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Abstract: This paper introduces a new method, called GPQ method, for the computation of overlapping coefficient of two Pareto 

distributions. Expected lengths and coverage probabilities of the confidence intervals are also calculated using the generalized pivotal 

quantity. The comparison of the method is done with the best available method, that is, bootstrap percentile method. The general 

performance of the proposed method is better than the existing methods. An illustrative example is also presented. 
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1. INTRODUCTION  

 Overlapping coefficient (OVL) is a statistical measure used to measure the degree of overlap between two statistical 

populations. It is the common area under two probability density functions. Reference [1] measured the overlap of 

income distributions of White and Negro families in the United States using the formula: 

                                     OVL=
1 2min{f (x),f (x)}dx  (1) 

where  f1(.) and f2(.) are the respective probability densities of the populations. Obviously, the value of OVL ranges 

from 0 to 1, where a value 0 indicates that there is no overlap or similarity and a value 1 indicates that the two 

populations are identical or coincident. If the characteristic under consideration is discrete in nature, the integral in (1) 

can be replaced with summation. In the literature one can find other measures of OVL, see for example, [2], [3], [4] and 

[5]. Reference [6] used the concept of OVL in testing the equality of two Pareto distributions. 

  

A researcher often wants to study the similarity of distribution of income in two populations. Pareto 

distribution is a heavy tailed distribution that is a good choice for modeling income above a threshold value. It is a good 

choice in insurance applications for modeling extreme loss.  Reference [7] summarises the distribution of top incomes 

in the UK using Pareto models.  

 

When the probability distribution under consideration contains two or more parameters conventional inference 

procedures may not be applicable as one cannot find a statistic that is free of these parameters. Usually, OVL is a 

function of two or more parameters and hence the statistic for OVL consists of nuisance parameters. So conventional 

methods based on sufficient statistics are not available and hence it is necessary to consider alternative methods to deal 

with the inference of OVL. In this study we apply the method of Generalized Pivotal Quantity (GPQ) proposed by [8] 

and [9] to obtain confidence interval for OVL of two Pareto distributions. Reference [10] constructed generalized 

confidence intervals for the OVL of two normal distributions with equal variance. Reference [11] constructed 

generalized lower confidence limit for the reliability function of two parameter exponential distribution.  

http://dx.doi.org/10.12785/ijcts/050205 
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2. OVL OF ONE-PARAMETER PARETO DISTRIBUTIONS 

Consider two Pareto distributions with the following probability density function: 
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for i=1,2. Parameter i is the shape parameter (‘tail index’) describing the heaviness of the right tail of the distribution, 

with smaller values corresponding to greater tail heaviness. We shall denote the OVL defined in (1) by ρ and one can 

obtain the expression for ρ in this case as given below: 
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where r=/2. It is obvious that ρ= 1 if r=1. 

A. GPQ Method 

Let Xij, j=1,2,…,ni, i=1,2 be two independent random samples of sizes n1 and n2 taken from two independent 

Pareto populations with parameters  and  2  respectively. 
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for i=1,2. One can see that Ui’s are independent chi-square random variables with 2ni degrees of freedom, i=1,2. 

According to substitution method by [12], the corresponding GPQ for the parameter αi is the following: 
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Note that (3) is independent of nuisance parameters and its observed value is the parameter itself. Thus the GPQ of the 

OVL, ρ can be obtained by substituting (3) in (2). 

B. Bootstrap Percentile Method 

In percentile bootstrap method we shall first generate b bootstrap samples, say X1*, …,Xb*. In the next 

step estimate OVL values 
*

1̂ , …, 
*ˆ

b . Then identify 100(α/2)
th   

and 100(1-(/2))
th
  percentiles of the ̂ *   

as 

the percentile points of ρ and those points are taken to be the respective lower and upper limits of a 100(1 -
α)% confidence interval for ρ. 

C. Simulation Study 

TABLE 1 gives the estimated coverage probabilities of the confidence intervals using the GPQ and the percentile 

bootstrap methods for the OVL of two Pareto distributions. The 95% nominal level confidence interval is constructed 

for different sample sizes and parameter values. Numerical results are obtained using 10,000 simulated samples and are 

computed using R codes. For each simulated sample, 10,000 values of the GPQ are generated in order to compute the 

confidence limits and for the bootstrap method 10,000 parametric bootstrap samples are generated. It can be observed 

that GPQ based confidence intervals provide much better coverage for most of the sample sizes. If the value of ρ is 

large, then the expected length of the GPQ intervals is found to be smaller than that of the percentile bootstrap intervals 

for almost all sample sizes.   
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TABLE 1.  COVERAGE PROBABILITIES AND EXPECTED LENGTHS IN ONE PARAMETER CASE 

3. OVL OF TWO PARAMETER PARETO DISTRIBUTIONS  

Let us consider two independent Pareto distributions with the following probability density function: 
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for i=1,2. The point of intersection of the two probability density functions is the following: 
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Then the OVL of the two probability density functions can be expressed as follows: 

 

On simplification the final expression for ρ reduces to: 

 

Parameters (n1,n2) 

GPQ Method Bootstrap Percentile Method 

Coverage Length Coverage Length 

 (2,4) 0.9626 0.6590 0.9609 0.7183 

α1=1 (5,5) 0.9515 0.5195 0.9517 0.5196 

 (10,10) 0.9476 0.3628 0.9471 0.3628 

α2=10 (10,20) 0.9529 0.3080 0.9475 0.3227 

 (20,20) 0.9481 0.2515 0.9478 0.2516 

ρ = 0.3030 (20,30) 0.9460 0.2280 0.9445 0.2318 

 (50,50) 0.9488 0.1568 0.9495 0.1569 

 (50,100) 0.9523 0.1351 0.9507 0.1364 

 (100,100) 0.9505 0.1103 0.9506 0.1103 

 (100,200) 0.9543 0.0953 0.9499 0.0958 

 (2,4) 0.9765 0.7617 0.9937 0.7398 

α1=2 (5,5) 0.9751 0.5953 0.9749 0.5953 

 (10,10) 0.9514 0.4590 0.9464 0.4171 

α2=5 (10,20) 0.9625 0.4583 0.9742 0.5018 

 (20,20) 0.9483 0.3921 0.9479 0.3921 

ρ = 0.6743 (20,30) 0.9464 0.3635 0.9449 0.3637 

 (50,50) 0.9486 0.2590 0.9500 0.2590 

 (50,100) 0.9527 0.2244 0.9510 0.2253 

 (100,100) 0.9506 0.1834 0.9507 0.1834 

 (100,200) 0.9542 0.1589 0.9538 0.1592 

 (2,4) 0.9430 0.7399 0.9490 0.7311 

α1=4 (5,5) 0.9609 0.5831 0.9607 0.5835 

 (10,10) 0.9686 0.4358 0.9692 0.4380 

α2=5 (10,20) 0.9721 0.3916 0.9827 0.3814 

 (20,20) 0.9755 0.3288 0.9748 0.3239 

ρ = 0.9180 (20,30) 0.9742 0.3019 0.9798 0.2924 

 (50,50) 0.9753 0.2208 0.9763 0.2209 

 (50,100) 0.9762 0.1990 0.9743 0.2095 

 (100,100) 0.9743 0.1695 0.9706 0.1563 

 (100,200) 0.9765 0.1533 0.9804 0.1461 
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Let Xij, j=1,2,…,ni, i=1,2 be two independent random samples of sizes n1 and n2 taken from two independent Pareto 

populations. Let Xi(1) be the smallest observation in the i
th

 sample. Then the estimators of the parameters are the 

following (see [13]): 
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Note that Ui s are chi-square random variables with 2(ni− 1) degrees of freedom and Vi s are also chi-square random 

variables with 2 degrees of freedom. Then the GPQs of the parameters can be expressed as follows: 
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Note that the probability distributions of (5) and (6) are free of nuisance parameters and their observed values are the 

respective parameters. Now the GPQ of ρ, say Tρ, is obtained by substituting (5) and (6) in (4) according as Tβ1 > Tβ2 or 

Tβ1 < Tβ2 as the case may be. Then the 100(α/2)
th   

and 100(1-(/2))
th
  percentile values of Tρ   will be the respective 

lower and upper limits of the 100(1 − α)% generalized confidence interval for ρ.  

A. Simulation Study 

TABLE 2 gives the results of a simulation study conducted to assess the performance of GPQ and percentile 

bootstrap methods in computing the coverage probabilities and expected length of the confidence intervals for  The 

study is conducted for two different values of ρ. For each simulated sample, 10,000 values of the GPQ are generated in 

order to compute the confidence limits and for the bootstrap method, 10,000 parametric bootstrap samples are 

generated. It can be observed that GPQ method provide confidence intervals having much better coverage for ρ and 

shortest expected length. 
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TABLE 2. COVERAGE PROBABILITIES AND EXPECTED LENGTHS IN TWO PARAMETER CASE 

Parameters (n1,n2) 

GPQ Method  Bootstrap perc. Method 

Tail Coverage  Tail Coverage  

Equal Left Right Length Equal Left Right Length 

α1=3,  β1=2 (20,20) 0.9674 0 0.0323 0.1782 0.9373 0.0046 0.0581 0.3245 

α2=2,  β2=1 (20,30) 0.9658 0 0.0342 0.1735 0.9246 0.0030 0.0724 0.2825 

 =0.2477  (50,50) 0.9591 0.0002 0.0407 0.1387 0.9386 0.0105 0.0509 0.2245 

  (50,100) 0.9658 0.0004 0.0338 0.1136 0.9406 0.0063 0.0531 0.1717 

  (100,100) 0.9521 0.0076 0.0403 0.1123 0.9480 0.0067 0.0453 0.1447 

=1, β1=1 (20,20) 0.9452 0.0002 0.0546 0.2227 0.9581 0.0270 0.0149 0.3324 

2, β2=2 (20,30) 0.9579 0.0012 0.0409 0.1825 0.9471 0.0411 0.0118 0.3323 

 =0.4375  (50,50) 0.9467 0.0072 0.0461 0.1118 0.9454 0.0246 0.030 0.2052 

 (50,100) 0.9555 0.0099 0.0346 0.0967 0.9457 0.0333 0.0210 0.1912 

 (100,100) 0.9484 0.0135 0.0381 0.0807 0.9433 0.0268 0.0299 0.1471 

4. EXAMPLE 

To illustrate the method let us consider the data on the district wise per capita income of two states in India, 

namely, Kerala and Uttarakhand, for the financial year 2013-14. The values of 14 districts in Kerala are 114495, 84900, 

104243, 104424, 114708 , 151210, 96647, 79552, 71727, 82243, 72909, 93906, 65216, 98246 and the values of 13 

districts in Uttarakhand are 59791, 90173, 85156, 122804, 91708, 69401, 79981, 86699, 105960, 68730 , 72922, 

122172, 115543. The Kolmogrov-Smirnov one sample test is used to check whether the data sets follow Pareto 

distribution. The maximum likelihood estimates of the parameters α1  and β1 of Pareto distribution for the first data set 

are 2.8129 and 65216 repectively.. The value of K-S test statistic is 0.2128 against the table value of 0.314 

corresponding to 5% level of significance. The maximum likelihood estimates of the parameters α2 and β2 for the second 

data set are 2.5964 and 59791 respectively. The value of K-S test statistic obtained in this case is 0.2224 and the table 

value is 0.325 corresponding to 5% level of significance. Thus both the data sets follow Pareto distribution. The 

estimated value of the OVL of the two distributions is 0.7966 and the 95% confidence interval based on GPQ is 

(0.5555, 0.9035). Of course, an economist can make several inferences about these two populations based on the value 

of OVL. 
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