Issue 2,

Article No. 14 ACM New York, USA, February 2008.

[47] Ikbel Belaid, Fabrice Muller and Maher Benjemaa “Static
Scheduling of Periodic Hardware Tasks with Precedence and

Deadline Constraints on Reconfigurable Hardware Devices”,

International Journal of Reconfigurable Computing, Volume 2011,
Article ID 591983, Hindawi Publishing Corporation, 2011

[48] A. B. Lange, K.H. Andersen, U.P. Schultz and A. S. Sørensen,

“HartOS - A hardware implemented RTOS for hard real-time
applications”, in Proceedings of the 11th IFAC/IEEE International

Conference on Programmable Devices and Embedded Systems,

Brno, Czech Republic, 2012.

[49] A. B. Lange, “Hardware RTOS for FPGA based embedded

systems”, Master's thesis, University of Southern Denmark.

http://www.hartos.dk/publications/thesis/hartos.pdf accessed on
Nov.2015.

[50] D. G. Harkut & M.S.Ali, “Hardware Support for Adaptive Task

Scheduler in RTOS”, Intelligent Systems Technologies &
Applications, Volume 384, Springer, UK, pp. 227-245, 2015.

[51] M.M.M. Fahmy, "A fuzzy algorithm for scheduling non-periodic

jobs on soft real-time single processor system", Ain Shams
Engineering Journal, Elsevier B.V., doi:10.1016/j.asej.2010.09.004,

pp 31-38, 2010

[52] M. Sabeghi, M. Naghibzadeh and T. Taghavi, “Scheduling Non-
Preemptive Periodic Task in Soft Real-time Systems using fuzzy

Inference”, 9th IEEE International Symposium on Object and
component-oriented Real-Time distributed Computing(ISORC),

April 2006.

[53] H. Mahdi, M. F. Sied and L. Caro, "Soft real-time fuzzy task
scheduling for multiprocessor systems", International journal of

intelligent technology Vol. 2 No. 4, pp. 211-216, 2007. 98 E. H.

Mamdami and S. Assilian , “An experiment in linguistic synthesis
with a fuzzy logic controller ”, in International Journal of Man-

Machine Studies, Vol.7,No.1, pp. 1-13, 1975.

[54] E. H. Mamdami and S. Assilian , “An experiment in linguistic
synthesis with a fuzzy logic controller ”, in International Journal of

Man-Machine Studies, Vol.7,No.1, pp. 1-13, 1975.

[55] M. Sugeno, “Industrial applications of fuzzy control”, Elsevier
Science Inc., New York, NY, 1985.

[56] Elragal, Hassan M. "Takagi-Sugeno Fuzzy System Accuracy

Improvement with A Two Stage Tuning." Int. J. Com. Dig. Sys 4.4
(2015).

[57] Sharma, Mridula, Haytham Elmiligi, and Fayez Gebali.

"Performance Evaluation of Real-Time Systems." Int. J. Com. Dig.
Sys 4.1 (2015).

 Int. J. Com. Dig. Sys. 5, No.6, 473-485 (Nov-2016) 485

http://journals.uob.edu.bh

[58] J.S.R. Jang, “ANFIS: Adaptive-Network-based Fuzzy Inference
Systems”, IEEE Transactions on Systems, Man, and Cybernetics,

Vol. 23, No. 3, pp. 665-685,1993.

[59] L. Lindh, J. Stärner and J. Furunäs, “From Single to Multiprocessor
Real-Time Kernels in Hardware”, in IEEE Real Time Technology

and Applications Symposium. Chicago, May 1995.

[60] L. Lindh, “Utilization of Hardware Parallelism in Realizing Real
Time Kernels”, Doctoral Thesis, TRITA – TDE 1994:1, ISSN

0280-4506, ISRN KTH/TDE/FR-94/1-SE, Department of

Electronics, Royal Institute of technology, Stockholm, Sweden,
1994, accessed on Nov.2015.

[61] Lindh, L. “Utilization of Hardware Parallelism in Realizing Real

Time Kernels”, Doctoral Thesis, TRITA – TDE 1994:1, ISSN
0280-4506, ISRN KTH/TDE/FR-94/1-SE, Department of

Electronics, Royal Institute of technology, Stockholm, Sweden,

1994, accessed on Aug.2015.

[62] Karloff, Anthony C., and Esam Abdel-Raheem. "Performance

Analysis of a Flexible, Optimized and Fully Configurable FPGA

Architecture for Two-Channel Filter Banks." Int. J. Com. Dig. Sys
2.2 (2013): 53-62.

[63] A. Rehman and M. Shakir, “Comparative Analysis of Scheduling

Algorithms in IEEE 802.16 WiMAX”, International Journal of
Computing and Digital Systems. Vol. 3, No. 2, pp 161-172, 2014.

Dinesh G Harkut received B.E.(Computer

Science & Engineering) & M.E. (Computer

Science & Engineering) from SGB

Amravati University in 1991 and 1998

respectively. He completed his masters in

Business Management and obtained his

Ph.D. from SGB Amravati University in

Business Management in 2013 while serving as a full-time

faculty in the Dept. of Computer Science & Engineering at Prof

Ram Meghe College of Engineering & Management, Badnera –

Amravati. His research interests are Embedded Systems and

RTOS.

M. S. Ali is a Professor and Principal of

Prof Ram Meghe College of Engineering

& Management, Badnera – Amravati. He

obtained his B.E.(Electronics & Power)

and M.Tech.(Power Electronics) from

Nagpur University and I.I.T. Powai,

Mumbai in 1981 & 1984 respectively He

obtained his Ph.D. from SGB Amravati

University in 2006. He has been on the SGB University’s

various body like Board of Studies, Faculty of Engineering &

Technology and Academic Council since last fifteen years. He

is Hon’ble Chancellors nominee on the senate of RTM Nagpur

University. His research interests are Operating Systems,

Artificial Intelligence and Java Technologies.

