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Abstract: Modern processors fetch and execute instructions speculatively based on the outcome of branch prediction for decreasing 

effect of control hazards. Many branch predictors are proposed in literature to increase accuracy of the branch prediction. Some ones 

use machine learning technique for improving accuracy of predicting conditional branches. In this paper, we investigate this issue by 

evaluating different branch predictors through using a well-designed set of correlation patterns. We built a framework for testing 

performance of different branch predictors. Our framework demonstrates efficiency of using machine learning in predicting 

conditional branches. This framework is designed for mimicking various behaviors of branch predictions and can be used easily by 

scholars to check performance of more branch predictors. Experimental results shown in this work illustrate performance of applying 

different approaches proposed for predicting conditional branches in comparison with employing machine learning technique. Our 

findings illustrate that using machine learning provides competitive results. However, employing machine learning does not help in 

predicting all behaviors of conditional branches. 
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1. INTRODUCTION 

Many computer programs include branch instructions 
to control the follow path when executing the program 
code. Conditional branches cause problem with the 
superscalar microprocessor which is designed to increase 
the instruction-level parallelism (ILP). The effect is 
increased when using deep pipelines and increasing 
number of instructions that are issued in one cycle. The 
conditional branch controls the follow through the 
program. Thus, the address of next instruction will be 
either the branch target or the address of next sequential 
instruction. The address of the next instruction will not be 
available to the processor until the branch is executed, 
which in turn leads to cause control hazard that constricts 
the ILP. 

To decrease the effect of control hazards, the 
speculative processor fetches and executes instructions 
speculatively based on the outcome of branch prediction. 
The speculative results must be flushed if the branch 
prediction is incorrect. In this case, the misprediction 
penalty will constrict the ILP. Thereby, the accuracy of 
branch prediction is a critical mission in designing the 
superscalar processor. 

Many branch predictors are proposed in literature to 
increase the accuracy of the branch prediction but there is 
a need to evaluate their performance in predicting 
different branch behaviors. Some studies in literature 
make comparisons between specific branch predictors to 
illustrate their efficiencies by using specific branch 
behaviors in a given set of benchmarks. Little studies have 
been done to illustrate characteristics of branch predictors 
in predicting different branch behaviors.  

Our work extends some comparisons that are 
introduced in the state of the art by evaluating more 
branch predictors and generating more data sets for 
checking various branch behaviors. Additionally, this 
paper illustrates phases of developing and implementing 
branch predictors. Eight branch predictors are selected 
from literature to evaluate their behaviors and study their 
characteristics. Our work focuses on these predictors 
because they are famous and perform very good accuracy 
in comparison with other branch predictors that are 
proposed in the state of the art.  

The rest of paper is organized as follows: Section 2 

gives a background and describes selected branch 

predictors. Section 3 presents a review for related studies. 

Section 4 describes the methodology which is used for 
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evaluating the selected predictors. Section 5 illustrates 

analysis of experimental results. Finally, Section 6 

concludes the paper and presents suggestions for future 

work. 

2. BACKGROUND 

There are two mechanisms for predicting outcomes of 
branch (taken/not taken) [1]: static branch prediction at 
compile time, and dynamic branch prediction at run time. 
Dynamic branch predictions are implemented by 
hardware and have important property that is not included 
by static branch predictions. Dynamic branch predictors 
can guess the next outcome of branch by monitoring 
previous outcomes of the executed branch. While, static 
branch predictors cannot use this property since the 
outcome of executed branch will not be available at 
compilation time. This paper deals specifically with 
dynamic branch predictors to exploit this property.  

A very simple predictor can be designed by predicting 
all branches to be either always taken or always not taken. 
No need to use any hardware for implementing this 
predictor, but its accuracy is limited (40%-60%). Thus, 
there are many dynamic branch predictions have been 
proposed to improve the accuracy of branch prediction. 
The simplest one predicts the branch by having the 
previous outcome of its exaction. This predictor called 
Last-Time predictor [2], and it needs one bit per branch to 
save its previous outcome. This bit can be added to the 
instruction cache or the branch target buffer (BTB). 

The prediction accuracy can be improved by using 
two-bit counter [2] instead of one bit for each branch. The 
counter is incremented by one when the branch is taken 
and is decremented by one when the branch is not taken. 
The branch is predicted as taken when the counter value is 
equal to or greater than two (10)2, otherwise it is predicted 
as not taken.        

To design more accurate predictions, two levels of 
history is used by Yeh and Patt [3]. A global two-level 
predictor (GAs) uses a branch history register (BHR) as  
a first level to save the outcomes of the k most recent 
branches. It uses a pattern history table (PHT) of 2-bit 
counters as a second level to save the state of each branch 
by using the same method illustrated in the two-bit 
counter scheme. While GAs uses one BHR for saving the 
k recent outcomes for all branches, a per-address two-
level predictor (PAs) uses one BHR for each branch with 
the same structure of PHT. Thus, PHT can be used as 
BTB to reduce implementation cost. PAs predictor is 
called as PAg when using only one PHT. PAs predictor is 
able to predict complex branches since it uses the previous 
execution pattern of each branch.  

Many improvements have been proposed to increase 
the prediction accuracy of the two-level prediction. The 
Gshare predictor [4] is similar to GAs predictor but it 
selects the 2-bit counter in PHT by XORing the index into 
the PHT with the least significant k bits of the fetch 

address. The Gshare predictor increases the prediction 
accuracy because the XOR hashing function generates 
more random usage pattern in the PHT.     

There are similar behaviors that are repeated 
frequently when executing the branches. Behavior-based 
branch predictor [5] uses this property to improve the 
branch prediction accuracy. This predictor identifies 
clusters of branches with similar behavior by adding 
additional component called a cluster predictor for 
labeling each branch with cluster identification (CID). 
This CID is used to index the PHT by using some ways. 
This mechanism partitions the PHT into clusters (groups) 
where each group contains branches with specific 
behavior. Using clustering mechanism makes Gshare 
predictor more accurate [6]. Partitioning mechanism also 
reduces interference in the PHT that is happen when more 
than one branch compete for the same entry in the PHT. 
The interference is waster if the competed branches have 
opposite outcomes.  

Some machine learning techniques [7] such as neural 
networks are used to improve the accuracy of the branch 
prediction. Egan et al. [8] proposed a two-level branch 
prediction using neural networks. They used the same first 
level history register of the traditional two-level 
predictors. While, the second level of PHT is replaced 
with a neural network. The authors used two perceptron 
predictors: a simple learning vector quantisation (LVQ) 
neural predictor and a backpropagation neural network 
predictor.  

Some proposed schemes combine implementations of 
different predictors to build a predictor better than the 
combined ones. Global predictors are suitable for 
predicting some branches and local predictors are suitable 
for other branches. Thus, the performance can be 
improved by combing the global and local predictors in  
a single predictor. However, this mechanism increases the 
implementation cost. To reduce the cost, Egan et al. [8] 
proposed a scheme to combine the global and local 
history information in a neural predictor. Chang and Chou 
[9] proposed a prediction scheme called LGshare which 
combines implementations of global and local branch 
predictors to improve the accuracy of branch prediction. 
Ho and Fong [10] proposed a prediction scheme that 
combines implementations of global and local branch 
predictors in perceptron branch prediction. 

3. LITERATURE REVIEW 

Many researchers tried to compare different branch 
predictors for illustrating the efficiency of their developed 
approaches. Egan et al. [8] simulated three local (for the 
first level) predictors: PAg, PAs and PAp. They conclude 
that the local predictors are more accurate than the global 
predictors. 

Vandierendonck et al. [5] compared the performance 
of Agree and Gshare predictors with the partitioned 
Gshare predictor, and they showed that Agree predictor is 
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better than Gshare predictor, and the partitioned Gshare 
predictor is the best. They also compared the performance 
of Gshare, branch classification, and the partitioned 
Gshare predictor. Additionally, they showed that the 
partitioned PAg predictor yields more accurate results and 
reduces the need for a large PHT. Moreover, a conclusion 
is revealed for showing that the partitioned path-based 
perceptron predictor [12] is more accurate than the 
original predictor. The clustered path-based predictor also 
improves the performance by eliminating the interference. 

Changet al. [11] showed that branch classification is 
less accurate than branch clustering (the partitioned 
Gshare predictor). For very large predictors the branch 
classification is less accurate than the original Gshare 
predictor. The authors interpret their conclusion by 
explaining that branch classification separates the 
branches into different classes based on their behavior 
during a profile run. The implementation of branch 
classification is more costly in comparison with branch 
clustering since it uses 3-bit counter.  

Some researches [13] focused on understanding how 
branches behave and classify them by illustrating 
shortcoming of some branch predictors and showing 
performance of a new branch predictor. In the same 
context, a novel Monte Carlo simulation framework is 
proposed by Kalla et al. [14] for predicting branch 
misprediction rate.  

In this work, we selected eight branch predictors from 
the state of the art to test their behaviors and study their 
performance. The selected predictors are different in their 
architecture and behavior. The selected predictors are: 
One-Bit Bimodal Predictor [2], Two-Bit Saturated 
Counter Bimodal Predictor [2], GAg  Predictor [3], PAg  
Predictor [3], Gshare predictor [4], Clustered branch 
predictor [5],  LGshare predictor [9], and Global/Local 
Hashed Perceptron Predictor (LGPerceptron) [10]. 

4. METHODOLOGY 

Accuracy of branch predictor is affected by history of 
branch outcomes. Thus, we illustrate performance of 
different branch predictors by generating different data 
sets that include different classes of correlation patterns. 
To make our work comprehensive, we selected some 
correlation patterns from the state of the art and developed 
more new patterns as well. We classified these correlation 
patterns into two types. The first one is called self 
correlation which examines behavior of single branch. 
The other class is called branch correlation which 
examines the correlation between outcomes of different 
branches. Different patterns that belong to these two 
classes are used in this research work as follows: 

 

 

A. Self Correlation 

We selected these patterns from a research work 
achieved by Evers [13] for evaluating relations between 
the predicted branch and its own past outcomes with 
repeated form. These patterns are formed as follows:    

 Biased Pattern: This pattern means that all 
outcomes are biased in one direction (taken or not 
taken), for example: 111111111111. 

 Alternating Repeating Pattern: In this pattern, 
every outcome inverts the previous outcome, for 
example: 101010101010.    

 For-Type Repeating Pattern: This pattern 
illustrates behavior of For-loop branch as follows: 
111011101110. 

 While-Type Repeating Pattern: This pattern 
illustrates behavior of While-loop branch which is 
the opposite of For-loop branch behavior as 
follows: 000100010001. 

 Simple Repeating Pattern: This pattern includes a 
repeated pattern of n taken outcomes and m not 
taken outcomes. For example: 110001100011000 
where n=2, and m=3.   

 Complex Repeating Pattern: This pattern includes 
any self correlation pattern that cannot be 
described by the above five patterns. For 
example: 110101101011010.      

B. Branch Correlation 

If branches are correlated, then the branch predictor 
can predict the direction of some branches when knowing 
the outcomes of other correlated branches. Next 
paragraphs describe some scenarios for designing branch 
correlations that are used as well for conducting 
experimental work. 

Inter-branch Correlation: This kind of correlation 
depends on predicting outcomes of some branches based 
on outcomes of other branches. We selected this pattern 
from a research work achieved by Chang and Chou [9]. 
Figure 1 shows an example of this correlation pattern. As 
shown in the figure, the outcomes of branches C and D 
can be predicted based on the outcomes of branches A and 
B, so branches C and D are correlated with branches A 
and B.   

Intra-branch Correlation: This kind of correlation 
consists of loop branch and branches with periodic 
outcomes. We selected also this pattern from the research 
work achieved by Chang and Chou [9]. Figure 2 shows an 
example of this correlation pattern. As shown in the 
figure, the code includes two nested while-loop branches 
E and F. Branch F is correlated with branch E, and both 
branches will be taken many times and finally not taken 
once.     
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Figure 1. Example of Inter-Branch Correlation 

 
Figure 2. Example of Intra-Branch Correlation 

Hybrid Correlation: This class of correlation combines 
the previous two correlation patters (Inter-branch and 
Intra-branch correlations). This specific pattern is selected 
also from the research work that is achieved by Chang and 
Chou [9]. Figure 3 shows an example of this correlation. 
The example contains four branches the While-loop 
branch and three if-statement branches X, Y, and Z. The Z 
branch is partial correlated with branches X and Y. 

We developed another correlation pattern for 
combining different branch behaviors. We formed this 
correlation pattern by using probabilities of correlation 
between the braches as sown in Figure 4. The figure 
contains five branches (branches A, B, C, D, and E). 
Branches C, D, and E are correlated with branch B in  
a term of probability. 

Combined Correlation: We also generated more 
complicated patterns by combining more than one 
correlation patterns from the previous types. We use this 
pattern to increase the complexity when evaluating 
accuracy of the selected branch predictors. 

 
Figure 3. Example of Hybrid Correlation with probability 

 
Figure 4. Example of Hybrid Correlation by using probability 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

We generated different synthetic data sets to evaluate 
performance of the selected branch predictors (which are 
described in section 2). All generated data are based on 
correlation patterns that are described in section 4. Table 1 
describes the used data sets and illustrates some details by 
showing characteristics of data distribution. As described 
in the table, the data is generated heuristically by 
including different number of loops, correlated branches, 
and number of branches in a basic code segment of 
programs that are used for generating these data sets.        

Table 1 illustrates observed sample mean and variance 
of random variables that are used for generating the data 
sets. We calculated the Lexis Ratio (T) for hypothesizing 
a data distribution. The T value is greater than one, so the 
generated data has a negative binomial distribution. The 
table illustrates also the maximum likelihood estimates 
(MLEs) and confidence intervals for the parameters of the 
negative binomial distribution. 

 

 

 

 



 

 

                                                         Int. J. Com. Dig. Sys. 8, No.1, 33-41 (Jan-2019) 37 

 

 

http://journals.uob.edu.bh 

TABLE 1. DATA SETS CHARACTERIZATION. 

 

We analyzed results by making a comparison between 
the selected predictors for revealing a comprehensive 
conclusion. This work evaluates performance of the 
selected branch predictors by measuring mispredection 
when predicting branch outcomes. Figure 5 shows  
a comparison between one-bit bimodal predictor, and two-
bit saturated counter bimodal predictor. One-bit predictor 
may be better than two-bit predictor in some cases such as 
predicting SA data set, because this data set includes 
alternating repeated pattern and the two-bit predictor 
cannot change its prediction at every outcome. We note 
that the two-bit predictor performs better overall accuracy 
than one-bit, because the two-bit predictor saves its state 
when repeating the same outcome.  

We can notice clearly from Figure 5 that the best 
result is generated by using self-correlation complex 
repeated pattern (SC data set), because it repeats the same 
outcome many times while this pattern is not 
commensurate with behavior of one-bit predictor. The 
difference in performance is obvious also when using data 
sets Bra1, Bra2, and Bra3, because they include intra-
branch correlations that consist of repeated patterns of 
each branch. The variation in performance is increased 
when increasing number of nested loops. The highest 
variance is calculated with Bra3 data set which contains 5 
nested loops that cannot be predicated well by using one-
bit predictor. As a result of this, we can conclude that 
using two-bit predictor is better than using one-bit 
predictor especially with data sets that include loop 
branches. 

 

Figure 5. Comparison between One-bit and Two-bit bimodalpredictors 

Similarly, we tested performance of PAg and GAg as 
shown in Figure 6. GAg outperforms PAg when applying 
it to Ber data set, because it contains inter-branch 
correlation patterns while outcome of some branches is 
based on outcome of other branches. GAg predictor can 
predict these correlated branches because its prediction 
mechanism is based on global branch history. On the 
other hand, PAg performs better performance with data 
sets that contains intra-branch correlation patterns (such as 
Bra1, Bra2, and Bra3). Percentage of accuracy is 
increased with Bra3 data set, since it contains more nested 
loop branches. PAg is suitable for these data sets, because 
its prediction idea depends on local branch history which 
enables the predictor to predict the repeated outcome of 
each branch individually.  

# Data Set Description N M A 

1 SB Self Correlation: Biased Pattern 0 0 1 

2 SA Self Correlation: Alternating Repeating Pattern 1 0 2 

3 SF Self Correlation: For-Type Repeating Pattern 1 0 1 

4 SW Self Correlation: While-Type Repeating Pattern 1 0 1 

5 SS Self Correlation: Simple Repeating Pattern 1 0 2 

6 SC Self Correlation: Complex Repeating Pattern 1 0 3 

7 Ber Branch Correlation: Inter-branch Correlation 1 4 5 

8 Bra1 Branch Correlation: Intra-branch Correlation consists of 2 nested While loops. 2 2 4 

9 Bra2 Branch Correlation: Intra-branch Correlation consists of 3 nested While loops. 3 3 6 

10 Bra3 Branch Correlation: Intra-branch Correlation consists of 5 nested While loops. 5 5 10 

11 BH1 Branch Correlation:  Hybrid Correlation (Figure 4). P1=1, P2=0.8, P3=0.75, P4=0.6. 1 4 5 

12 BH2 Branch Correlation: Hybrid Correlation (Figure 4). P1=1, P2=0.8, P3=0.8, P4=0.8. 1 4 5 

13 BH3 Branch Correlation: Hybrid Correlation (Figure 3). 1 3 4 

14 BH3+BH2 Branch Correlation: Combined Correlation of data sets number 12 and 13. 2 7 9 

15 BH3+Bra3 Branch Correlation: Combined Correlation of data sets number 10 and 13. 6 8 14 

16 BH3+Ber Branch Correlation: Combined Correlation of data sets number 7 and 13. 2 7 9 

N= Number of Loops in the Basic Code Segment  

M= Number of Correlated Branches in the Basic Code Segment  

A= Number of total branches in the Basic Code Segment. 

Variance (σ2) 2.56 7.93 14.06 

Mean (μ) 1.81 2.94 5.06 

Lexis Ratio (T= σ2/μ) 1.41 2.70 2.78 

Parameter 1 (α=0.5) 7.93±26.19 0.89±1.04 3.16±3.61 

Parameter 2 (α=0.5) 0.81±0.504 0.23±0.23 0.38±0.28 
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Figure 6. Comparison between PAg and GAg predictors 

Additionally, we can notice from Figure 6 that GAg 
predictor performs better accuracy with data sets BH1, 
BH2, and BH3 that contain hybrid branch correlation. 
GAg predictor provides high accuracy in this case, 
because these data sets contain only one loop branch 
which denotes to intra-branch correlation and many inter-
branch correlated branches. We can extend the same 
conclusion when using data sets that contain combined 
branch correlations. PAg predictor performs better 
accuracy with BH3+BH2 and BH3+Bra3 data sets, 
because number of intra-correlated branches that are 
included in these data sets is greater than number of inter-
correlated branches. GAg performs better accuracy with 
BH3+Ber data set, because number of inter-correlated 
branches included in this data set is greater than number 
of intra-correlated branches. 

Figure 7 shows results of predicting data sets by using 
PAg, GAg, Gshare, LGshare, LGPerceptron, and 
clustered Gshare predictors. This figure does not include 
data sets that contain self-correlation patterns because the 
effect of mispredictionis insignificant when predicting 
these data sets by using two-level and more accurate 
predictors. As shown in the figure, GAg predictor 
performs the best accuracy with Ber data set, because it 
contains only inter-correlated branches. LGshare predictor 
provides the best results with BH3, BH3+BH2 and 
BH3+Ber data sets, because these data sets contain hybrid 
branch correlation patterns while the LGshare predictor 
achieves predictions based on local and global branch 
history. PAg and LGshare perform the best results with 
Bra3 data set which includes the intra-correlation patterns. 
LGshare predictor generates the best results with Bra3 
data set by using the local branch history. We conclude 
also that accuracy of GAg and Gshare predictors are 
convergent when using many data sets such as Bra1and 
BH1, because both of them make the prediction based on 
global branch history. Additionally, the figure shows that 
the clustered Gshare predictor performs the best overall 
accuracy in comparison with traditional Gshare predictor. 

Figure 7 illustrates also performance of LGPerceptron 
predictor by comparing it with the rest of predictors. As 
shown in the figure, LGPerceptron predictor performs the 
best overall results because its design includes many 

implementations of the selected predictors. The 
LGPerceptron predictor performs the best results after 
GAg predictor when using Ber data set, because the GAg 
predictor uses only global history for prediction. Thus, its 
mechanism is more suitable to predict branches included 
in this data set. The LGPerceptron predictor performs the 
best results after LGshare predictor with BH3 data set, 
because implementation complexity of LGPerceptron 
predictor decreases accuracy of prediction in comparison 
with LGshare predictor. Thereby, we can conclude from 
the figure that LGPerceptron predictor performs the best 
overall accuracy, because its scheme is more complex and 
covers implementations included in other predictors. 

 

Figure 7. Comparison between PAg, GAg, Gshare, LGshare, 

LGPerceptron, and Clustered Gshare predictors 

Table 2 illustrates a summary of a comparative 
analysis resulted when evaluating the selected branch 
predictors. This work evaluates the selected eight 
predictors by using the data sets that are described in 
Table 1. The evaluation is achieved by calculating 
mispredection ratio of predicting branches included in 
numerous designed data sets.  As shown in the table, one 
and two-bit predictors perform the worst overall results, 
because their schemes are simple and based only on one 
level. The other predictors are based on two or more 
levels and perform better results. The LGshare and 
LGPerceptron perform the best overall results because 
their implementations are complex and can predicate 
many branch behaviors.  We conclude from experimental 
results that each evaluated branch predictor is not able to 
predict all branch behaviors correctly.  

Table 2 shows clearly that LGPerceptron predictor, 
which has the most complex scheme, performs the best 
overall prediction accuracy (the lowest mean value). The 
table illustrates estimated coefficients, their standard 
errors, and 95 percent confidence intervals. The Skewness 
coefficient of a distribution is also calculated in this table 
to describe Skewness characterizes which is the degree of 
asymmetry of a distribution around its mean. As shown in 
the table, the positive values of Skewness measure 
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indicate that a distribution has an asymmetric tail 
extending toward more positive values. We also 
calculated standard error of the mean by dividing the 
standard deviation of the mean by the square root of n. 
We used (Student’s) t-distribution with n-1 degrees of 

freedom (because number of observations = 16 <30) to 
calculate the confidence interval (CI). The calculated tα is 
0.4804 with a confidence level equals 95% (significance 
level= 0.05%). 

TABLE 2.SUMMARY OF THE COMPARATIVE ANALYSIS. 

# Data Set One Bit Two-Bit Gas PAs Gshare LGshare LGPerceptron Clustered Gsh. 

1 SB 0 0.04 0.25 0.25 0.25 0.25 0 0.25 

2 SA 99.96 100 0.15 0.15 0.15 0.15 0.08 0.15 

3 SF 49.97 25.03 0.29 0.29 0.29 0.29 0.19 0.29 

4 SW 50 25 0.10 0.10 0.10 0.10 0.27 0.10 

5 SS 39.97 60 0.19 0.19 0.19 0.19 0.16 0.19 

6 SC 79.97 40.03 0.30 0.30 0.30 0.30 0.17 0.30 

7 Ber 38.1 34.45 26.40 36.85 31.80 35.40 28.35 31.45 

8 Bra1 3.92 2.02 2.37 2.39 2.35 2.53 1.98 2.37 

9 Bra2 18.99 9.56 9.88 10.29 9.86 10.44 9.52 10 

10 Bra3 58.19 29.13 11.11 7.27 11.02 1.18 0.84 10.42 

11 BH1 22.96 20.28 20.64 21.24 21.12 25.50 18.20 21.20 

12 BH2 24.28 20.94 17.96 21.88 18.90 18.92 12.54 19.22 

13 BH3 26.42 17.90 10.88 12.38 17.92 5.18 9.28 9.64 

14 BH3+BH2 31.94 24.84 25.64 24.32 34.98 22.38 17.88 29.90 

15 BH3+Bra3 35.90 18.40 6.20 4.35 6.45 5.20 2.25 5.55 

16 BH3+Ber 36.68 28.66 27.60 29.40 34.08 23.86 20.98 28.72 

Mean 38.58 28.52 10.00 10.73 11.86 9.49 7.67 10.61 

Skewness 0.89 1.95 0.61 0.90 0.77 1.02 0.98 0.78 

Standard Error 6.41 5.96 2.62 3.05 3.25 2.93 2.33 2.93 

CI 
Lower 35.50 25.66 8.74 9.26 10.30 8.08 6.55 9.20 

Upper 41.66 31.38 11.26 12.20 13.42 10.90 8.78 12.02 

 
We can notice from table 2 that confidence intervals 

of mispredection resulted by applying PAs and clustered 
predictors are overlapped and their mean values fall 
within their confidence intervals. Thus, we can conclude 
that both of them have similar efficacy since they provide 
similar results.  

Similarly, we can conclude that PAs and Gshare are 
also similar, because the confidence intervals of 
mispredection are overlapped and the mean values fall 
within the confidence intervals. In the same context, PAs 
and GAs are similar for the same reason. Thereby, we 
need to conduct more experiments in future to decrease 
the width of confidence intervals and make the results 
more accurate. 

Table 2 illustrates some non overlapped confidence 
intervals that are generated by using LGPerceptron and 
Clustered predictors. The mean values are not fall within 
these confidence intervals. Thus, we can conclude that the 
results are different and LGPerceptron predictor is better 
than Clustered predictor, because its mean value is 
smaller. By using the same methodology, we conclude 
that two-bit predictor is better than one bit predictor, 
because the confidence intervals of their generated results 
are not overlapped and mean values are not fall within 
these confidence intervals. 

Based on our previous discussion, we can conclude 
that LGPerceptron predictor is the best in comparison 
with the other predictors (except LGshare), because the 
confidence interval of its results does not overlap with any 

confidence interval in all results. Finally, we need to make  
a comparison between LGshare and LGPerceptron 
predictors by comparing the confidence intervals of their 
mispredection rates. As shown in table 2, the confidence 
intervals are overlapped but the mean value of 
mispredection rates of each predictor does not fall in 
confidence interval that are generated by the other 
predictors. Thus, we need to use t-test to make final 
decision. The calculated confidence interval of t-test with 
confidence level equal to 95% (significance level= 0.05%) 
is (0.03, 3.62). This confidence interval does not include 
zero. Thus, the mispredection rates that are generated by 
using LGshare and LGPerceptron are not identical. 
Thereby, we can conclude that LGPerceptron is better 
than LGshare since it has the smallest mean value (and it 
is the best in comparison with the other seven predictors) 
with 95% confidence.               

Based on our experimental results, we can conclude 
that LGPerceptron predictor outperforms other evaluated 
predictors when predicting conditional branches with 
confidence level equal to 95%. We can note also that 
LGPerceptron is not a super predictor since it could not 
predict correctly some specific behaviors of branches such 
as inter-branch correlation (Ber data set). 

There are some threats to validity in this work. The 
accuracy of PAg, GAg, Gshare, and LGshare is sensitive 
to the size of registers used by the predictor. Thus, 
changing size of global and local history registers that are 
used by the selected predictors will end up with different 
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results. Finding the maximum size of the register for 
providing the best accuracy of the predictor depends on 
the used data set and number of included branches. 

6. CONCLUSION AND FUTURE WORK  

Performance of different branch predictors has been 
evaluated in this paper by using many branch behaviors. 
The experimental results show that the branch predictor 
which uses machine learning technique performs the best 
accuracy. Using machine learning outperforms other 
approaches in predicting conditional branches included in 
our data sets with confidence level equal to 95%. We 
concluded from experimental results that each evaluated 
branch predictor is not able to predict all branch behaviors 
correctly. Moreover, we conducted that implementation 
complexity of predictor is directly proportion to its 
performance.      

This research may be extended in different ways to 
develop a predictor that outperforms selected predictors in 
this work. It is interested to develop a new clustering 
scheme for partitioning the PHT to improve the clustered 
based predictor by using data clustering techniques such 
as k-means. We can also extend this research work by 
proposing a new scheme that merges more than one 
predictor for developing more accurate predictor with 
acceptable implementation cost. 
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