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Abstract: This paper derives a new four-parameter generalized exponential power lifetime probability model for life 

time data, which generalizes some well-known exponential power lifetime distributions. It is observed that our 

proposed new distribution bears most of the properties of skewed distributions in reliability and life testing context. It is 

skewed to the right as well as its failure rate function has the increasing and bathtub shape behaviors. The estimation of 

the parameters, and simulation and applications of the proposed model have also been discussed.  
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1. INTRODUCTION 

In recent years, it has been found that increasing the number of parameters make the well-known distributions more 
flexible so that the enhanced models would be more applicable and suitable for certain lifetime data when usual models 
are not. For example, Barriga et al. [6] proposed a new three-parameter extension of Smith and Bain [32] exponential 
power lifetime distribution, by introducing an additional shape parameter, known in the literature as the complementary 
exponential power (CEP) distribution, which mainly generalizes the exponential power distribution of Smith and Bain 

[34]. As defined by Smith and Bain [34], a positive continuous random variable X  is said to have an exponential power 

distribution with scale parameter 0 and shape  parameter 0 , which we denote by ~X  exponential-power

  , , if its pdf is given by 

  0,11   xeexxf
xex
  .                                                                       (1.1) 

Since the exponential power distribution (1.1) was introduced by Smith and Bain [34], many authors and researchers 

have studied various properties of this distribution, among them, Leemis [17], Rajarshi and Rajarshi [30], and Chen [7, 

8], are notable.  

 

 Further, it should be noted that, in recent years, the 
F  or exponentiated power distributions have been widely studied 

because of their wide applicability in the modeling and analysis of life time data. Many researchers and authors have 

developed various classes of 
F  distributions; see, for example, Ahuja and Nash [3], Mudholkar and Srivastava [21],  

Mudholkar et al. [22], Mudholkar and Hutson [20], Gupta and Kundu [12,13],  Nassar and Eissa [26], Nadarajah and 

Gupta [23], Pal et al. [28], Nadarajah and Kotz [24], Cho et al. [9], Shawky and Abu-Zinadah [33], Persson and Ryden 

[29], Shadrokh and Pazira [31], Nadarajah [25] , and Lemonte and Cordeiro [18], Shakil and Ahsanullah [32], 

Hamedani [14], and Al-Hussaini and Ahsanullah [4], among others. 

  

   A positive continuous random variable X  is said to have 
F   distribution if its cdf  is given by     xFxG 

,  0 , 0x , which is the th  power of the base line distribution function )(xF . The distribution )(xG  is also 
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called an exponentiated distribution of the given base cdf )(xF . Its probability density function (pdf)  xg  is given 

by    xFxfxg 1)(   . The 
F  distribution is also called the proportional reverse hazard rate model 

(PRHRM).  The reverse hazard rate function (rhrf) of   xG  is given by     
)(

)(
)(ln

xG

xg

dx
d

G xGx  , where )(xg  

is the pdf corresponding to )(xG . Thus 

          

              

 
 xx FxF

xfxF

G

 


 




)(

)( )(
1

.                                                                             (1.2) 

F  is also called the Lehmann alternatives, that is, the model of non-parametric class of alternatives, see Lehmann 

[15].  

  In recent years, many authors have studied classical distributions, such as the exponential and the exponentiated 

power Lindley (EPL) distributions, among others,by adding new parameters to the baseline distributions, in order to 

obtain more flexibility, and for building meaningful distributions. See, for example, Alizadeh et al. [4] and Lemonte et 

al. [19], and references therein. Thus, in the present paper, motivated by the importance of the 
F   distributions, and 

the fact that increasing the number of parameters make the well-known distributions more flexible and useful, we derive 

a four-parameter probability model for lifetime data, which generalizes the exponential power distribution of Smith and 

Bain [34], two-parameter lifetime distribution of Chen [8], and the complementary exponential power distribution of 

Barriga et al. [6].  We call it as the 
F  generalized exponential power lifetime probability model, or 

F GEP Model.   

 

  The organization of the paper is as follows. In Section 2, we introduce the proposed model, and discuss 

its distributional and reliability properties. In Section 3, we provide estimation of parameters. The simulation and 

applications of the proposed model have been discussed in Sections 4 and 5 respectively. We provide some 

concluding remarks in Section 6. 

 

2. THE PROPOSED NEW LIFETIME EXPONENTIAL POWER DISTRIBUTION 

  In this section, using the 
F  scheme, we propose a new four-parameter probability model for life time data (

F
GEP Model), and discuss its distributional and reliability properties, as described below.  

 

2.1. The Probability Density and Cumulative Distribution Functions:  

For a positive continuous random variable X  with scale parameter 0,  and shape parameters 0, k , we 

define its pdf by   

 

1
11

1 1)(


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kk ee
xkk eeexkxf .                                     (2.1) 

The cumulative distribution function (cdf) corresponding to pdf (2.1) is given by 

 

    0,1
1


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 .                                                                          (2.2) 

It is easily seen that, by proper choice of parameters, the pdf (2.1) contains the exponential power distribution of 

Smith and Bain [34], Chen [8], and Barriga et al. [6], among some other well-known distributions.  

2.2. Distributional Properties  

2.2.1. Reliability:    

It is easy to see from the pdf  in (2.1) that our proposed distribution is an increasing failure rate (IFR) distribution. 

For different combinations of values of the parameters, the graphs of the pdf  (2.1) are shown in Figure 1  below. In 

view of these graphs, the proposed distribution appears to be unimodal and right skewed.  



 

 

                                                                     Int. J. Comp. Theo.  Stat.  5, No. 2, 71-83 (Nov-2018)                           73 

 

 

http://journals.uob.edu.bh 

 
 

Figure 1. For pdf (2.1) 

 

Recalling the definition of the hazard (or failure) rate for non-repairable populations as the instantaneous rate of failure 

for the survivors to time, say, x , during the next instant of time, the survival (or reliability) and the hazard (or failure) rate 

functions of the proposed distribution are respectively given by  
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and 
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Further, it is also sometimes useful to find the average failure rate function ( AFR ), over any interval, say,  t,0 , that 

averages the failure rate over the interval,  t,0 , see, for example, Barlow and Proschan [5]. Thus, for the proposed 

distribution, it  is given by 
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which in view of the expansion of logarithmic  function as a power series, is seen to be positive irrespective of the values 

of scale parameters and hence the proposed distribution is Increasing Failure Rate on Average (IFRA). Also recall that a 

life distribution  .F  is NBU (new better than used) if       0,,  yxyRxRyxR , and NWU (new worse 
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than used) if the reversed inequality holds, see, for example, Barlow and Proschan [4]. We note that, for the proposed 

distribution, since 
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it is easy to see that      yRxRyxR . , which implies that the proposed distribution has the property of Never 

Better than Used (NBU). Differentiating Eq. (2.4) with respect to x , we have 
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for 0x . In order to discuss the behavior of the failure rate function,  xh , let   0/ xh . We observe that the 

nonlinear equation   0/ xh  does not have a closed form solution, but could be solved numerically by using some 

mathematical software such as Maple and R. It is obvious from Eq. (2.5) that  xh /
 is positive irrespective of the values 

of the parameters. This further confirms the IFR property of our proposed model and 0, k  being the shape 

parameters, the failure rate function,  xh , may have a bathtub shape when 1k  or 1 , and may be increasing 

when 10  k  or 10   . For some special values of the parameters, the graphs of the hazard function (2.4) are 

illustrated in  Figures  2 – 3  below. The effects of the parameters are obvious from these figures. The increasing and bathtub 

shape behaviors of the failure rate function,  xh , are also evident from these Figures. 

 

 
Figure 2. HAZARD RATE FUNCTION, )(xh , of Eq. (2.4),  

when 1,5.0,1  k , and 2.1,1,8.0,6.0,4.0 . 
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Figure 3. HAZARD RATE FUNCTION, )(xh , of Eq. (2.4),  

when 1,2,1  k , and 2.1,1,8.0,6.0,4.0 . 

2.2.2. Moments:  

  In what follows, for the random variable X  having the pdf  xf  as in Eq. (2.1), we derive the nth moment, 

 nXE , where 0n  is an integer. We have 
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obtain the nth moment,  nXE , given by 

 

   
 

   dttt
j

XE k

n
j

j

j

n

n

 







1

00

lnlnln
!

1







.                                                       (2.8) 

It is obvious from Eq. (2.7) that, when 1n , the st1 moment,  XE , of X , is mathematically easily tractable for 

1k . Hence, by taking 1n  and 1k  in Eq. (2.7), and using Gradshteyn and Ryzhik [11], Eq. 4.326.1, Page 572, 
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for the integral in Eq. (2.7) , that is, 
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where  zEi , known as the exponential-integral function, and, for 0z , is defined as follows:  
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where   577216.01    denotes the Euler’s constant ; (see, for example, Gradshteyn and Ryzhik [11], 

Abramowitz and Stegun [2], and Oldham et al. [27], among others).                         

 

3. Estimation of Parameters 

3.1. The Method of Moments: From the nth moment (2.6),  nXE , of the proposed model,  taking 4,3,2,1n

, and evaluating the respective integrals numerically, we obtain the first four moments. Then, in view of the moment 

equation (2.6) depends on the exponential-integral function,  zEi  , the moment estimation (MMEs) of the 

parameters  ,  ,   and k  can be determined by solving the system of four equations obtained from (2.6) by 

Newton-Raphson’s iteration method, and using the computer package such as Maple, or R, MathCAD, or other 

software. 
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Then the maximum likelihood estimates (MLE) of the parameters  ,  ,   and k  are obtained by solving the 

maximum likelihood equations (3.1 - 3.4), that is, by solving the equation 
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
, applying the Newton-Raphson’s iteration method and using the computer 

package such as Maple, or R, MathCAD14,  or other software. 

 

4. SIMULATION: 
 In this section, we use simulation to compare the performances of the different methods of estimation mainly with 

respect to their biases and mean square errors (MLEs) for different sample sizes. A numerical study is performed using 

MathCAD14 software. Different sample sizes are considered through the experiments at size n = 15, 20, 25, 30, 50 

and 100 for different values of parameters, viz., 2 , 573.1 , 179.0 , and 4.0k , which we have 

chosen arbitrarily. The experiment is repeated 1000 times. In each experiment, the estimates of the parameters are 

obtained by two methods of estimation: MME and MLE respectively. The means, MSEs and biases for the different 

estimators are reported from these experiments in Tables 1 and 2 respectively below.                     
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Table 1. The parameter estimation from New Model using MME 

( 2 , 573.1 , 179.0 , and 4.0k ) 

n  Mean Bias MSE SE n  Mean Bias MSE SE 

15 

  2.30189 0.30189 1.59374 1.226 30   2.05141 0.05141 0.20795 0.453 

  1.58888 0.01588 0.00905 0.094    1.57545 0.00245 0.00397 0.063 

k  0.42625 0.02625 0.00757 0.083  k  0.40654 0.00654 0.00124 0.035 

  0.22245 0.04345 0.00371 0.043    0.21055 0.03155 0.00234 0.037 

20 

  2.21005 0.21005 0.91293 0.932    2.03987 0.03987 0.07912 0.278 

  1.58043 0.00743 0.00614 0.078 50   1.56967 -0.00333 0.00172 0.041 

k  0.41539 0.01539 0.00374 0.059  k  0.40025 0.00025 0.00033 0.018 

  0.21736 0.03836 0.00355 0.046    0.20232 0.02332 0.00144 0.03 

25 

  2.1493 0.1493 0.79453 0.879    2.03937 0.03937 0.04285 0.203 

  1.57836 0.00536 0.00509 0.071 100   1.56751 -0.00549 0.00091 0.03 

k  0.40856 0.00856 0.00195 0.043  k  0.39855 -0.00145 0.00010 0.0097 

  0.21184 0.03284 0.00250 0.038    0.19382 0.01482 0.00083 0.025 

 
Table 2. The parameter estimation from New Model using MLE  

( 2 , 573.1 , 179.0 , and 4.0k ) 

n  Mean Bias MSE SE n  Mean Bias MSE SE 

15 

  3.1471 1.1471 19.62337 4.279 30   2.78639 0.78639 12.31686 3.42 

  2.42229 0.84929 7.15832 2.537    2.13412 0.56112 3.18027 1.693 

k  0.30556 -0.09444 1.82558 1.348  k  0.31979 -0.08021 0.07893 0.269 

  0.17439 -0.00461 0.79922 0.894    0.16906 -0.00994 0.03920 0.198 

20 

  2.85685 0.85685 14.01596 3.644    2.50295 0.50295 6.60940 2.521 

  2.28438 0.71138 6.15260 2.376 50   1.82749 0.25449 2.32187 1.502 

k  0.31515 -0.08485 0.12457 0.343  k  0.3095 -0.0905 0.07165 0.252 
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  0.17736 -0.00164 0.09722 0.312    0.14871 -0.03029 0.04341 0.206 

25 

  2.94226 0.94226 26.11667 5.023    2.4348 0.4348 13.31539 3.623 

  2.20758 0.63458 5.06740 2.16 100   1.62606 0.05306 0.54144 0.734 

k  0.31637 -0.08363 0.11511 0.329  k  0.33984 -0.06016 0.04774 0.21 

  0.16777 -0.01123 0.03753 0.193    0.15737 -0.02163 0.01093 0.102 

 

If we review Tables 1 and 2, it is observed that as the sample size increases, both absolute bias and MSE decrease and 

converge close to true values of parameters. 

 

5. APPLICATIONS:  
 

An Example on Average Annual Percent Change in Private Health Insurance Premiums: In this section, we use a 

real data set to illustrate the potentiality and the performance of the new model by considering the Average Annual 

Percent Change in Private Health Insurance Premiums (All Benefits: Health Services and Supplies), Calendar Years 

1969-2007 (SOURCE: Centers for Medicare & Medicaid Services, Office of the Actuary, National Health Statistics 

Group), as provided in the following Table 3. We compare the new distribution with other distributions, namely, 

transmuted quasi Lindley distribution (TQL) (see Elbatal and Elgarhy [10]),  beta Weibull (BW) (see Lee et al., [16]), 

Burr XII, and exponential power ( , )k   of Smith and Bain [34].  

  
Table 3. Average Annual Percent Change in Private Health Insurance Premiums 

14.4, 14.0, 15.4, 9.4, 11.7, 15.0, 24.9, 20.7, 12.5, 14.9, 12.6, 16.7, 13.8, 

11.0, 12.9, 10.1, 1.9, 8.5, 16.5, 15.3, 13.3, 9.8, 8.4, 7.9, 3.7, 5.1, 4.6, 4.4, 

5.4, 6.1, 8.0, 10.0, 11.2, 10.1, 6.4, 6.7, 5.7, 5.8 

 

 The mean, median, skewness and excess kurtosis of this data are 10.7, 10.1, 0.603 and 0.557, respectively. We can 

see that the data is right skewed. The estimate of the unknown parameters of each distribution is obtained by the 

maximum-likelihood method. In order to compare the new distribution model with the three distribution models, as 

stated above, various criteria were used. Criteria like 2ln L , Akaike information criterion ( AIC ), Bayesian 

information criterion ( BIC ), the correct Akaike information criterion ( CAIC ), Hannan information criterion   

( HQIC ), the Kolmogorov-Smirnov ( K S ) and p value  statistics are considered for the data set. The formulas 

for these criteria are as follows: 

  
 2 1

2 2ln  ,  ,
1

k k
AIC k L CAIC AIC

n k


   

 
 

   ln( ) 2ln ,     2 ln ln 2lnBIC k n L HQIC k n L      , 

   sup (y) (y)y nk s F F   , 

where  k   is the number of parameters in the statistical model,  n  is  the sample size and ln L  is the maximized value 

of the log- likelihood function under the considered model, (y)nF  is the empirical distribution function, and (y)F

denotes the cdf for each distribution. The "best" distribution corresponds to the smallest values of 2ln ,L  ,AIC  

,BIC  ,CAIC ,HQIC  K S , and the biggest value of p value  criteria. Using MathCAD 14 software, the 

estimation of the parameters and goodness-of-fit are provided below in Tables 4 and 5 below. Table 4 shows the MLEs 

of the model parameters and its standard error (S.E) (in parentheses) for data set. Table 5 gives the values values of  

mesurments for our considered data set. 
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Table 4. The MLEs and S.E of the model parameters for the data set (Table 3) 
 

Distribution MLEs and S. E 

New Model 
( , , , )k  

 
3.604 

(0.06649) 

1.394 

(0.037) 

0.834 

(0.223) 

0.077 

(0.038) 

TQL ( , , )    0.066  

(0.00625)  

86.092  

(0.15)  

0.468  

(0.139)  

 

- 

BW ( , , , )a b    32.934  

(0.429)  

0.145 (0.129)  0.994  

(0.18)  

1.006  

(0.033)  

Burr XII ( , )c   0.038  

(0.01071)  

11.804  

(0.059)  

 

- 

 

- 

Exponential power ( , )k     1.578 

(0.01071) 

0.063 

(0.059) 

 
 

Table 5.  Measurements for all models based on for the data set (Table 3) 

 

Distribution 
2ln L  AIC  BIC  CAIC  HQIC  K S  p value  

New Model 

( , , , )k  
 

293.222 301.222 299.541 302.434 303.553 0.06988 0.99246 

TQL ( , , )    373.508 379.508 378.248 380.214 381.256 0.28566 0.00405 

BW ( , , , )a b    357.283 365.283 363.602 366.495 367.613 0.15618 0.3121 

Burr XII ( , )c   481.319 485.319 484.478 485.662 486.484 0.43034 0.000002 

Exponential 

power ( , )k   
326.226 330.226 329.386 330.569 331.392 0.10161 0.82758 

 

If we review the computed values in Tables 4 and 5, it is observed that our proposed distribution is a strong 
competitor to other distributions used here for fitting to the considered data set  (Table 3). A density plot is used to 
compare the fitted densities of the models with the empirical histogram of the observed data. Figures 4 – 5 below  
provide the plots of estimated cumulative and estimated densities of the fitted New Model, TQL, BW and Burr XII 
models for the data set (Table 3).  

 

Figure 4. Estimated cumulative densities of the models for data set (Table 3). 
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Figure 5. Estimated densities of the models for data set (Table 3). 
 

It is observed from Figures 4 – 5 that the fitted density for the the new model is the closest to the empirical histogram in 
comparison to the other fitted models. 

 

6. CONCLUDING REMARKS:  

  In this paper, we have derived a new four-parameter probability model for life time data, using an 
F  scheme, 

which generalizes the Smith-Bain’s exponential power distribution [32] as well as of Chen’s bathtub shape or increasing 

failure rate model [8]. It is observed that our proposed new distribution is skewed to the right and bears most of the 

properties of skewed distributions, and is more flexible and is a natural generalization of many well-known life 

distributions. To illustrate the MOM and MLE techniques, we have arbitrary selected the following values of the 

parameters 2 , 573.1 , 179.0 , and 4.0k . Based on these, it is observed that our proposed 

distribution is a strong competitor to other distributions, namely, transmuted quasi Lindley distribution (TQL) of Elbatal 

and Elgarhy [10],  beta Weibull (BW) of Lee et al. [16], Burr XII, and exponential power ( , )k   of Smith and Bain 

[34],  used here for fitting to the considered data set (Table 3). We, sincerely, believe that for other values of the 

parameters, it should work as long as moments do exist. Also, we hope that one can use the Bayesian approach and 

compare it with the MOM and MLE techniques used in this paper, which we intend to take into account in our future 

research. It is hoped that the findings of the paper will be useful for researchers in the fields of reliability, probability, 

statistics, and other applied sciences. 
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