

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 8, No.1 (Jan-2019)

Email: m.aridj@uni-chlef.dz

http://journals.uob.edu.bh

Framework for Parallel Processing of

Very Large Volumes of Data

ARIDJ Mohammed

1

1 Dept.Computer of Hassiba Benbouali University Chlef Algeria

Received 12 Nov. 2018, Revised 7 Dec. 2018, Accepted 10 Dec. 2018, Published 1 Jan. 2019

Abstract: Many scientific fields are now facing a data deluge. One of the approaches proposed to allow the processing of such

volumes is the programming paradigm MapReduce introduced by Google in 2004. This very simple implementation pattern is

divided into two phases, map and reduce, between which a phase of massive exchange of data takes place among the machines

running the application.

In this article, we propose the integration of the dispensing algorithm at intervals (Distributed Range Partitioning) in the MapReduce

paradigm. The schema obtained is called MR2P*. This new approach aims at dealing with dynamic scheduling of data and shuffle

phase optimization (the intermediary phase between map and reduce).

The experiments show that our approach produces performance within a very interesting run-time execution and a better transition to

scale (Scalability)

Keywords: MapReduce, Distributed file system, Big Data, Cloud Computing, Data distribution, Structures of distributed and

scalable Data

1. INTRODUCTION

Currently, we are witnessing the era of mass

production of data. On the one hand, applications

generate data from logs, sensor networks, transaction

reporting, GPS tracklog, etc. and on the other hand,

individuals produce data such as photographs, videos,

music or even dataset on the health status (heart rate,

pressure etc.).

A problem then arises for data storage and analysis.

The storage capacity of hard disk drives and the CPU

speed are increasing but they remain insufficient to

respond to the current applications. It is then necessary to

parallelize data processing by storing on multiple hard

disk drives. MapReduce is a Framework that responds to

these issues.

 The MapReduce paradigm is a mechanism for task

partitioning in view of an execution distributed over a

large number of servers. The principle is simple: it is to

break up a task into smaller tasks, or more precisely to

divide a task of larger-data volume into identical tasks of

subsets of these data. The tasks (and their data) are then

dispatched on different servers, and then the results are

recovered and consolidated. The upstream phase of the

breakdown of tasks, is the map part, while in the

downstream phase, the consolidation of the results is the

"Reduce" part [6].

MapReduce applies the principle which stipulates that

"moving the calculation is less expensive than moving

data" and is trying to schedule the map tasks in machines

close to the input data that they process, in order to

maximize data locality. The locality of the data is

desirable because it reduces the amount of data

transferred through the network, which reduces

consumption of energy, as well as network traffic of data

centers. However, in the scheduling of tasks reduce, the

locality of the data is not at all taken into account. Some

works [4],[16] have demonstrated that transfers through

the network can install a considerable additional

MapReduce work execution. Accordingly, several

optimizations have been suggested in order to reduce the

transfer of data among mappers and reducers. We have

covered some of those proposals, from the intelligent

planning of reduce tasks [4],[14] to the dynamic

assignment of intermediary Keys, to reduce tasks at the

time of planning [5]. However, all these approaches are

restricted by the way the key-value pairs intermediaries

http://dx.doi.org/10.12785/ijcds/080105

mailto:m.aridj@uni-chlef.dz

44 ARIDJ Mohamed: Framework for parallel processing of very large volumes of data

http://journals.uob.edu.bh

are distributed over the outputs of the map phase. If the

data associated with an intermediate key data are

presented in the outputs of all map tasks, the pairs in the

whole set of nodes, except one, must still be transferred

through the network.

In this paper, we propose a technique, called MR
2
P*

which aims at optimizing the data transfer

among mappers and reducers in the shuffle phase of

MapReduce. In order to achieve this, we integrate a

partitioning function based on the SDDS-RP * [1],[2].

Section 2 briefly recalls the principle of MapReduce.

Section 3 presents the SDDS RP *. The principle and the

algorithms of the new technique MR
2
P* are developed in

section 4. Section 5 is devoted to performance measures

in the whole method by comparing it with basic

MapReduce. Finally, we conclude this article in section6.

2. MAPREDUCE

MapReduce refers to both the programming model

and the Framework originally developed by Google in

2004 for parallel data processing on a large scale. It is

designed to automatically manage data partitioning,

consistency and replication, as well as task distribution,

planning, load balancing, fault tolerance, data distribution

and load distribution.

The terms "Map " and " Reduce ", are borrowed from

functional programming languages. The

functions Map and reduce are defined on the key-value

pairs. The Map function consumes input key-value pairs

and produces a list of intermediate key-value pairs. And

then, the framework brings together intermediate pairs by

key and issues each group (the key and all the associated

values) to the reduce function, which produces in its turn

a list of key pairs- output value (Fig 1)

In a MapReduce job, the input is divided into M parts

(splits), which are consumed by M map tasks, one for

each part. The output of Map tasks is partitioned

according to the intermediate key in R fragments by

using a partitioning function, by default (hash= k mod R),

which are then processed by R Reduce tasks.

When an operation is launched, the master partitions

the entry into M fragments. The MapReduce tasks are

then allocated to workers as soon as they become vacant,

first the Map tasks, then the Reduce tasks, once all Map

tasks are finished. The output of Map tasks is divided

into R fragments according to the intermediate key and

stored on the local workers hard drives. The Reduce

tasks take these outputs and sort them by key so that all

the values of a given intermediate key are dealt with

jointly by the Reduce function. Once all the MapReduce

tasks are finished, the user will be notified. The

intermediate phase of a MapReduce job, when the

intermediate keys are partitioned, sorted and transferred

to the nodes that are running the Reduce tasks is known

as the shuffle.

Figure 1. Principle of MapReduce

The MapReduce programming model consists of two

map and reduce functions () defined on the key-value

pairs:

The Map function (): consumes key-value pairs of

input and produces a (possibly empty) list of intermediate

key-value pairs.

 Formally:

 Map: (K1, V1) → stl (K2, V2)

The Reduce function () : receives a list of intermediate

pairs and then combines all the values corresponding to

the same key to a unique pair (key, value).

Formally:

Reduce: (K2, list(V2)) → list(K3, V3)

Map (void * document){

 Int keys = 1;

 For each word m in document

Intermediate Calculation (m,keys); }

Reduce(integer keys, Iterator values){

 Int result = 0;

 For each v in values

 Result += v;}

 Int. J. Com. Dig. Sys. 8, No.1, 43-50 (Jan-2019) 45

http://journals.uob.edu.bh

3. THE SDDS RP*

The Scalable Distributed Data Structures (SDDS) are

a class of data structure proposed in 1993 to support

parallel processing of multiple computers

and ensure access scalability. [13].

Historically, several SDDS have been suggested. The

family of SDDS called LH*[13], develops distributed

version of the linear hashing [9], [15], and the dynamic

hashing [8]. The family called RP * (Range

Partitioning) presents an extension to the clustered

workstation technologies are expected data structures

which reserve the order (Shaft-B Shaft or binary)

[7],[10].Either types of SDDS have been proposed for the

multi-key access and the high availability [11], [12].

An SDDS file RP * consists of records, each one

identified by a primary key. The records on each server

are stored in a memory space called check bucket. The

keys of an RP file * are totally ordered. All the buckets

correspond to a Partition Key Space. Each element of the

partition corresponds to a bucket contains at

maximum b >> 1 records having their key within an

interval.

Clients access the file by sending search queries about

a key or interval-queries. An interval-query refers to a set

of records with their key in a given interval.

According to the addressing mode used at the client

level, we distinguish three diagrams in RP * : RP * N, RP

* C and RP * S. A client of RP file * N sends the queries

to the servers using only the multicast messages. A file

RP * C is an RP* file N with a partial index constructed

from the IAM, at the level of each client. This index is an

image generally partial of the structure of the distributed

file. Each element of the index represents the interval and

the address of a bucket already accessed by the client.

The client uses the unicast messages when he addresses

to a known check bucket of the image. The servers use

the multicast messages to redirect queries in case of

addressing error. Finally RP * S added to RP * C an

index distributed at the level of servers indexing all the

buckets. The queries and redirections are sent by unicast

messages.

The interval], ] of a bucket is called rank .The

parameter is  the minimum key and  is called the

maximum key of the bucket . A key record c belongs to

the bucket of interval], ] such that  < c <=  . For

any c, there can be only a single check bucket in the RP*

file to which c may belong. An RP* file is initially

composed of a single bucket that bears the number zero

(bucket 0), with   and  . All inserts will

initial in bucket 0. It erupted when it overflows. This

results in the creation of a new bucket which bears the

number a (bucket i). His rank is] cm, +], where cm is

the key to the middle of the burst of the check bucket .

The bucket that has exploded view starts with a new

rank]-, cm]. This process is repeated for any bucket that

overflows. The file can be extended to any number of

sites of the multi-computer.

The internal organization of a bucket RP * is

presented in detail in [8]. The storage space of a bucket

is divided into three consecutive zones Fig 2:

1. The header. It includes the rank of the check

bucket, the address of the root of the index associated

with the check bucket, the current size of the bucket, the

current number of records stored and finally the current

size of the index.

2. The index. It is a variant of Shaft-B+ to 3 levels

and without the sheets.

3. The data. This zone contains records and the sheets

of the index.

E: in-head

Index: Shaft-B+ without the sheets

Data: list chain of sheets of the index

Figure 2. Structure of a bucket SDDS RP* .

The index is hierarchical and consists of nodes

linked between them also by pointers, Fig 3. The root is

located on the first level and used as an index to a second

level. This second level itself is used to index a third

level. This last level reference lists of records that

correspond to the sheets. The sheets are linked between

them using pointers. Each node may contain up to n

elements of the index that are couples (key, pointer).

Each pointer refers to a node on the next level. Each node

must have at least n /2 elements except the root. This is

the only node of the index, which may have at least one

element.

Figure 3. Detailed Structure of the bucket with a Shaft- B+ at three

levels.

The SDDS file is handled through the following queries:

 Simple queries

A simple query is searching, inserting, modifying or

deleting a given key record. Such a query is sent using a

unicast or multicast message depending on the type of

E Index Data

A B

46 ARIDJ Mohamed: Framework for parallel processing of very large volumes of data

http://journals.uob.edu.bh

client (*N or RP *C). A server S interval], ] who

receives a simple query of key c proceed as follows:

A) If c ], ] then S runs the query and then sends a

reply to the client with a IAM, if necessary. The reply is

sent using a unicast message.

B) If c ], ] and if the query is sent using a unicast

message then the issuer is a client RP *C. S considers that

this is an addressing error. It inserts its interval and its IP

address within the message and redirects it towards the

other servers by using a multicast message. Finally, the

good server processes the query and sends a reply to the

client. In this case the response contains two IAM: that of

S and that of the server which has treaty the query.

Consider a query to insert T size (header and data) at the

level of a client. If T < 64 bytes, the query is sent in a

single message following the UDP protocol. Otherwise,

the client first sends the query without the data but by

specifying their size in the message. The correct server,

after receipt of the request, initializes a buffer large

enough to receive the data.

He then opens a TCP port and then sends a unicast

message to the client to ask him to connect to the data

transfer. If the data have a very substantial size, the

server initializes a buffer and then clarifies its size to the

client in the request message of connection. It then

transfers the data in blocks of a size equal to those of the

server's buffer. The client stops transmission when the

buffer is full. He then waits for the order from the server

before starting again. The search works in the same way

if the size of the data to be sent by the server is 64Kbytes.

 Query at Interval

It is to the search or the updating of fields non-key a

set of records of key c belonging to an interval (a, b),

with a < b . This interval is called interval of the query.

A query by interval is sent using a multicast message.

The affected servers then establish a TCP connection

with the client for the transfer of records requests.

Either [a, b]R the interval of a search query R, sent by a

client to a group of n servers, S1,

S2,... Sn. Either] i , i] the interval of server S i ,with i <

n If R is received by a single server Sk (1 < k < n) such

that (a, b)R ]i ,i , then Sk responds by sending the

selected records and its own interval. This is the simplest

case. The records research can however be distributed on

several different servers.

In this case, R is treated on all

servers Si such that] i , i] [a, b]R .

The query is executed in parallel on these servers and

autonomously. Each door execution on a fragment of (a,

b)R. The client has two strategies to complete a search

query by interval:

A) Deterministic Termination: a server that receives a

search query by interval responds by sending the

requested data records and its interval, if the intersection

of its interval and that of the query is non-empty. If no

record is found, the server simply sends its interval to the

client. The client completes the query if the union of

intervals received covers that of the query. It also has a

time out to complete the query if a missing response has

not been received within a fixed deadline.

B) Probabilistic Termination: in this case a server

responds only if it finds at least a record with a key

belonging to the interval of the query. The client has a

time out t to collect the answers. This time out is reset

after each reply received. The query is complete

if t expired. The practical choice of t is to have a time

interval to make negligible the probability of loss of a

response. This choice depends not only on the

performance of the network but also on the processing

speed of the machines

4. FRAMEWORK MR
2
P*

The MapReduce strategy is proving effective with

regard to the initial data which are processed by the map

function, however many data transfers are inevitable

during the shuffle phase. This phase at which all the

compute nodes will exchange data is therefore a major

consumer of bandwidth and will therefore be limited by

the capacity of the interconnection network. In addition,

Reduce phase can only start after all data transmitted by

the various maps have been received, which creates a

barrier of strong synchronization. Optimizing the shuffle

phase through an effective data structure can therefore

have a significant impact on the overall performance of

the application, especially when the congestion

phenomena appear within the interconnection network.

Our contribution is to integrate into the shuffle

phase of the MapReduce a more developed partitioning

function based on SDDS-RP * presented in section 3.

The entry point of a MapReduce is an amount of

data composed of several files. These files are going to

be cuts in splits(subset). A split corresponds to a

block(less than a split per file).

The idea is to substitute the output of each

spot Map to a client RP * and each entry of a Reduce task

to a server RP *. The shuffle operation in our proposal

would therefore be a distributed file RP * (Fig 4).

 Int. J. Com. Dig. Sys. 8, No.1, 43-50 (Jan-2019) 47

http://journals.uob.edu.bh

Figure 4. General architecture of the MR2P*

The Server Architecture RP *

 The Server RP * is the virtual entity that represents

only one bucket of data. It combines the necessary

modules for communicating the other entities of the

system and the data.

In the cluster each Server RP * is identified by its IP

address and the Port. A thread called Receiver

Thread listens to all the time on this port, it is responsible

for receiving the messages coming from other entities. It

executes the following algorithm:

The following figure (Fig 5) presents the architecture

adopted for the implementation of a RP* server.

Figure 5. Architecture of a server RP *

The Architecture of Client RP *

After that the Map subtask ends, the Client RP takes

the intermediate pairs key/value in output, placed into a

command queue (Fig 6).

For the queries processing of command queue, a

group of threads WorkerThread is launched in

correspondence with the servers containing the data.

The WorkerThread run in competition according to the

Client/Server model. Each of these Threads applies the

following algorithm:

The proposed architecture for the implementation of a

client RP * is presented in the following figure: (Fig.6)

Figure 6. The architecture of the client RP *

Queries Execution in MR
2
P*

In the MapReduce system, four types of entities

(process) are involved with two layers, as shown in the

following table: [3],[6]

 Layer

Entity
HDFS MapReduce

Master NameNode JobTracker

Slave DataNode TaskTracker

(HDFS :Hadoop Distributed File System).

E1: wait for the arrival of message.

E2: Analyze and assign the message

Processing order (Worker Threads).

E3: Return to step E1.

E1: wait for the query arrival.

E2: consult the shaft (index) and assign the query

tothe matching WorkerThread

E3: pass on the request to the SenderThread for

sending.

E4: Return to the step E1

Concurrent Access

HDFS : Distributed file

system management

TCP/IP network

TCP/IP network

Command queue

HDFS : Distributed file system

management

48 ARIDJ Mohamed: Framework for parallel processing of very large volumes of data

http://journals.uob.edu.bh

 A NameNodelaunched on a machine playing the role

of the master.

 Several DataNodes launched on multiple

machines (1 unit = 1 DataNode) which will act as

slaves. These processes, once functional, a logical

topology of the site is defined as well as a distributed

file system.

Under these hypotheses, the execution plan in

the framework MR
2
P* can be summarized as follows

(Fig 7).

Figure 7. Execution plan for a query at intervals

In the framework MR2P*

1. Load Data (In): The client sends a message of data

loading of folder IN to the NameNode.

2. Load Data (In): in turn sends to

the NameNode the order to the slaves

(DataNodes) for data preparation and loading into

RAM.

3. Start the Server Threads RP that each represents a

data bucket .

4. Reply All Done: each entity notified by the

statement in the request that it has been assigned

to him until the client PII.

5. The client can query the whole of the server

containing the data.

6. The set of servers responds to the client’s query.

5. SIMULATION AND PERFORMANCE TEST

We implemented the proposed scheme in Java under

Linux Ubuntu 12.04 on a suitable of 4 posts (Intel

Core Duo 2.13 GHz, 2 GB of RAM.). Each machine

can contain multiple servers and multiple clients (concept

of virtual machine).

A) Performance of distribution

 Tests were done on a varied size of intermediate data

(10000, 30000, 50000, 100000) by changing the capacity

of servers. The following figure (Fig 8) represents the

overall time required for the distribution of intermediate

key by varying the capacity of servers. Always

time in milliseconds (ms).

By observing the curves in Figure (fig 9), it can be

seen that the time required for the Peer Distribution (key,

values) over the Reduce tasks increases linearly with the

number of data, which will give a constant average time

by processed data.

B) Shuffle operation Time

The curve in the figure (Fig 9) presents the average

time required for the data partitioning in the interim

phase of the MapReduce (shuffle) operations

The curves are almost linear.This implies that we

have an average time independent of the number of keys,

or the scalability of the method MR
2
P*.

C) Time for search operation reconsideration:

In order to validate the adopted approach, we

implemented the classic example of WordCount;

The figure (Fig 10) shows the variation of the

average time required to calculate the occurrence of a

word given (key) in a text. We observe that time is

practically stable regardless of the number of keys

present in the system, which guarantees on the other hand

a better transition to scale(Scalability).

The fig (fig 11) gives the variation of the required

average for the calculation of the occurrences number of

an interval of words in a given text. (Ex. a*: the words

that started with the character a).

Noting, that this operation cannot be carried out

effectively in the basic MapReduce, because the data

were not ordered. Therefore, to find the occurrences of

Figure 9. Average time of shuffle operation

Figure 8. Distribution Time (ms) depending upon the server

capacity (key).

 Int. J. Com. Dig. Sys. 8, No.1, 43-50 (Jan-2019) 49

http://journals.uob.edu.bh

the words starting with the character a, we have to

interrogate all reduce tasks.

However in MR
2
P* only reduces likely to contain

the data will be interrogated.

Figure 10. Time of simple search of a key (ms) depending upon server

capacity

Figure 11. Search time at interval (ms) depending upon

server capacity

6. CONCLUSION

The amounts of data that are captured or generated

by modern computer devices have increased

exponentially in recent years. This phenomenon is called

"Big Data"

Big Data is the expression used to refer to data that

due to their size and complexity, are difficult to

manipulate with traditional data processing and

management tools. To make up for this lack,

the framework MapReduce was introduced.

In this article, we are committed to optimize the

shuffle phase of MapReduce application. For this

purpose, we replace the default partitioning function

(hash(k) =k mod R) used in the basic MapReduce by a

more sophisticated function (SDDS-RP *). The resulting

Schema is baptized MR
2
P*.

Compared to the basic approach of MapReduce, we

showed in MR
2
P* a possibility of execution at intervals,

of better execution time, more stable and without failure,

as well as a better transition to scale.

In the future, we are considering implementing those

algorithms in production and compare them to existing

solutions, such as Hadoop [17].

ACKNOWLEDGMENT

We would like to express our heartfelt thanks to

Professor Wintold Litwin's of the Paris Dauphine

University for the time devoted to the discussions of the

ideas presented in this article.

REFERENCES

[1] Devine, R. "Design and Implementation of DDH: Distributed

Dynamic Hashing ". Intl. Conf. On Foundations of
Data Organizations, FODO-93. Lecture Notes in Comp. Sc.,

Springer-Verlag (publ.), Oct. 1993.

[2] Diene Aly W. "Internal organization of an SDDS bucket RP * ",

memory of DEA, Dept. Mathematics and Informatics, Cheikh

Anta Diop University of Dakar,february 1998.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung: "The Google File System" Paper SOSP'2003.

[4] Hammoud M. , M. S. Rehman, and M. F. Sakr, "Center-of-gravity

reduce task scheduling to lower MapReduce network traffic ",
in Proceedings of the 2012 IEEE Fifth International Conference

on Cloud Computing , 2012, pp. 49-58.

[5] Ibrahim S. , H. Jin, L. Lu, S. Wu, B. Hey, and L. Qi,
"LEEN: locality/fairness-aware key partitioning for MapReduce

in the cloud ", in Proceedings of the 2010 IEEE Second

International Conference on Cloud Computing Technology and
Science, 2010, pp. 17-24

[6]Jeffrey Dean and Sanjay Ghemawat, "MapReduce:

Simplifed Data Processing on Large Clusters". OSDI 2004
Google.

[7] Karlsson, J. Litwin, W. ,Risch, T. "LH * lh: A Scalable High

Performance Data Structure for Switched Multicomputers ". Intl.
Conf. on Extending Database Technology (EDBT) study program-

96, Vignon, March 1996.

[8] Larson, P. " Dynamic Hash Tables", CACM, 31/4/1988.

[9]Litwin, W. "Linear Hashing : a new tool for file and

tables addressing ". : Reprinted from VLDB-80 in READINGS IN

DATABASES. 2-Nd ed. Morgan Kaufmann Publishers, Inc. ,
1994. Stonebraker , M. (Ed.).

[10][Litwin and al,1994] Litwin, W. ,Neimat, M-A. , Schneider, D. "
RP * : A Family of Order-Preserving Scalable Distributed

Data Structures". 20TH Intl. Conf on Very Large Data Bases

(VLDB), 1994.

[11] Litwin, W. ,Neimat. "K-rp* : a Family of High Performance Multi-

attribute Scalable Distributed Data Structure". In IEEE Intl. Conf.

It s. & Distr. Systems, PDIS-96, (Dec. 1996).

[12] Litwin.W. , M-A Neimat. "LH * s: a highavailability and high -

security Scalable Distributed Data Structure". IEEE Workshop

on Research Issues in Data Engineering. IEEE Press, 1997

[13] Neimat, M-A. , Schneider, D. LH *: Linear Hashing for

Distributed Files". ACM-SIGMOD Intl. Conf. On Management of

Data, 1993.

[14] Seo S. , I. Jang, K. Woo, I. Kim, J. -S. Kim, and S. Maeng,

"HPMR:prefetching and pre-handle "shuffling in

shared MapReduce computation environment", in Proceedings of
the 2009 EEE International Conference on ClusterComputing,

2009, pp1-8.

[15] Severance, C. ,Pramanik was said, S. Wolberg, P. " Distributed
linear hashing and parallel projection in main memory

databases". Conf on Very Large Data Bases (VLDB),1990

50 ARIDJ Mohamed: Framework for parallel processing of very large volumes of data

http://journals.uob.edu.bh

[16] Wang.G. ,Butt.A. R, Pandey.P, and Gupta.K, "A simulation
approach to evaluating design decisions in MapReduce setups",

in 17th Annual Meeting of the IEEE/ACM International

Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems , 2009,pp. 1-11.

[17] White, Tom: " Hadoop: the definitive guide ". O'Reilly Media , Inc.

2009. ISBN: 978-0 -596-52197-4.

Aridj Mohamed is assistant professor at Hassiba Benboali

university chlef Algeria since 2001.

His area of interest includes Software Engineering, distributed

System, Databases, Big data and cloud computing

