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Abstract: In embedded system, a real-time operating system (RTOs) is often used to structure the application code and ensure that 

the deadlines are met by reacting on events in the environment by executing the functions within precise time. Most embedded 

systems are bound to real-time constraints with determinism and latency as a critical metrics. Generally RTOs are implemented in 

software, which in turns increases computational overheads, jitter and memory footprint which can be reduced even if not remove 

completely by utilizing latest FPGA technology, which enables the implementation of a full featured and flexible hardware based 

RTOs. Scheduling algorithms play an important role in the design of real-time systems. This paper proposes the novel FIS based 

adaptive hardware task scheduler for multiprocessor systems that minimizes the processor time for scheduling activity which uses 

fuzzy logic to model the uncertainty at first stage along with adaptive framework that uses feedback which allows processors share of 

task running on multiprocessor to be controlled dynamically at runtime. This Fuzzy logic based adaptive hardware scheduler 

breakthroughs the limit of the number of total task and thus improves efficiency of the entire real-time system. The increased 

computation overheads resulted from proposed model can be compensated by exploiting the parallelism of the hardware as being 

migrated to FPGA. 
 

Keywords: Task Scheduling, Scheduling Algorithms, Fuzzy Inference System, Hardware Scheduler, Real-time Operating System, 

Determinism, Jitter, Reconfigurable Computing, FPGA, Priority Queue. 
 

 

1. INTRODUCTION  

Today’s consumer market is driven by technology 

innovations. Many technologies that were not available a 

few years ago are quickly being adopted into common 

use. Equipment for these services requires 

microprocessors inside and can be regarded as embedded 

system. Embedded devices are often designed to serve 

their unique purpose and are included in a variety of 

products within different technical areas such as 

industrial automation, consumer electronics, automotive 

industry and communications and multimedia systems. 

Embedded systems find application in almost all the 

product ranging from train and airplanes to microwave 

ovens and washing machines. As semiconductor prices 

drop and their performance improves, there is a rapid 

increase in the complexity of embedded applications. The 

increased complexity of embedded applications and the 

intensified market pressure to rapidly develop cheaper 

product have caused the industry to streamline software 

development. Use of embedded operating system or Real 

Time Operating System (RTOS) is one technique used to 

reduce development time of such system as it has effects 

on hardware abstraction, multitasking, code size, learning 

curve and the initial investment. Unfortunately, operating 

systems do introduce several forms of overheads. 

FPGAs have been the reconfigurable computing 

mainstream in recent time. Gate-level reconfigurability 

supports of FPGA results in reducing the development 

time to market and cost as compared to ASIC’s which 

can be exploited to harness the benefit of developing the 

full featured and flexible hardware based RTOs. 

Real time systems are embedded systems in which the 

correctness of application implementations is not only 

dependent upon the logical accuracy of its computations, 

but its ability to meet its timing constraints as well [1]. 

Thus the design of the RTOses have dual goal of 

minimizing the overheads and maximizing the 

determinism. 

http://dx.doi.org/10.12785/ijcds/050606 
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This paper is organized as follows. Section 2 is an 

overview of the Hardware/Software co-design 

approaches. Section 3 describes related work of other 

research projects, proposed model is discussed in section 

4 and section 5 covers summary and conclusion from 

mainly previous work and related work. 
 

2. HARDWARE SOFTWARE CO-DESIGN 

ARCHITECTURE  

RTOs are often used in embedded systems to 

structure the application code to ensure that deadlines are 

met. The notions of best-effort and real-time processing 

have fractured into a spectrum of processing classes with 

different timeliness requirements including desktop 

multimedia, soft real-time, firm real-time, adaptive soft 

real-time and traditional hard real-time [2-4]. Many Real-

Time systems are hard and missing deadline is 

catastrophic where as in soft real-time system, occasional 

violation of deadline may not result in useless execution 

of the application but decreases utilization [5].   
 

Traditionally RTOS’s are implemented in software, 

but major drawbacks of standard software based RTOS’s 

is that they suffer from computational overheads, 

indeterminism, jitter and often a large memory footprint. 

RTOS computational overheads is caused mainly by tick 

interrupt management, which get even worse with more 

task and high tick frequencies, but also task scheduling , 

resource allocation and de-allocation, deadlock detection 

and various other OS/API functions take execution time 

from the task running on the CPU. 
 

Embedded system always consists of software and 

hardware components and can no longer depend in 

independent hardware or software solutions to real time 

problem due to cost, efficiency, flexibility, upgradability, 

scalability and development time.  
 

Task implemented as software programs running on 

microprocessor have the properties of high flexibility but 

poor performance. On the other hand, task implemented 

as hardware modules placed in Hardware have the 

characteristics of high performance along with low 

flexibility and high cost. The FPGA technology, which 

can be programmed virtually an n number of times 

(depends upon the technology), which paved the way for 

enhanced flexibility and made it possible to implement 

established software algorithms in hardware i.e. real-time 

kernel activity like scheduling, inter-process 

communications, interrupt management, resource 

management, synchronization and time management 

controls. Algorithm implemented in hardware has unique 

characteristics of high level parallelism and improved 

determinism that consequently decreases system 

overhead, improve predictability and increases response 

time. 

As a tradeoffs, reconfigurable and hardware/software 

co-design approaches that offer real time capabilities 

while maintaining flexibility to support increasing 

complex systems become more feasible solution to allow 

software tasks running on a microprocessor along with 

hardware task running in an FPGA device (Figure 1). This 

hardware/software co-design approach reach a level of 

maturity that are allowing system designers to perform 

operating systems core and housekeeping functionality 

such as time management and task scheduling in hardware 

harness the advantages of higher level program 

development while achieving the performance potential 

offered by executions of these functions in parallel 

hardware circuits. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Hw/Sw System Architecture 
 

3. RELATED WORK  

The main source of indeterminism in real time 

systems are varying instruction cycle time caused by 

pipeline, caches, varying execution time of RTOs kernel 

functions, external asynchronous interrupts etc. By 

migrating real time kernel from software to hardware it is 

possible to remove jitter, lessen CPU overhead and 

improve the indeterminism due to cache and pipeline 

problems. Various models and systems have been 

proposed [6] to overcome this problem and some of them 

were discussed in remaining section. 

Lennart Lindh et al. [7] proposed a system 

FASTCHART, an RISC based uniprocessor system 

which puts ID of tasks into various queues. It consists of 

hardware based RT kernel capable of handling 64 tasks 

with 8 different priorities.  

POLIS - proposed by F. Balarin, G. Berry, F. 

Boussinot et al. [8], is an HW SW Co-Design Finite State 

Machine (CSFM) synthesis model, which supports 

globally asynchronous and locally synchronous 

computation. Implementation is splits between Software 

Hardware 
(FPGA/ASIC) 
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and ASICs and Co-simulation is provided using Ptolemy 

environment [9]. Complexity of processors makes static 

estimation is difficult and does no support for large 

design as it generates customized C-code for selected 

processors only. 

Lennart Lindh et al. [10] also proposed FASTHARD 

which supports features like rendezvous, external 

interrupts, periodic start and termination of task without 

CPU interference. However system is limited in supports 

for customization and scalability. It is extension to earlier 

work FASTCHART, based on general purpose 

processors. Paper does not provided any benchmarks or 

test results. 

The COSYMA system proposed by [11] uses 

simulated annealing for partitioning which can be fine or 

coarse grained, to speedup software executions to meet 

timing constraints. It does not support burst-mode 

communication. List and path based techniques are used 

to estimate execution time of hardware.  

J. Adomat et al. [12] come up with RTU (Real Time 

Unit), a multi-processor system which uses single 

interrupt input of each CPU to control and context 

switching. Lindh et al. [13] also proposes extensible 

multiprocessor system - SARA, which can be used 

together with RTU to remove the all scheduling and tick 

processing overheads. 

STRON system, based on µTRON project proposed 

by T. Nakano et al. [14] come up with hardware kernel 

which implements system calls and functionality results 

in increasing speedup and reducing jitter. This hardware 

kernel is supported by small micro kernel has been 

implemented to take care of the features not implemented 

in hardware. This system has tick frequency limitations 

and does not have hardware support to prevent 

unbounded priority inversion. 

In order to minimize hardware cost while maintaining 

timing constraints, R. Gupta et al. developed VULCAN 

[15] Hardware/Software partitioning tool, which uses 

heuristic graph partitioning algorithm that runs in 

polynomial time. The original description was in 

Hardware-C [16], which is mapped to fine grained 

Control-Data Flow Graph.  

Hardware software co-design framework for 

embedded system- CHINOOK, proposed by  P. Chou et 

al. [17,18] is an automated interface synthesis which 

supports mapping of an embedded system model to one 

or more processor and peripherals. Though more 

emphasis is put on distributed architecture which 

ensuring timing constraints but system is inflexible and 

more complex. 

 

A heterogeneous hardware/software DSP system 

CoWare in [19] proposed by H. De. Man et al., is basis of 

commercial CoWare N2C [20]. This system supports the 

re-use and encapsulation of hardware and software by a 

clear separation between functional and communication 

behavior of a system components. Though this system 

allows co-specification using VHDL, DFL, Sliage & C 

languages, but imposes increased demands on generation 

of exhaustive library elements. 

Bjorn B. Brandenburg et al. [21] discuss a soft real-

time extension of the Linux kernel, the LITMUS
RT

 

project with focus on multiprocessor real-time scheduling 

and synchronization. It supports the sporadic task model 

with both partitioned and global scheduling [22]. The 

primary goal is to provide a useful experimental platform 

for applied real-time systems research but LITMUS
RT

 

failed to establish as stable interfaces. 

F-Timer framework suggested by A. Parisoto et al. 

[23] is FPGA based task scheduler capable of managing 

32 tasks with 64 different priorities which is targeted at 

general purpose processor. System does not have any 

hardware support for task synchronization and resource 

handling. Paper does not discussed about scheduling 

algorithm employed. 

Spring kernel is basically designed for large and 

complex multiprocessor based RTOS proposed by J. 

Stankovic et al. [24,25] takes a radically different 

approach to task scheduling which is based on dynamic 

and speculative planning implemented through heuristic 

algorithm and tree search. Fine granularity of task 

deadlines is possible at the cost of large amount of pre-

calculation overheads which affects the performance.  

Hardware scheduling accelerator which can be 

configured for several different algorithms is proposed by 

J. Hildebrandt et al in [26,27]. This hardware 

implementation of dynamic scheduling coprocessor also 

supports advanced Enhanced Least Laxity First (ELLF) 

algorithm. This system could not address trashing of task 

but increases the overall determinism at the cost of higher 

complex logic. 

δ-Framework- a hardware/software co-design RTOs 

framework proposed by V. Mooney et al. in [28], 

supports 30 different processors. The system is cost 

effective as far as overall speedup and hardware area 

(number of gates) is concerned. This framework 

generates all HDL code which can be implemented in 

FPGA. More work on SOC was conducted [29] to 

integrate priority inheritance and deadlock avoidance 

mechanism. 

Configurable hardware scheduler with improved 

response time, interrupt latencies, CPU utilization has 

been design and developed by V. Mooney et al. [30], 
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which also supports high tick frequency. This model 

supports three different algorithms which can be change 

at run time dynamically and interrupt controller in 

scheduler supports 8 external interrupts each can be 

configured for dispatching a specific task. 

Issues of extension to OS and flexibility arises out of 

moving entire OS to hardware can be overcome in model 

propose by Z. M. Wirthlin et al. in [31]. The nano-

processor provides upgradability, flexibility and also 

enhancing the execution time by moving selected 

inefficient OS services in hardware to save on power 

consumption to a great extent as shown in [32]. 

Paul Kohot et al. in [33], developed Real-Time 

Manager (RTM) which leverages the potential of 

hardware parallelism, In this system, routine 

housekeeping tasks are implemented in hardware and 

thus free the processor for critical functions which boosts 

the overall performance. RTM supports static priority 

scheduling and handles task, time and event 

management. The author claims RTM decreases RTOS 

overheads by 90% decreases response latency by 81%. 

Problem arises out of low tick granularity can which 

cause jitter and result in deadline misses is overcome by 

M.Vetromille et al. [34] in their proposed system 

HaRTS. The HaRTS supports high tick frequency and 

thus reduce jitter without lower CPU available time for 

task to process. Though it is more complex to implements 

but it requires less chip area and uses less power than 

additional processor. 

The Hardware RTOS implemented for accelerating 

eCos, HW-eCos is interfaced to an ARM processor 

requires fewer gates to implement and provides better 

speedup. Communication speed between RTOS and 

hardware overshadowed the speed gain by hardware 

scheduler is overcome by S. Chandra et al. in [35] by 

intelligent design. Paper does not discuss the number of 

tasks and resources supported by this system. 

SRTOS proposed by Z. Murtaza, S. Khan et al. [36] 

aims at real-time DSP application which is targeted on 

AVZ21 DSP processor. Though this paper doesn’t 

provide any experimental test result but system supports 

additional instruction for fast resource allocation and 

context switching. 

M. Song et al. [37] come up with H-Kernel, an 

outcome of through use of FPGA and thoughtful HW/SW 

co-design for specific application. Though system 

become more complex and bulky as number of task 

increases but increase in performance in the tune of 50-

60%, is achievable with the system with small numbers 

of task.  

 

Sebastien Pillement et al. [38] proposed DART – an 

FPGA based reconfigurable architecture which deals 

concurrently with high-performance, flexibility and low-

energy constraints. Flexibility of FPGAs is achieved at a 

very high silicon cost interconnecting huge amount of 

processing primitives. These interconnection and 

configuration overheads result in energy waste. DART 

was designed as a platform-based architecture which 

define cluster level interface to implement user dedicated 

logic which allows for the integration of application-

specific operators which efficiently support bit-level 

parallelism. The main concern of this class of 

architectures is high reconfiguration overhead. 

ARPA-MT multi-threading processor with five stage 

pipeline system is proposed by A. S. R. Oliveira et 

al.[39]. This system supports heterogeneous task and 

context switches without hampering the processor 

performance. 

Latency introduced due to PLB bus interface in the 

system can be removed by better and more direct 

connections between CPU and coprocessor as proposed 

by Luis Almeida et al. in [40,41] OReK_CoP i.e. 

Hardware implementation of OReK Real-Time Kernel. 

All kernel functions execute in absolute time and almost 

in parallel, without interfering CPU which improves 

determinism and improve resource utilization.  

Xaingrong Zhou, Peter Petrov et al. [42] presented 

model by converging compiler, micro-architecture and 

OS kernel to reduce the context switching cost and 

improve overall responsiveness which the main source of 

performance degradation in most of the HW SW based 

solutions. In this proposed model context switching may 

be deferred until next switch point to limit the number of 

context registers required to hold state. Though this 

arrangement results in more deadline miss which can be 

avoided by more complex and good RTOS kernel design. 

ARTESSO architecture as proposed by N. Maruyama 

et al. in [43], ported RTOS, checksum calculation, 

memory copying and TCP header rearrangement to 

hardware. It uses novel virtual queue instead of FIFO 

based queues used in RTU and STRON, which are logic 

expensive. The author claims that this system is 6-9 times 

faster than STRON and 7 times more energy efficient 

than its software counterpart. 

Numbers of research projects have approached the 

task of designing OS for FPGA based reconfigurable 

computers (RC). By providing native kernel support for 

FPGA hardware Hayden Kwok-Hay et al. [44-46] 

proposed BORPH, an operating system designed for 

FPGA-based RC. BORPH offers a homogeneous UNIX 

interface for both software and hardware processes. 

Hardware processes inherit the same level of service 

from the kernel.  
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Static scheduling of DAGs (Direct Acyclic Graph) on 

multi-reconfigurable-unit system under strict real-time 

constraints and from a parallel processing perspective is 

proposed by Ikbel Belaid et al. [47]. Clustering the task, 

mapping the task in these clusters and placing these 

clusters on reconfigurable devices, dynamic partial 

reconfiguration and efficient placement are achieved. 

However, this approach face difficulty in dealing with 

nondeterministic systems with run-time characteristics 

that are not well known before the DAG running and this 

approach will work only for small DAGs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HartOS- Hardware implemented Real-Time 

Operating System is proposed by Lange A.B. et al. 

[48,49] is designed to be very flexible and support most 

of the features normally found in a standard software 

RTOS directly in hardware without sacrificing flexibility. 

The HartOS’s ability to run kernel at a higher clock 

frequency than the microprocessor, enables more tasks to 

be processed serially at the same tick frequency and thus 

speed up the part of the API functions executed in the 

kernel. Comparative study of various 

methodologies/models reviewed in the literature is given 

in the Table 1[50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology/ Model Architecture Used & Claims by Authors 

FASTCHART (1991)   

Hybrid  [7]  
RISC based processor with Load Store architecture. Migrated full kernel to Hardware to improve determinism and remove 

jitter. 

POLIS (1991)  

Hybrid [8]  
Co-design Finite State Machine (CFSM) design. Flexibility to evaluate HW/SW partitioning, architecture & scheduler 

through mixed implementation of SW & ASICs. 

FASTHARD (1992) 

 Hybrid [10] 
Memory mapped design (address/data bus). HW based RT Kernel to support external interrupts & rendezvous. 

RTU (1994 )  

H/W based [12] 
Memory mapped design (VME bus). Supports multiple task, binary semaphores, event flags, watchdogs with minimum 

overheads and improved predictability. 

Silicon TRON (1995)  

Hybrid [14] 
Memory mapped design (address/data bus). Improve determinism and supports task mgt., flags, semaphores, timers & 

external interrupt. 

VULCAN (1995) 

 Hybrid [15]  
CDFG based fine grained mapping design. Hardware/software partitioning results in reducing the overall cost. 

CHINOOK (1996)  

Hybrid [17] 
Distributed Architecture. Supports mapping of processor & peripherals with strict timing constraints with automated 

interface synthesis. 

COWARE (1996)  

Hybrid [19] 
Memory mapped design (address/data bus). Supports re-use, encapsulation of HW & SW by separation of functional 

behavior to supports heterogeneous HW/SW DSP systems. 

COSYMA (1997)  

Hybrid [11] 
Memory mapped design (address/data bus). Uses novel list & path-based scheduling to estimate HW execution time & 

speedup SW executions to meet timing constraints. 

F-Timer (1997)  

Hybrid [23] 
Memory mapped design (address/data bus). Supports external interrupts by reducing overall RTOs overheads with improved 

determinism. 

Spring Coproc (1999)  

Hybrid [25] 
Memory mapped design (address/data bus). Supports fine granularity of  task deadlines & multiprocessors with guaranteed 

scheduling without blocking resources. 

ELLF Sched. Coproc. (2000)  

Hybrid [26] 
Memory mapped design (address/data bus). Supports ELLF algorithm with dynamic priority calculation by exploring 

parallelism in HW. 

The δ-Framework (2002)  

Hybrid [28] 
Memory mapped design (address/data bus). Uses less nos. of gates for equivalent HW area targeted for HW/SW co-design. 

Mooney (2003)  

Hybrid [29] 
Memory mapped and instruction set acceleration based design. Configurable scheduler which supports Priority based, Rate 

monotonic & EDF algorithms & high tick rate. 

Nano-processor (2003)  

Hybrid  [31] 
Memory mapped design (address/data bus). Provides flexibility of choosing services to perform in HW with faster execution 

with compatibility with range of hardware. 

RT Task Manager (2003)  

Hybrid [33] 
Memory mapped design (address/data bus). Supports static priority & handles task, time & event mgt. with same tree by 

migrating routine task to HW. 

HaRTS (2006)  

Hybrid [34] 
OPB Bus Scheme based design. Requires less power, less chip area and supports high tick frequency and granularity with 

lowering jitters. 

LITMUSRT (2006)  

S/W based [21] 
Push/Pull approach. Effective testbed to evaluate diff RT Scheduler & also supports G-EDF based scheduling with private 

queue for each processor. 

HW- eCos (2006)  

Hybrid [35] 
Memory mapped design (address/data bus). Removes context switching overheads through interrupt line to CPU, reduce 

code size and thus improve performance. 

Silicon RTOS (2006)  

Hybrid [36] 
Memory mapped design (address/data bus). Supports external interrupt management & uses priority based scheduling to 

make RT DSP applications efficient. 

H-Kernel (2007)  

Hybrid [37] 
Memory mapped design (address/data bus). Supports priority based task, interrupt, event & time mgt through H-kernel and 

performance through thoughtful HW/SW co-design. 

OReK_CoP (2009)  

Hybrid [41] 
PLB bus interface with stack based priority ceiling design. Ported OReK kernel to HW to improve performance & supports 

asynchronous interrupt handling which improve determinism  

Xiangrong  et al (2010)  

S/W based [42] 
Micro-architecture & OS kernel. Uses micro-architecture to lower context switching and improve responsiveness. 

ARTESSO (2010)  

Hybrid [43] 
TCP/IP protocol. Improve throughput by moving TCP Header calculations to HW & supports priority based FCFS 

scheduler by using novel virtual queue structure. 

BORPH (2011)  

S/W based  [45]  
OS uses Virtual file system. Reduces context switching drastically by exploiting the benefits of parallelism and FPGA 

reconfigurability. 

ARPA-MT (2011)  

Hybrid  [38] 
Stack based priority ceiling design. Specialized, Predictable and customized Processor design which supports heterogeneous 

task & schedules using RM or EDF protocol. 

HartOS (2012)  

 Hybrid  [48]  
FSL-AXI stream interface. Interrupt handled as task & mutex are protected by stack based priority ceiling which reduces 

jitters and memory footprints. 

 

Table 1 - Comparative study of various methodologies/models 
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Scheduling algorithm plays as important role in the 

design of real-time systems which involves allocation of 

resources and time to jobs in such way that certain 

performance requirements are met. 

Most of the model discussed and reviewed are mainly 

focused on to improve the performance by migrating 

some of the house keeping routine jobs from software to 

hardware with a aim to leverage the potential of parallel 

processing of hardware which can further be improved to 

a greater extent if more realistic scheduling algorithm is 

devise and migrate it on hardware to assist processor and 

RTOs so as to increase the overall performance without 

increasing memory footprint and power consumptions. 
 

4. HARDWARE TASK SCHEDULER  

Mostly researchers dealing with real-time system 

scheduling, assumes scheduling constraints to be precise. 

But in practical reality, the values of these parameters are 

vague in most of the cases. To overcome these limitation 

of vagueness of jobs scheduling parameters [51], Fuzzy 

logic play important role in generating most optimal 

scheduling which enhance the utilization of the resources 

and thus increases the overall schedulability of the system 

by treating these vague scheduling parameters are treated 

as fuzzy variables. In this research paper, a two phase 

adaptive scheduling algorithm is developed and migrated 

on FPGA to harness the potential of parallel processing 

which will compensate added computational cost for 

executing of complex fuzzy algorithms. 

 

4.1   Architecture  

We proposed Fuzzy Inference System (FIS) based 

adaptive hardware task scheduler framework which is 

discussed in subsequent paragraph basically consists of: 

1. Global Fuzzy scheduler – Long term scheduler. 

(FIS 1)  

2. Local Adaptive scheduler – Short term scheduler. 

(FIS II)   

Both of these scheduler work in cascade and are 

migrated on hardware which will work in synchronous 

with processor and RTOs to fulfill the overall systems 

objectives as illustrated in figure 2. 

To build a fuzzy system, inputs and output(s) to it 

must be first selected and partitioned into appropriate 

conceptual categories which actually represent a fuzzy set 

on a given input or output domain. Parameters which 

affects the schedulers performance are selected as input to 

the Fuzzy Inference System (FIS) [52,53], which consist 

of five stages: 

1. Fuzzifying inputs 

2. Applying fuzzy operators 

3. Applying implication methods 

4. Aggregating outputs 

5. De-fuzzifying outputs 

Here Madani’s Fuzzy inference method of TSK or 

simply Sugeno method of fuzzy inference may be used 

[54-56].  

Block diagrams of FIS I and FIS II along with the 

parameters selected as Input and Output are along with 

surface viewer are shown in figure 3. 

Input to FIS I are - Job Exterior Priority (JEP), Job 

Processing Priority (JPT) & Job Waiting Time (JWT) 

which generates Job Processing Priority (JPP). 

Input to FIS II are – Job Processing Priority (JPP) 

generated by FIS I and Job Worst Case Execution Time 

(JWCET) which generates Job Final Priority (JFP).  

Figure 2. Proposed FIS based Adaptive Hardware Task Scheduler 
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Figure 3. Fuzzy Inference System I & II block diagram 

 

Output of the FIS I is single value which is treated as 

Job Processing Priority (JPP) and maintained in global 

queue in sorted order. This newly calculated JPP along 

with task’s worst-case execution time (WCET)[57], feed 

to FIS II, a second stage scheduler.  

The working of proposed novel Two phase Fuzzy 

Inference System based hardware task scheduler which 

uses fuzzy logic to model is depicted  as –  

An arrival of new task in system initiates the 

application. These new task are stored in Arrival Queue in 

First-in-First-out manner (FIFO) waiting to be get 

processed by the Fuzzy Inference System (Phase I). Task 

entering the systems are tagged with some basic 

parameters which play important role in scheduling these 

task. These jobs are stored in sorted order as per newly 

calculate Job Processing Priority (JPP). Task queued in 

Global queue are feed to Fuzzy Inference System (Phase 

II). Local Queue holds the task in sorted order as per the 

Job Final Priority (JFP) calculated by FIS 2. Master 

controller keeps track of actual execution time (AET) of 

each task being processed and if the difference between 

Worst Case Execution Time (WCET) and AET for a task 

in beyond certain threshold value i.e. δ (t), then is it 

notified back to FIS II which will update the value of 

WECT by AET and consider this new updated value of 

WCET during next scheduling cycle. Task blocks on 

shared resources are stored in Block Queue where 

semaphore is used to resolve the deadlock and task are 

moved from block queue to Waiting Queue if the task is 

yet to be complete. These tasks are then added back to 

Arrival Queue along with newly entered task in FIFO 

order. 
 

4.1.1  Adaptive Fuzzy Scheduling 

Under traditional task model like periodic, sporadic 

etc., the schedulability of system is based on each task’s 

worst-case execution time (WCET), which defined the 

maximum amount of time each of its jobs can execute. 

The disadvantage of using WCETs is that system may be 

deemed un-schedulable even if they would function 

correctly most of the time when deployed. This drawback 

can be overcome by making our scheduler adaptive to the 

runtime varying conditions, to allocate per-task processors 

time share, instead of always using constant share 

allocation based on constant WCET and readjusting the 

priority of task. When there is variation in the WCET and 

the actual execution time of a particular job beyond some 

predetermined threshold value, adaptive task schedulers is 

invoked with actual execution time and reschedule the 

task and refresh and reorder the tasks in local queue 

accordingly. This results into adjusting the per task 

processor time share based on the runtime conditions 

which will effectively increases the overall schedulability 

and processor utilization. Overall quality-of-service (QoS) 

can be improved by ignoring the transient overload 

conditions. Dispatcher will dispatch the task from local 

queue to processors bank to get serve. 

Further resource synchronization is used to optimize 

scheduling of the tasks blocked on shared resource which 

are parked on blocked or waiting queue. Task blocks on 

shared resources are stored in Block Queue are moved 
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Overall Process Flow – 
DO 

1. Incoming Task arrives and stores at Task Arrival Queue 

2. Task came with following tags: 

 Job External Priority (JEP) 

 Job Processing Time (JPT) 

 Job Waiting Time (JWT) 

 Job Worst Case Execution Time (JWCET) 

3. These tasks are fed to Fuzzy Inference System (FIS I) and Generates Task Processing Priority (JPP). 

4. Tasks are stored in Global Queue as per newly calculated Processing Priority (JPP). 

5. These tasks are having following tags: 

 Job Worst Case Execution Time (JWCET) 

 Job Processing Priority (JPP) 

6. These tasks are now fed to Adaptive Fuzzy Inference System (FIS II) and Generates Jobs Final Priority (JFP). 

7. Tasks are stored in Local Queue (Hardware based Priority Queue) as per newly calculated Jobs Final Priority (JFP).  

8. Task Dispatcher will perform following tasks: 

 Dispatches the ready task from Local Queue to Master Controller 

 Collects the Finished or Blocked task from Master controller 

 Forward the Blocked task to Block Queue 

 Flush-out the finished task from System 

9. Task Dispatcher will fetch the ready to run scheduled tasks from Local Queue and dispatch it to ISR and Master controller. 

10. Master Controller will assign the task to pool of processors (multi-core) by maintaining the proper load balancing. 

11. Task dispatcher collects and dispatches the blocked tasks (blocked on shared resources) from master controller and stored them on Blocked Queue. 

12. Task dispatcher also flush-out the finished tasks 

13. Task moves from Blocked Queue to the Waiting Queue, once shared resources are free after resolving the aging issue by resource synchronizer. 

14. Task from Waiting Queue and Incoming task from outer environment are replenished in Task Arrival Queue in FIFO order. 

LOOP 
 

 

 
Feedback process – (Adaptive Scheduling) 
DO 

1. FIS II calculate the Job Final Priority (JFP) based on two tags: Worst Case Execution Time (WCET) and Job Processing Priority (JPP). 

2. Master Controller keeps track of each task Actual Execution Time (AET) during execution. 

3. If the difference between WCET & AET exceeds certain predefined τ, WCET of that job is updated by AET.                                                           

 i.e. (WCET –AET) >= τ,  WCET AET 

4. FIS II will use this modified value of WCET in next turn of this task for generating Job Final Priority (JFP) which is more rational. 

LOOP 
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Figure 4. Hardware Priority Queue architecture 

 

from block queue to Waiting Queue if the task is yet to 

be complete. These tasks are then added back to Arrival 

Queue along with newly entered task in FIFO order. 

Resource synchronization module which implements 

priority queue with aging to avoid the task starvation and 

thus improve chance of fair treatments to all the tasks in 

the queue is used to remove the deadlocks on resources 

among task from block task queue which will increase 

the overall performance of the RTOs. Processors share 

allocations are adjusted using feedback and resource 

synchronization techniques [58].  

Fine grained time management and frequent sorting 

and re-arrangements of tasks in Local Queue and Waiting 

Queue increases the CPU overhead and thus affects the 

processor utilization which can be overcome by 

implementing these queues as hardware priority queue fig.4. 
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Queue Loading process – (Hardware Priority Queue) 
DO 

1. New task arrived  

2. Calculate the path from vacant leaf node. This path includes all the ancestors from leaf node to the heap’s root. (Heap property always ensures that the 

elements are sorted) 

3. Address arbitrator generates the addresses of all the nodes from this identified path. 

4. Nodes from this path from stored at Block RAM are mapped and loaded to enqueue cells in queue loader. 

5. Newly arrived tasks priority is broadcasted to all the enqueue cells simultaneously in shift register. 

6. Comparator in enqueue cells compares, swaps and latch the newly task at appropriate enqueue cell.  

7. Updated Data from enqueue cells is loaded back to the Block RAM and thus the elements in heaps are sorted with accommodating the newly arrived task 

 

LOOP 

Queue Un-loading process – (Hardware Priority Queue) 
DO 

1. Remove the highest priority task stored at root node and replace it with last leaf to balance the heap. 

2. In order to ensure the heap’s basic property, rearranged the elements 

3. Compare and swap the root node with immediate child node so that heap is sorted. 

4. Move to next child node level till all the nodes are exhausted. 

LOOP    

Resource Synchronization Process –  
DO 

1. Task Arrived in Task Blocked Queue on share resources. 

2. Calculate the Task Unload Priority to move task from Task Blocked Queue to Task Waiting Queue.  

i.e. UP = JPP * AP where UP = Task Unload Priority, JPP = Task Processing Priority and AP = Task Aging Priority ( if AP > ῳ (t) ) 

3. Migrate the task having highest UP from Task Blocked Queue to Task Waiting Queue. 

4. At each migration from Task Blocked Queue to Task Waiting Queue, increase the AP of all remaining task in Task Blocked Queue by 1   i.e.  AP = AP + 1 

5. Move the Task from Task Waiting Queue to Task Arrival Queue in FIFO order. 

LOOP 

 

4.1.2 Queue Loading process 

Queue loading is accomplished by inserting the newly 

arrived task at the bottom of binary heap. Process of 

repeatedly comparing and swapping with adjacent parent 

node is performed until the priority of newly arrived task 

is less than its parents. Shift register mechanism shown in 

figure 4 inserts the newly arrived task in constant time. 

The heap property ensures that elements are sorted in 

order. 

4.1.3   Queue Un-loading process  

Remove the root task from the queue and 

reconstruction of the heap constituted the queue un-

loading operation. Root element is removed by replacing 

it with the last element in the queue to keep the heap 

balanced. Process of repeatedly comparing and swapping 

with smallest of the child node is perform until the 

priority root node is less than its child. Highest priority 

value is obtained in constant time and as priority queue is 

managed in hardware, the processor is not required to 

wait for the operation to complete. 
 

4.1.4  Resource Synchronization Process 

Task which are blocked on shared recourses are park 

on blocked queue which is implemented as hardware 

priority queue. To avoid the task starvation and fair share 

of CPU time, Priority queue with aging technique is used. 

Task upload priority is calculated, which will used to  

 

 

 

decide which task next to be moved from blocked queue 

to waiting queue. 

It is observe that, generally to ensure tasks must meet 

its deadline, the scheduler’s WCET are often 

overestimated. This causes system to be under-utilise and 

wastes CPU resources. Here we have examined how the 

scheduler overheads and its variation can be reduced by 

migrating the scheduling functionality to hardware logic. 

Further by accommodating the varying WCET on 

runtime, in scheduling, there is a twofold increase in the 

idle time of CPU which can be utilised effectively and 

thus results in increase in overall performance, enhance 

system predictability and timing resolution. 

An analytical result comparison of three different 

cases namely:  

1. RTOS with Software Scheduler 

2. RTOS with Hardware Scheduler & 

3. RTOS with Adaptive Hardware Scheduler is 

depicted in figure 5. 
 

CONCLUSION  

The conclusion from a comprehensive literature 

review of the publication throughout the last three 

decades, is that the major drawback from software based 

RTO’s can be removed by implementing the entire/ 

partial kernel of a real-time operating system in 

hardware. All past attempts to design a hardware RTOS  
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kernel has had limitations either in form of lacking key 

RTOS features/resources, being inflexible in terms of 

configurability or perhaps suffering from poor 

performance. By addressing the set of desired features, 

performance goals, clever design and utilization of the 

latest FPGA technologies, the implementation of a full 

featured and flexible hardware based RTOs is be possible 

which could address the shortcomings found in the 

literature. 

A hardware Intellectual Property (IP) can be used for 

implementing routine frequently used housekeeping 

activities like scheduling, inter-process communication 

and time management control from the software OS-

kernel to hardware unit. This result in significantly 

reducing the overhead by migrating kernel services to 

hardware which will improve the response time by 

increasing the CPU utilization. A hardware kernel 

executes in parallel to the CPU, minimizes the processor 

time for scheduling activity and thus relieves pressure 

from the CPU which gets almost full execution time for 

the application tasks. There is less software code in 

memory since the functionality is implemented in 

hardware instead [23].  

A software OS will generate a clock tick interrupt to 

the CPU when either it is executed or the lists of tasks 

(queues) are worked at or new periodic delay times are 

calculated for the tasks. With the hardware kernel in the 

system, it checks all queues concurrently and only 

generates an interrupt to the CPU when there is to be a 

task switch [59,60]. Another advantage of having the 

kernel in hardware is the possibility to use complex 

scheduling algorithms, unlimited of different queue types 

without any performance loss.  

When real-time kernels are implemented in software, 

one of the disadvantages is that the execution time for the 

service calls will have a minimum and a maximum time 

[61,62]. The time gap can be big and the worst-case time 

is one of the factors that will decide the utilization factor 

of the system. The scheduling time varies with the 

number of tasks and scheduling algorithm and must be 

bounded by a pessimistic worst case execution time, 

which decrease the determinism. 

We have proposed two phase FIS based hardware 

task scheduler which uses fuzzy logic to model the 

uncertainty at first stage along with adaptive framework 

that uses feedback in second stage. Scheduling based on 

static WCET will results in lower utilization of 

processors, which can be overcome by adaptive feedback 

mechanism which will update the WCET parameter of 

the task with AET, if the difference between the WCET 

& AET is exceeding the pre define threshold value τ, 

which allows processors share of task running on 

multiprocessor to be controlled dynamically at runtime 

and thus increases the overall processor utilization and 

thus the schedulability. Further, Starvation of low priority 

task problem is overcome by Resource synchronization 

module which in turns avoids the aging of task. Because 

of high granularity, frequent sorting and updation of the 

tasks in queue increases the overhead which can be 

reduced to greater extent by using Hardware Priority 

Queue [63] to store the task which increase the sorting 

speed and thus lessen the burden of CPU. This increases 
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the overall utilization of CPU and increases the 

schedulability of the tasks.   

Our future work is to map this proposed model on 

MicroBlaze soft processor core as MicroBlaze FPGA 

designs are readily available and can be implemented with 

little effort. The FreeRTOS port in MicroBlaze is being 

targeted to be modified and run tasks concurrently on 

multiple processors as FreeRTOS provides simple, easy to 

use and highly portable kernel. The aim to produce a 

version of FreeRTOS that supports multi-core hardware 

and efficient hardware based task scheduler. 
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