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Abstract: Many scientific fields are now facing a data deluge. One of the approaches proposed to allow the processing of such 

volumes is the programming paradigm MapReduce introduced by Google in 2004. This very simple implementation pattern is 

divided into two phases, map and reduce, between which a phase of massive exchange of data takes place among the machines 

running the application.  

In this article, we propose the integration of the dispensing algorithm at intervals (Distributed Range Partitioning) in the MapReduce 

paradigm. The schema obtained is called MR2P*. This new approach aims at dealing with dynamic scheduling of data and shuffle 

phase optimization (the intermediary phase between map and reduce).  

The experiments show that our approach produces performance within a very interesting run-time execution and a better transition to 

scale (Scalability) 

 

Keywords: MapReduce, Distributed file system, Big Data, Cloud Computing, Data distribution, Structures of distributed and 

scalable Data  

1. INTRODUCTION  

Currently, we are witnessing the era of mass 

production of data. On the one hand, applications 

generate data from logs, sensor networks, transaction 

reporting, GPS tracklog, etc. and on the other hand, 

individuals produce data such as photographs, videos, 

music or even dataset on the health status (heart rate, 

pressure etc.). 

A problem then arises for data storage and analysis. 

The storage capacity of hard disk drives and the CPU 

speed are increasing but they remain insufficient to 

respond to the current applications. It is then necessary to 

parallelize data processing by storing on multiple hard 

disk drives. MapReduce is a Framework that responds to 

these issues. 

 The MapReduce paradigm is a mechanism for task 

partitioning in view of an execution distributed over a 

large number of servers. The principle is simple: it is to 

break up a task into smaller tasks, or more precisely to 

divide a task of larger-data volume into identical tasks of 

subsets of these data. The tasks (and their data) are then 

dispatched on different servers, and then the results are 

recovered and consolidated. The upstream phase of the 

breakdown of tasks, is the map part, while in the 

downstream phase, the consolidation of the results is the 

"Reduce" part [6]. 

MapReduce applies the principle which stipulates that 

"moving the calculation is less expensive than moving 

data" and is trying to schedule the map tasks in machines 

close to the input data that they process, in order to 

maximize data locality. The locality of the data is 

desirable because it reduces the amount of data 

transferred through the network, which reduces 

consumption of energy, as well as network traffic of data 

centers. However, in the scheduling of tasks reduce, the 

locality of the data is not at all taken into account. Some 

works [4],[16] have demonstrated that transfers through 

the network can install a considerable additional 

MapReduce work execution. Accordingly, several 

optimizations have been suggested in order to reduce the 

transfer of data among mappers and reducers. We have 

covered some of those proposals, from the intelligent 

planning of reduce tasks [4],[14] to the dynamic 

assignment of intermediary Keys, to reduce tasks at the 

time of planning [5].  However, all these approaches are 

restricted by the way the key-value pairs intermediaries 
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are distributed over the outputs of the map phase. If the 

data associated with an intermediate key data are 

presented in the outputs of all map tasks, the pairs in the 

whole set of nodes, except one, must still be transferred 

through the network. 

In this paper, we propose a technique, called MR
2
P* 

which aims at optimizing the data transfer 

among mappers and reducers in the shuffle phase of 

MapReduce. In order to achieve this, we integrate a 

partitioning function based on the SDDS-RP * [1],[2]. 

Section 2 briefly recalls the principle of MapReduce. 

Section 3 presents the SDDS RP *. The principle and the 

algorithms of the new technique MR
2
P* are developed in 

section 4. Section 5 is devoted to performance measures 

in the whole method by comparing it with basic 

MapReduce. Finally, we conclude this article in section6. 

2. MAPREDUCE   

MapReduce refers to both the programming model 

and the Framework originally developed by Google in 

2004 for parallel data processing on a large scale. It is 

designed to automatically manage data partitioning, 

consistency and replication, as well as task distribution, 

planning, load balancing, fault tolerance, data distribution 

and load distribution. 

The terms "Map " and " Reduce ", are borrowed from 

functional programming languages. The 

functions Map and reduce are defined on the key-value 

pairs. The Map function consumes input key-value pairs 

and produces a list of intermediate key-value pairs. And 

then, the framework brings together intermediate pairs by 

key and issues each group (the key and all the associated 

values) to the reduce function, which produces in its turn 

a list of key pairs- output value (Fig 1)  

In a MapReduce job, the input is divided into M parts 

(splits), which are consumed by M map tasks, one for 

each part. The output of Map tasks is partitioned 

according to the intermediate key in R fragments by 

using a partitioning function, by default (hash= k mod R), 

which are then processed by R Reduce tasks. 

When an operation is launched, the master partitions 

the entry into M fragments. The MapReduce tasks are 

then allocated to workers as soon as they become vacant, 

first the Map tasks, then the Reduce tasks, once all Map 

tasks are finished. The output of Map tasks is divided 

into R fragments according to the intermediate key and 

stored on the local workers hard drives. The Reduce 

tasks take these outputs and sort them by key so that all 

the values of a given intermediate key are dealt with 

jointly by the Reduce function. Once all the MapReduce 

tasks are finished, the user will be notified. The 

intermediate phase of a MapReduce job, when the 

intermediate keys are partitioned, sorted and transferred 

to the nodes that are running the Reduce tasks is known 

as the shuffle. 

 

 
 

Figure 1. Principle of MapReduce 

 

The MapReduce programming model consists of two 

map and reduce functions () defined on the key-value 

pairs:  
 

The Map function (): consumes key-value pairs of 

input and produces a (possibly empty) list of intermediate 

key-value pairs.  

 Formally:  

            Map: (K1, V1) → stl (K2, V2) 

 

The Reduce function () : receives a list of intermediate 

pairs and then combines all the values corresponding to 

the same key to a unique pair (key, value). 

Formally:  

 

Reduce: (K2, list(V2)) → list(K3, V3) 

 

 

 

 

 

Map (void * document){ 

   Int keys = 1; 

   For each word m in document 

Intermediate Calculation (m,keys); }  

Reduce(integer keys, Iterator values){ 

   Int result = 0; 

   For each  v in values 

      Result += v;} 
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3. THE SDDS RP* 

The Scalable Distributed Data Structures (SDDS) are 

a class of data structure proposed in 1993 to support 

parallel processing of multiple computers 

and ensure access scalability. [13]. 

Historically, several SDDS have been suggested. The 

family of SDDS called LH*[13], develops distributed 

version of the linear hashing [9], [15], and the dynamic 

hashing [8].  The family called RP * (Range 

Partitioning) presents an extension to the clustered 

workstation technologies are expected data structures 

which reserve the order (Shaft-B Shaft or binary) 

[7],[10].Either types of SDDS have been proposed for the 

multi-key access and the high availability [11], [12].    

An SDDS file RP * consists of records, each one 

identified by a primary key. The records on each server 

are stored in a memory space called check bucket. The 

keys of an RP file * are totally ordered. All the buckets 

correspond to a Partition Key Space. Each element of the 

partition corresponds to a bucket contains at 

maximum b >> 1 records having their key within an 

interval. 

Clients access the file by sending search queries about 

a key or interval-queries. An interval-query refers to a set 

of records with their key in a given interval.  

According to the addressing mode used at the client 

level, we distinguish three diagrams in RP * : RP * N, RP 

* C and RP * S. A client of RP file * N sends the queries 

to the servers using only the multicast messages. A file 

RP * C is an RP* file N with a partial index constructed 

from the IAM, at the level of each client. This index is an 

image generally partial of the structure of the distributed 

file. Each element of the index represents the interval and 

the address of a bucket already accessed by the client. 

The client uses the unicast messages when he addresses 

to a known check bucket of the image. The servers use 

the multicast messages to redirect queries in case of 

addressing error. Finally RP * S added to RP * C an 

index distributed at the level of servers indexing all the 

buckets. The queries and redirections are sent by unicast 

messages. 

The interval ], ] of a bucket  is called rank .The 

parameter is  the minimum key  and   is called the 

maximum key  of the bucket . A key record c belongs to 

the bucket of interval], ] such that   < c <=  . For 

any c, there can be only a single check bucket in the RP* 

file to which c may belong. An RP* file is initially 

composed of a single bucket that bears the number zero 

(bucket 0), with           and  . All inserts will 

initial in bucket 0. It erupted when it overflows. This 

results in the creation of a new bucket which bears the 

number a (bucket i).  His rank is   ] cm, +], where  cm is 

the key to the middle of the burst of the check bucket . 

The bucket that has exploded view starts with a new 

rank]-, cm]. This process is repeated for any bucket that 

overflows. The file can be extended to any number of 

sites of the multi-computer. 

The internal organization of a bucket RP * is 

presented in detail in [8].  The storage space of a bucket 

is divided into three consecutive zones Fig 2:   

1. The header. It includes the rank of the check 

bucket, the address of the root of the index associated 

with the check bucket, the current size of the bucket, the 

current number of records stored and finally the current 

size of the index. 

2. The index. It is a variant of Shaft-B+ to 3 levels 

and without the sheets. 

3. The data. This zone contains records and the sheets 

of the index. 

 
                                                                     

 

 

 
 

E: in-head  

Index: Shaft-B+ without the sheets 

Data: list chain of sheets of the index  

 

Figure 2. Structure of a bucket SDDS RP* . 

The index is hierarchical and consists of nodes 

linked between them also by pointers, Fig 3. The root is 

located on the first level and used as an index to a second 

level. This second level itself is used to index a third 

level. This last level reference lists of records that 

correspond to the sheets. The sheets are linked between 

them using pointers. Each node may contain up to n 

elements of the index that are couples (key, pointer).  

Each pointer refers to a node on the next level. Each node 

must have at least n /2 elements except the root. This is 

the only node of the index, which may have at least one 

element. 

 

 
 

Figure 3. Detailed Structure of the bucket with a Shaft- B+ at three 

levels. 
 

The SDDS file is handled through the following queries: 

  Simple queries 

A simple query is searching, inserting, modifying or 

deleting a given key record. Such a query is sent using a 

unicast or multicast message depending on the type of 

E Index  Data  

A B 



 

 

46  ARIDJ Mohamed:   Framework for parallel processing of very large volumes of data 

 

 

http://journals.uob.edu.bh 

client (*N or RP *C).  A server S interval], ] who 

receives a simple query of key c proceed as follows: 

A) If c ], ] then S runs the query and then sends a 

reply to the client with a IAM, if necessary. The reply is 

sent using a unicast message. 

B) If c  ], ] and if the query is sent using a unicast 

message then the issuer is a client RP *C. S considers that 

this is an addressing error. It inserts its interval and its IP 

address within the message and redirects it towards the 

other servers by using a multicast message. Finally, the 

good server processes the query and sends a reply to the 

client. In this case the response contains two IAM: that of 

S and that of the server which has treaty the query. 

Consider a query to insert T size  (header and data) at the 

level of a client. If T < 64 bytes, the query is sent in a 

single message following the UDP protocol. Otherwise, 

the client first sends the query without the data but by 

specifying their size in the message. The correct server, 

after receipt of the request, initializes a buffer large 

enough to receive the data. 

He then opens a TCP port and then sends a unicast 

message to the client to ask him to connect to the data 

transfer. If the data have a very substantial size, the 

server initializes a buffer and then clarifies its size to the 

client in the request message of connection. It then 

transfers the data in blocks of a size equal to those of the 

server's buffer. The client stops transmission when the 

buffer is full. He then waits for the order from the server 

before starting again. The search works in the same way 

if the size of the data to be sent by the server is 64Kbytes. 

  Query at Interval  

It is to the search or the updating of fields non-key a 

set of records of key c belonging to an interval ( a, b), 

with a < b  . This interval is called interval of the query. 

A query by interval is sent using a multicast message. 

The affected servers then establish a TCP connection 

with the client for the transfer of records requests. 

Either [a, b]R the interval of a search query R, sent by a 

client to a group of n  servers, S1, 

S2,... Sn. Either ] i , i] the interval of server S i ,with i < 

n If R is received by a single server Sk (1 <   k <  n) such 

that ( a, b)R ]i ,i , then Sk responds by sending the 

selected records and its own interval. This is the simplest 

case. The records research can however be distributed on 

several different servers.  

In this case, R is treated on all 

servers Si such that                  ] i , i] [a, b]R . 

The query is executed in parallel on these servers and 

autonomously. Each door execution on a fragment of (a, 

b)R. The client has two strategies to complete a search 

query by interval: 

A) Deterministic Termination: a server that receives a 

search query by interval responds by sending the 

requested data records and its interval, if the intersection 

of its interval and that of the query is non-empty. If no 

record is found, the server simply sends its interval to the 

client. The client completes the query if the union of 

intervals received covers that of the query. It also has a 

time out to complete the query if a missing response has 

not been received within a fixed deadline. 

B) Probabilistic Termination: in this case a server 

responds only if it finds at least a record with a key 

belonging to the interval of the query. The client has a 

time out t to collect the answers. This time out is reset 

after each reply received. The query is complete 

if t expired. The practical choice of t is to have a time 

interval to make negligible the probability of loss of a 

response. This choice depends not only on the 

performance of the network but also on the processing 

speed of the machines 

4. FRAMEWORK MR
2
P* 

The MapReduce strategy is proving effective with 

regard to the initial data which are processed by the map 

function, however many data transfers are inevitable 

during the shuffle phase. This phase at which all the 

compute nodes will exchange data is therefore a major 

consumer of bandwidth and will therefore be limited by 

the capacity of the interconnection network. In addition, 

Reduce phase can only start after all data transmitted by 

the various maps have been received, which creates a 

barrier of strong synchronization. Optimizing the shuffle 

phase through an effective data structure can therefore 

have a significant impact on the overall performance of 

the application, especially when the congestion 

phenomena appear within the interconnection network. 

Our contribution is to integrate into the shuffle 

phase of the MapReduce a more developed partitioning 

function based on SDDS-RP * presented in section 3. 

The entry point of a MapReduce is an amount of 

data composed of several files. These files are going to 

be cuts in splits(subset).  A split corresponds to a 

block(less than a split per file).  

The idea is to substitute the output of each 

spot Map to a client RP * and each entry of a Reduce task 

to a server RP *. The shuffle operation in our proposal 

would therefore be a distributed file RP * (Fig 4). 
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Figure 4. General architecture of the MR2P* 

 

The Server Architecture RP * 

   The Server RP * is the virtual entity that represents 

only one bucket of data. It combines the necessary 

modules for communicating the other entities of the 

system and the data. 

In the cluster each Server RP * is identified by its IP 

address and the Port. A thread called Receiver 

Thread listens to all the time on this port, it is responsible 

for receiving the messages coming from other entities. It 

executes the following algorithm: 

 

 

The following figure (Fig 5) presents the architecture 

adopted for the implementation of a RP* server. 

 

 
 

 

Figure 5. Architecture of a server RP * 

 

 

The Architecture of Client RP *  

After that the Map subtask ends, the Client RP takes 

the intermediate pairs key/value in output, placed into a 

command queue (Fig 6). 

 

For the queries processing of command queue, a 

group of threads WorkerThread is launched in 

correspondence with the servers containing the data. 

The WorkerThread run in competition according to the 

Client/Server model. Each of these Threads applies the 

following algorithm: 

The proposed architecture for the implementation of a 

client RP * is presented in the following figure: (Fig.6) 

 
 

Figure 6. The architecture of the client RP * 

 

Queries Execution in MR
2
P* 

 

In the MapReduce system, four types of entities 

(process) are involved with two layers, as shown in the 

following table: [3],[6] 

 

                 Layer 

Entity  
HDFS MapReduce 

Master  NameNode  JobTracker 

Slave  DataNode TaskTracker 

 

(HDFS :Hadoop Distributed File System). 

 

 

 

 

E1: wait for the arrival of message. 

E2: Analyze and assign the message 

Processing  order (Worker Threads). 

E3: Return to step E1. 

 

E1: wait for the query arrival. 

E2: consult the shaft (index) and assign the query 

tothe matching WorkerThread 

E3: pass on the request to the SenderThread for 

sending. 

E4: Return to the step E1 

 
 

Concurrent   Access  

HDFS : Distributed  file 

system management  

TCP/IP network   

TCP/IP network   

Command queue   

HDFS : Distributed  file system 

management  
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 A NameNodelaunched on a machine playing the role 

of the master. 

 Several DataNodes launched on multiple 

machines (1 unit = 1 DataNode) which will act as 

slaves. These processes, once functional, a logical 

topology of the site is defined as well as a distributed 

file system. 

 

Under these hypotheses, the execution plan in 

the framework MR
2
P* can be summarized as follows 

(Fig 7). 

 

 
Figure 7. Execution plan for a query at intervals  

In the framework MR2P* 

 

1. Load Data (In): The client sends a message of data 

loading of folder IN to the NameNode. 

2.  Load Data (In): in turn sends to 

the NameNode the order to the slaves 

(DataNodes) for data preparation and loading into 

RAM. 

3. Start the Server Threads RP that each represents a 

data bucket . 

4. Reply All Done: each entity notified by the 

statement in the request that it has been assigned 

to him until the client PII. 

5. The client can query the whole of the server 

containing the data.  

6. The set of servers responds to the client’s query. 
 

5. SIMULATION AND PERFORMANCE TEST 

We implemented the proposed scheme in Java under 

Linux Ubuntu 12.04 on a suitable of 4 posts (Intel 

Core  Duo 2.13 GHz, 2 GB of RAM. ).  Each machine 

can contain multiple servers and multiple clients (concept 

of virtual machine). 
 

A) Performance of distribution  

 Tests were done on a varied size of intermediate data 

(10000, 30000, 50000, 100000) by changing the capacity 

of servers. The following figure (Fig 8) represents the 

overall time required for the distribution of intermediate 

key by varying the capacity of servers. Always 

time in milliseconds (ms). 

 
 

 

 

By observing the curves in Figure (fig 9), it can be 

seen that the time required for the Peer Distribution (key, 

values) over the Reduce tasks increases linearly with the 

number of data, which will give a constant average time 

by processed data.    

 

B) Shuffle operation Time 

The curve in the figure (Fig 9 ) presents the average 

time required for the data partitioning in the interim 

phase of the MapReduce (shuffle) operations 

 

 
 

 

 

The curves are almost linear.This implies that we 

have an average time independent of the number of keys, 

or the scalability of the method MR
2
P*. 

 

C) Time for search operation reconsideration:  

In order to validate the adopted approach, we 

implemented the classic example of WordCount;  

The figure (Fig 10) shows the variation of the 

average time required to calculate the occurrence of a 

word given (key) in a text. We observe that time is 

practically stable regardless of the number of keys 

present in the system, which guarantees on the other hand 

a better transition to scale(Scalability).  

The fig (fig 11) gives the variation of the required 

average for the calculation of the occurrences number of 

an interval of words in a given text. (Ex. a*: the words 

that started with the character a). 

Noting, that this operation cannot be carried out 

effectively in the basic MapReduce, because the data 

were not ordered. Therefore, to find the occurrences of 

Figure 9. Average time of shuffle operation  

Figure 8. Distribution Time (ms) depending upon the server 

capacity (key). 
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the words starting with the character a, we have to 

interrogate all reduce tasks. 

However in MR
2
P* only reduces likely to contain 

the data will be interrogated. 

 

 
 

Figure 10. Time of simple search of a key (ms) depending upon server 

capacity 

 

 

 
Figure 11. Search time at interval (ms) depending upon  

server capacity 

6. CONCLUSION  

The amounts of data that are captured or generated 

by modern computer devices have increased 

exponentially in recent years. This phenomenon is called 

"Big Data" 

Big Data is the expression used to refer to data that 

due to their size and complexity, are difficult to 

manipulate with traditional data processing and 

management tools. To make up for this lack, 

the framework MapReduce was introduced. 

In this article, we are committed to optimize the 

shuffle phase of MapReduce application. For this 

purpose, we replace the default partitioning function                 

(hash(k) =k mod R) used in the basic MapReduce by a 

more sophisticated function (SDDS-RP *).  The resulting 

Schema is baptized MR
2
P*. 

Compared to the basic approach of MapReduce, we 

showed in MR
2
P* a possibility of execution at intervals, 

of better execution time, more stable and without failure, 

as well as a better transition to scale. 

In the future, we are considering implementing those 

algorithms in production and compare them to existing 

solutions, such as Hadoop [17].   
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