

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 8, No.1 (Jan-2019)

E-mail:shadi_abudalfa@hotmail.com, mayez@kfupm.edu.sa, moataz@kfupm.edu.sa

 http://journals.uob.edu.bh

Comparative Study on Behavior-Based Dynamic

Branch Prediction using Machine Learning

Shadi Abudalfa

1
, Mayez Al-Mouhamed

2
 and Moataz Ahmed

2

1Information Technology Department, University College of Applied Sciences, Gaza, Palestine

2Collage of Computer Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Received 1 Oct. 2018, Revised 24 Nov. 2018, Accepted 10 Dec. 2018, Published 1 Jan. 2019

Abstract: Modern processors fetch and execute instructions speculatively based on the outcome of branch prediction for decreasing

effect of control hazards. Many branch predictors are proposed in literature to increase accuracy of the branch prediction. Some ones

use machine learning technique for improving accuracy of predicting conditional branches. In this paper, we investigate this issue by

evaluating different branch predictors through using a well-designed set of correlation patterns. We built a framework for testing

performance of different branch predictors. Our framework demonstrates efficiency of using machine learning in predicting

conditional branches. This framework is designed for mimicking various behaviors of branch predictions and can be used easily by

scholars to check performance of more branch predictors. Experimental results shown in this work illustrate performance of applying

different approaches proposed for predicting conditional branches in comparison with employing machine learning technique. Our

findings illustrate that using machine learning provides competitive results. However, employing machine learning does not help in

predicting all behaviors of conditional branches.

Keywords: Conditional Branch, Behavior-Based, Correlation Patterns, Dynamic Branch Predictor, Machine Learning

1. INTRODUCTION

Many computer programs include branch instructions
to control the follow path when executing the program
code. Conditional branches cause problem with the
superscalar microprocessor which is designed to increase
the instruction-level parallelism (ILP). The effect is
increased when using deep pipelines and increasing
number of instructions that are issued in one cycle. The
conditional branch controls the follow through the
program. Thus, the address of next instruction will be
either the branch target or the address of next sequential
instruction. The address of the next instruction will not be
available to the processor until the branch is executed,
which in turn leads to cause control hazard that constricts
the ILP.

To decrease the effect of control hazards, the
speculative processor fetches and executes instructions
speculatively based on the outcome of branch prediction.
The speculative results must be flushed if the branch
prediction is incorrect. In this case, the misprediction
penalty will constrict the ILP. Thereby, the accuracy of
branch prediction is a critical mission in designing the
superscalar processor.

Many branch predictors are proposed in literature to
increase the accuracy of the branch prediction but there is
a need to evaluate their performance in predicting
different branch behaviors. Some studies in literature
make comparisons between specific branch predictors to
illustrate their efficiencies by using specific branch
behaviors in a given set of benchmarks. Little studies have
been done to illustrate characteristics of branch predictors
in predicting different branch behaviors.

Our work extends some comparisons that are
introduced in the state of the art by evaluating more
branch predictors and generating more data sets for
checking various branch behaviors. Additionally, this
paper illustrates phases of developing and implementing
branch predictors. Eight branch predictors are selected
from literature to evaluate their behaviors and study their
characteristics. Our work focuses on these predictors
because they are famous and perform very good accuracy
in comparison with other branch predictors that are
proposed in the state of the art.

The rest of paper is organized as follows: Section 2

gives a background and describes selected branch

predictors. Section 3 presents a review for related studies.

Section 4 describes the methodology which is used for

http://dx.doi.org/10.12785/ijcds/080104

34 ShadiAbudalfa, et. al.:Comparative Study on Behavior-Based Dynamic Branch…

http://journals.uob.edu.bh

evaluating the selected predictors. Section 5 illustrates

analysis of experimental results. Finally, Section 6

concludes the paper and presents suggestions for future

work.

2. BACKGROUND

There are two mechanisms for predicting outcomes of
branch (taken/not taken) [1]: static branch prediction at
compile time, and dynamic branch prediction at run time.
Dynamic branch predictions are implemented by
hardware and have important property that is not included
by static branch predictions. Dynamic branch predictors
can guess the next outcome of branch by monitoring
previous outcomes of the executed branch. While, static
branch predictors cannot use this property since the
outcome of executed branch will not be available at
compilation time. This paper deals specifically with
dynamic branch predictors to exploit this property.

A very simple predictor can be designed by predicting
all branches to be either always taken or always not taken.
No need to use any hardware for implementing this
predictor, but its accuracy is limited (40%-60%). Thus,
there are many dynamic branch predictions have been
proposed to improve the accuracy of branch prediction.
The simplest one predicts the branch by having the
previous outcome of its exaction. This predictor called
Last-Time predictor [2], and it needs one bit per branch to
save its previous outcome. This bit can be added to the
instruction cache or the branch target buffer (BTB).

The prediction accuracy can be improved by using
two-bit counter [2] instead of one bit for each branch. The
counter is incremented by one when the branch is taken
and is decremented by one when the branch is not taken.
The branch is predicted as taken when the counter value is
equal to or greater than two (10)2, otherwise it is predicted
as not taken.

To design more accurate predictions, two levels of
history is used by Yeh and Patt [3]. A global two-level
predictor (GAs) uses a branch history register (BHR) as
a first level to save the outcomes of the k most recent
branches. It uses a pattern history table (PHT) of 2-bit
counters as a second level to save the state of each branch
by using the same method illustrated in the two-bit
counter scheme. While GAs uses one BHR for saving the
k recent outcomes for all branches, a per-address two-
level predictor (PAs) uses one BHR for each branch with
the same structure of PHT. Thus, PHT can be used as
BTB to reduce implementation cost. PAs predictor is
called as PAg when using only one PHT. PAs predictor is
able to predict complex branches since it uses the previous
execution pattern of each branch.

Many improvements have been proposed to increase
the prediction accuracy of the two-level prediction. The
Gshare predictor [4] is similar to GAs predictor but it
selects the 2-bit counter in PHT by XORing the index into
the PHT with the least significant k bits of the fetch

address. The Gshare predictor increases the prediction
accuracy because the XOR hashing function generates
more random usage pattern in the PHT.

There are similar behaviors that are repeated
frequently when executing the branches. Behavior-based
branch predictor [5] uses this property to improve the
branch prediction accuracy. This predictor identifies
clusters of branches with similar behavior by adding
additional component called a cluster predictor for
labeling each branch with cluster identification (CID).
This CID is used to index the PHT by using some ways.
This mechanism partitions the PHT into clusters (groups)
where each group contains branches with specific
behavior. Using clustering mechanism makes Gshare
predictor more accurate [6]. Partitioning mechanism also
reduces interference in the PHT that is happen when more
than one branch compete for the same entry in the PHT.
The interference is waster if the competed branches have
opposite outcomes.

Some machine learning techniques [7] such as neural
networks are used to improve the accuracy of the branch
prediction. Egan et al. [8] proposed a two-level branch
prediction using neural networks. They used the same first
level history register of the traditional two-level
predictors. While, the second level of PHT is replaced
with a neural network. The authors used two perceptron
predictors: a simple learning vector quantisation (LVQ)
neural predictor and a backpropagation neural network
predictor.

Some proposed schemes combine implementations of
different predictors to build a predictor better than the
combined ones. Global predictors are suitable for
predicting some branches and local predictors are suitable
for other branches. Thus, the performance can be
improved by combing the global and local predictors in
a single predictor. However, this mechanism increases the
implementation cost. To reduce the cost, Egan et al. [8]
proposed a scheme to combine the global and local
history information in a neural predictor. Chang and Chou
[9] proposed a prediction scheme called LGshare which
combines implementations of global and local branch
predictors to improve the accuracy of branch prediction.
Ho and Fong [10] proposed a prediction scheme that
combines implementations of global and local branch
predictors in perceptron branch prediction.

3. LITERATURE REVIEW

Many researchers tried to compare different branch
predictors for illustrating the efficiency of their developed
approaches. Egan et al. [8] simulated three local (for the
first level) predictors: PAg, PAs and PAp. They conclude
that the local predictors are more accurate than the global
predictors.

Vandierendonck et al. [5] compared the performance
of Agree and Gshare predictors with the partitioned
Gshare predictor, and they showed that Agree predictor is

 Int. J. Com. Dig. Sys. 8, No.1, 33-41 (Jan-2019) 35

http://journals.uob.edu.bh

better than Gshare predictor, and the partitioned Gshare
predictor is the best. They also compared the performance
of Gshare, branch classification, and the partitioned
Gshare predictor. Additionally, they showed that the
partitioned PAg predictor yields more accurate results and
reduces the need for a large PHT. Moreover, a conclusion
is revealed for showing that the partitioned path-based
perceptron predictor [12] is more accurate than the
original predictor. The clustered path-based predictor also
improves the performance by eliminating the interference.

Changet al. [11] showed that branch classification is
less accurate than branch clustering (the partitioned
Gshare predictor). For very large predictors the branch
classification is less accurate than the original Gshare
predictor. The authors interpret their conclusion by
explaining that branch classification separates the
branches into different classes based on their behavior
during a profile run. The implementation of branch
classification is more costly in comparison with branch
clustering since it uses 3-bit counter.

Some researches [13] focused on understanding how
branches behave and classify them by illustrating
shortcoming of some branch predictors and showing
performance of a new branch predictor. In the same
context, a novel Monte Carlo simulation framework is
proposed by Kalla et al. [14] for predicting branch
misprediction rate.

In this work, we selected eight branch predictors from
the state of the art to test their behaviors and study their
performance. The selected predictors are different in their
architecture and behavior. The selected predictors are:
One-Bit Bimodal Predictor [2], Two-Bit Saturated
Counter Bimodal Predictor [2], GAg Predictor [3], PAg
Predictor [3], Gshare predictor [4], Clustered branch
predictor [5], LGshare predictor [9], and Global/Local
Hashed Perceptron Predictor (LGPerceptron) [10].

4. METHODOLOGY

Accuracy of branch predictor is affected by history of
branch outcomes. Thus, we illustrate performance of
different branch predictors by generating different data
sets that include different classes of correlation patterns.
To make our work comprehensive, we selected some
correlation patterns from the state of the art and developed
more new patterns as well. We classified these correlation
patterns into two types. The first one is called self
correlation which examines behavior of single branch.
The other class is called branch correlation which
examines the correlation between outcomes of different
branches. Different patterns that belong to these two
classes are used in this research work as follows:

A. Self Correlation

We selected these patterns from a research work
achieved by Evers [13] for evaluating relations between
the predicted branch and its own past outcomes with
repeated form. These patterns are formed as follows:

 Biased Pattern: This pattern means that all
outcomes are biased in one direction (taken or not
taken), for example: 111111111111.

 Alternating Repeating Pattern: In this pattern,
every outcome inverts the previous outcome, for
example: 101010101010.

 For-Type Repeating Pattern: This pattern
illustrates behavior of For-loop branch as follows:
111011101110.

 While-Type Repeating Pattern: This pattern
illustrates behavior of While-loop branch which is
the opposite of For-loop branch behavior as
follows: 000100010001.

 Simple Repeating Pattern: This pattern includes a
repeated pattern of n taken outcomes and m not
taken outcomes. For example: 110001100011000
where n=2, and m=3.

 Complex Repeating Pattern: This pattern includes
any self correlation pattern that cannot be
described by the above five patterns. For
example: 110101101011010.

B. Branch Correlation

If branches are correlated, then the branch predictor
can predict the direction of some branches when knowing
the outcomes of other correlated branches. Next
paragraphs describe some scenarios for designing branch
correlations that are used as well for conducting
experimental work.

Inter-branch Correlation: This kind of correlation
depends on predicting outcomes of some branches based
on outcomes of other branches. We selected this pattern
from a research work achieved by Chang and Chou [9].
Figure 1 shows an example of this correlation pattern. As
shown in the figure, the outcomes of branches C and D
can be predicted based on the outcomes of branches A and
B, so branches C and D are correlated with branches A
and B.

Intra-branch Correlation: This kind of correlation
consists of loop branch and branches with periodic
outcomes. We selected also this pattern from the research
work achieved by Chang and Chou [9]. Figure 2 shows an
example of this correlation pattern. As shown in the
figure, the code includes two nested while-loop branches
E and F. Branch F is correlated with branch E, and both
branches will be taken many times and finally not taken
once.

36 ShadiAbudalfa, et. al.:Comparative Study on Behavior-Based Dynamic Branch…

http://journals.uob.edu.bh

Figure 1. Example of Inter-Branch Correlation

Figure 2. Example of Intra-Branch Correlation

Hybrid Correlation: This class of correlation combines
the previous two correlation patters (Inter-branch and
Intra-branch correlations). This specific pattern is selected
also from the research work that is achieved by Chang and
Chou [9]. Figure 3 shows an example of this correlation.
The example contains four branches the While-loop
branch and three if-statement branches X, Y, and Z. The Z
branch is partial correlated with branches X and Y.

We developed another correlation pattern for
combining different branch behaviors. We formed this
correlation pattern by using probabilities of correlation
between the braches as sown in Figure 4. The figure
contains five branches (branches A, B, C, D, and E).
Branches C, D, and E are correlated with branch B in
a term of probability.

Combined Correlation: We also generated more
complicated patterns by combining more than one
correlation patterns from the previous types. We use this
pattern to increase the complexity when evaluating
accuracy of the selected branch predictors.

Figure 3. Example of Hybrid Correlation with probability

Figure 4. Example of Hybrid Correlation by using probability

5. EXPERIMENTAL RESULTS AND ANALYSIS

We generated different synthetic data sets to evaluate
performance of the selected branch predictors (which are
described in section 2). All generated data are based on
correlation patterns that are described in section 4. Table 1
describes the used data sets and illustrates some details by
showing characteristics of data distribution. As described
in the table, the data is generated heuristically by
including different number of loops, correlated branches,
and number of branches in a basic code segment of
programs that are used for generating these data sets.

Table 1 illustrates observed sample mean and variance
of random variables that are used for generating the data
sets. We calculated the Lexis Ratio (T) for hypothesizing
a data distribution. The T value is greater than one, so the
generated data has a negative binomial distribution. The
table illustrates also the maximum likelihood estimates
(MLEs) and confidence intervals for the parameters of the
negative binomial distribution.

 Int. J. Com. Dig. Sys. 8, No.1, 33-41 (Jan-2019) 37

http://journals.uob.edu.bh

TABLE 1. DATA SETS CHARACTERIZATION.

We analyzed results by making a comparison between
the selected predictors for revealing a comprehensive
conclusion. This work evaluates performance of the
selected branch predictors by measuring mispredection
when predicting branch outcomes. Figure 5 shows
a comparison between one-bit bimodal predictor, and two-
bit saturated counter bimodal predictor. One-bit predictor
may be better than two-bit predictor in some cases such as
predicting SA data set, because this data set includes
alternating repeated pattern and the two-bit predictor
cannot change its prediction at every outcome. We note
that the two-bit predictor performs better overall accuracy
than one-bit, because the two-bit predictor saves its state
when repeating the same outcome.

We can notice clearly from Figure 5 that the best
result is generated by using self-correlation complex
repeated pattern (SC data set), because it repeats the same
outcome many times while this pattern is not
commensurate with behavior of one-bit predictor. The
difference in performance is obvious also when using data
sets Bra1, Bra2, and Bra3, because they include intra-
branch correlations that consist of repeated patterns of
each branch. The variation in performance is increased
when increasing number of nested loops. The highest
variance is calculated with Bra3 data set which contains 5
nested loops that cannot be predicated well by using one-
bit predictor. As a result of this, we can conclude that
using two-bit predictor is better than using one-bit
predictor especially with data sets that include loop
branches.

Figure 5. Comparison between One-bit and Two-bit bimodalpredictors

Similarly, we tested performance of PAg and GAg as
shown in Figure 6. GAg outperforms PAg when applying
it to Ber data set, because it contains inter-branch
correlation patterns while outcome of some branches is
based on outcome of other branches. GAg predictor can
predict these correlated branches because its prediction
mechanism is based on global branch history. On the
other hand, PAg performs better performance with data
sets that contains intra-branch correlation patterns (such as
Bra1, Bra2, and Bra3). Percentage of accuracy is
increased with Bra3 data set, since it contains more nested
loop branches. PAg is suitable for these data sets, because
its prediction idea depends on local branch history which
enables the predictor to predict the repeated outcome of
each branch individually.

Data Set Description N M A

1 SB Self Correlation: Biased Pattern 0 0 1

2 SA Self Correlation: Alternating Repeating Pattern 1 0 2

3 SF Self Correlation: For-Type Repeating Pattern 1 0 1

4 SW Self Correlation: While-Type Repeating Pattern 1 0 1

5 SS Self Correlation: Simple Repeating Pattern 1 0 2

6 SC Self Correlation: Complex Repeating Pattern 1 0 3

7 Ber Branch Correlation: Inter-branch Correlation 1 4 5

8 Bra1 Branch Correlation: Intra-branch Correlation consists of 2 nested While loops. 2 2 4

9 Bra2 Branch Correlation: Intra-branch Correlation consists of 3 nested While loops. 3 3 6

10 Bra3 Branch Correlation: Intra-branch Correlation consists of 5 nested While loops. 5 5 10

11 BH1 Branch Correlation: Hybrid Correlation (Figure 4). P1=1, P2=0.8, P3=0.75, P4=0.6. 1 4 5

12 BH2 Branch Correlation: Hybrid Correlation (Figure 4). P1=1, P2=0.8, P3=0.8, P4=0.8. 1 4 5

13 BH3 Branch Correlation: Hybrid Correlation (Figure 3). 1 3 4

14 BH3+BH2 Branch Correlation: Combined Correlation of data sets number 12 and 13. 2 7 9

15 BH3+Bra3 Branch Correlation: Combined Correlation of data sets number 10 and 13. 6 8 14

16 BH3+Ber Branch Correlation: Combined Correlation of data sets number 7 and 13. 2 7 9

N= Number of Loops in the Basic Code Segment

M= Number of Correlated Branches in the Basic Code Segment

A= Number of total branches in the Basic Code Segment.

Variance (σ2) 2.56 7.93 14.06

Mean (μ) 1.81 2.94 5.06

Lexis Ratio (T= σ2/μ) 1.41 2.70 2.78

Parameter 1 (α=0.5) 7.93±26.19 0.89±1.04 3.16±3.61

Parameter 2 (α=0.5) 0.81±0.504 0.23±0.23 0.38±0.28

38 ShadiAbudalfa, et. al.:Comparative Study on Behavior-Based Dynamic Branch…

http://journals.uob.edu.bh

Figure 6. Comparison between PAg and GAg predictors

Additionally, we can notice from Figure 6 that GAg
predictor performs better accuracy with data sets BH1,
BH2, and BH3 that contain hybrid branch correlation.
GAg predictor provides high accuracy in this case,
because these data sets contain only one loop branch
which denotes to intra-branch correlation and many inter-
branch correlated branches. We can extend the same
conclusion when using data sets that contain combined
branch correlations. PAg predictor performs better
accuracy with BH3+BH2 and BH3+Bra3 data sets,
because number of intra-correlated branches that are
included in these data sets is greater than number of inter-
correlated branches. GAg performs better accuracy with
BH3+Ber data set, because number of inter-correlated
branches included in this data set is greater than number
of intra-correlated branches.

Figure 7 shows results of predicting data sets by using
PAg, GAg, Gshare, LGshare, LGPerceptron, and
clustered Gshare predictors. This figure does not include
data sets that contain self-correlation patterns because the
effect of mispredictionis insignificant when predicting
these data sets by using two-level and more accurate
predictors. As shown in the figure, GAg predictor
performs the best accuracy with Ber data set, because it
contains only inter-correlated branches. LGshare predictor
provides the best results with BH3, BH3+BH2 and
BH3+Ber data sets, because these data sets contain hybrid
branch correlation patterns while the LGshare predictor
achieves predictions based on local and global branch
history. PAg and LGshare perform the best results with
Bra3 data set which includes the intra-correlation patterns.
LGshare predictor generates the best results with Bra3
data set by using the local branch history. We conclude
also that accuracy of GAg and Gshare predictors are
convergent when using many data sets such as Bra1and
BH1, because both of them make the prediction based on
global branch history. Additionally, the figure shows that
the clustered Gshare predictor performs the best overall
accuracy in comparison with traditional Gshare predictor.

Figure 7 illustrates also performance of LGPerceptron
predictor by comparing it with the rest of predictors. As
shown in the figure, LGPerceptron predictor performs the
best overall results because its design includes many

implementations of the selected predictors. The
LGPerceptron predictor performs the best results after
GAg predictor when using Ber data set, because the GAg
predictor uses only global history for prediction. Thus, its
mechanism is more suitable to predict branches included
in this data set. The LGPerceptron predictor performs the
best results after LGshare predictor with BH3 data set,
because implementation complexity of LGPerceptron
predictor decreases accuracy of prediction in comparison
with LGshare predictor. Thereby, we can conclude from
the figure that LGPerceptron predictor performs the best
overall accuracy, because its scheme is more complex and
covers implementations included in other predictors.

Figure 7. Comparison between PAg, GAg, Gshare, LGshare,

LGPerceptron, and Clustered Gshare predictors

Table 2 illustrates a summary of a comparative
analysis resulted when evaluating the selected branch
predictors. This work evaluates the selected eight
predictors by using the data sets that are described in
Table 1. The evaluation is achieved by calculating
mispredection ratio of predicting branches included in
numerous designed data sets. As shown in the table, one
and two-bit predictors perform the worst overall results,
because their schemes are simple and based only on one
level. The other predictors are based on two or more
levels and perform better results. The LGshare and
LGPerceptron perform the best overall results because
their implementations are complex and can predicate
many branch behaviors. We conclude from experimental
results that each evaluated branch predictor is not able to
predict all branch behaviors correctly.

Table 2 shows clearly that LGPerceptron predictor,
which has the most complex scheme, performs the best
overall prediction accuracy (the lowest mean value). The
table illustrates estimated coefficients, their standard
errors, and 95 percent confidence intervals. The Skewness
coefficient of a distribution is also calculated in this table
to describe Skewness characterizes which is the degree of
asymmetry of a distribution around its mean. As shown in
the table, the positive values of Skewness measure

 Int. J. Com. Dig. Sys. 8, No.1, 33-41 (Jan-2019) 39

http://journals.uob.edu.bh

indicate that a distribution has an asymmetric tail
extending toward more positive values. We also
calculated standard error of the mean by dividing the
standard deviation of the mean by the square root of n.
We used (Student’s) t-distribution with n-1 degrees of

freedom (because number of observations = 16 <30) to
calculate the confidence interval (CI). The calculated tα is
0.4804 with a confidence level equals 95% (significance
level= 0.05%).

TABLE 2.SUMMARY OF THE COMPARATIVE ANALYSIS.

Data Set One Bit Two-Bit Gas PAs Gshare LGshare LGPerceptron Clustered Gsh.

1 SB 0 0.04 0.25 0.25 0.25 0.25 0 0.25

2 SA 99.96 100 0.15 0.15 0.15 0.15 0.08 0.15

3 SF 49.97 25.03 0.29 0.29 0.29 0.29 0.19 0.29

4 SW 50 25 0.10 0.10 0.10 0.10 0.27 0.10

5 SS 39.97 60 0.19 0.19 0.19 0.19 0.16 0.19

6 SC 79.97 40.03 0.30 0.30 0.30 0.30 0.17 0.30

7 Ber 38.1 34.45 26.40 36.85 31.80 35.40 28.35 31.45

8 Bra1 3.92 2.02 2.37 2.39 2.35 2.53 1.98 2.37

9 Bra2 18.99 9.56 9.88 10.29 9.86 10.44 9.52 10

10 Bra3 58.19 29.13 11.11 7.27 11.02 1.18 0.84 10.42

11 BH1 22.96 20.28 20.64 21.24 21.12 25.50 18.20 21.20

12 BH2 24.28 20.94 17.96 21.88 18.90 18.92 12.54 19.22

13 BH3 26.42 17.90 10.88 12.38 17.92 5.18 9.28 9.64

14 BH3+BH2 31.94 24.84 25.64 24.32 34.98 22.38 17.88 29.90

15 BH3+Bra3 35.90 18.40 6.20 4.35 6.45 5.20 2.25 5.55

16 BH3+Ber 36.68 28.66 27.60 29.40 34.08 23.86 20.98 28.72

Mean 38.58 28.52 10.00 10.73 11.86 9.49 7.67 10.61

Skewness 0.89 1.95 0.61 0.90 0.77 1.02 0.98 0.78

Standard Error 6.41 5.96 2.62 3.05 3.25 2.93 2.33 2.93

CI
Lower 35.50 25.66 8.74 9.26 10.30 8.08 6.55 9.20

Upper 41.66 31.38 11.26 12.20 13.42 10.90 8.78 12.02

We can notice from table 2 that confidence intervals

of mispredection resulted by applying PAs and clustered
predictors are overlapped and their mean values fall
within their confidence intervals. Thus, we can conclude
that both of them have similar efficacy since they provide
similar results.

Similarly, we can conclude that PAs and Gshare are
also similar, because the confidence intervals of
mispredection are overlapped and the mean values fall
within the confidence intervals. In the same context, PAs
and GAs are similar for the same reason. Thereby, we
need to conduct more experiments in future to decrease
the width of confidence intervals and make the results
more accurate.

Table 2 illustrates some non overlapped confidence
intervals that are generated by using LGPerceptron and
Clustered predictors. The mean values are not fall within
these confidence intervals. Thus, we can conclude that the
results are different and LGPerceptron predictor is better
than Clustered predictor, because its mean value is
smaller. By using the same methodology, we conclude
that two-bit predictor is better than one bit predictor,
because the confidence intervals of their generated results
are not overlapped and mean values are not fall within
these confidence intervals.

Based on our previous discussion, we can conclude
that LGPerceptron predictor is the best in comparison
with the other predictors (except LGshare), because the
confidence interval of its results does not overlap with any

confidence interval in all results. Finally, we need to make
a comparison between LGshare and LGPerceptron
predictors by comparing the confidence intervals of their
mispredection rates. As shown in table 2, the confidence
intervals are overlapped but the mean value of
mispredection rates of each predictor does not fall in
confidence interval that are generated by the other
predictors. Thus, we need to use t-test to make final
decision. The calculated confidence interval of t-test with
confidence level equal to 95% (significance level= 0.05%)
is (0.03, 3.62). This confidence interval does not include
zero. Thus, the mispredection rates that are generated by
using LGshare and LGPerceptron are not identical.
Thereby, we can conclude that LGPerceptron is better
than LGshare since it has the smallest mean value (and it
is the best in comparison with the other seven predictors)
with 95% confidence.

Based on our experimental results, we can conclude
that LGPerceptron predictor outperforms other evaluated
predictors when predicting conditional branches with
confidence level equal to 95%. We can note also that
LGPerceptron is not a super predictor since it could not
predict correctly some specific behaviors of branches such
as inter-branch correlation (Ber data set).

There are some threats to validity in this work. The
accuracy of PAg, GAg, Gshare, and LGshare is sensitive
to the size of registers used by the predictor. Thus,
changing size of global and local history registers that are
used by the selected predictors will end up with different

40 ShadiAbudalfa, et. al.:Comparative Study on Behavior-Based Dynamic Branch…

http://journals.uob.edu.bh

results. Finding the maximum size of the register for
providing the best accuracy of the predictor depends on
the used data set and number of included branches.

6. CONCLUSION AND FUTURE WORK

Performance of different branch predictors has been
evaluated in this paper by using many branch behaviors.
The experimental results show that the branch predictor
which uses machine learning technique performs the best
accuracy. Using machine learning outperforms other
approaches in predicting conditional branches included in
our data sets with confidence level equal to 95%. We
concluded from experimental results that each evaluated
branch predictor is not able to predict all branch behaviors
correctly. Moreover, we conducted that implementation
complexity of predictor is directly proportion to its
performance.

This research may be extended in different ways to
develop a predictor that outperforms selected predictors in
this work. It is interested to develop a new clustering
scheme for partitioning the PHT to improve the clustered
based predictor by using data clustering techniques such
as k-means. We can also extend this research work by
proposing a new scheme that merges more than one
predictor for developing more accurate predictor with
acceptable implementation cost.

REFERENCES

[1] J.Hennessy, and D.Patterson, Computer Architecture: a

Quantitative Approach, 5th ed, Morgan Kaufmann, 2012.

[2] J.Smith, “A study of branch prediction strategies,” Proceedings of
8th annual symposium on Computer Architecture, 1981, pp. 135-

148.

[3] T.Yeh, and Y.Patt, "Alternative implementations of two-level
adaptive branch prediction," Proceedings of 19th annual

international symposium on Computer architecture, 1992, pp.
124-134.

[4] S.McFarling, “Combining branch predictors,” Technical Report

No. WRL TN-36, Western Research Laboratory, Digital
Equipment Corporation, 1993.

[5] H.Vandierendonck, Desmet V., and Bosschere K., "Behavior-

Based Branch Prediction by Dynamically Clustering Branch
Instructions," Journal of information science and engineering, vol.

24, no. 3, pp. 919-931, 2008.

[6] V.Desmet, H.Vandierendonck, and K.Bosschere, "Clustered
indexing for branch predictors," Microprocessors and

Microsystems, vol. 31, no. 3, pp. 168-177, 2007.

[7] L.Vintan, and A.Florea, "A New Branch Prediction Approach
using Neural Networks," Proceedings of 10th International

Symposium on Computers and Informatics SINTES – 10, 2000.

[8] C.Egan, G. Steven, P. Quick, R. Anguera, F. Steven, and L.
Vintan, "Two-level branch prediction using neural networks,"

Journal of Systems Architecture, vol. 49, pp. 557–570, 2003.

[9] M.Chang, and Y.Chou, “Branch prediction using both global and
local branch history information.” Proceedings of IEE on

Computers and Digital Techniques, March 2002, pp. 33-38.

[10] C.Ho, and A.Fong, “Combining Local and Global History
Hashing in Perceptron Branch Prediction,” Proceedings of 6th

IEEE/ACIS International Conference on Computer and

Information Science, Hong Kong, 5 September 2007.

[11] P.Chang, E. Hao, T. Yeh, and Y. Patt,, "Branch classification: a

new mechanism for improving branch predictor performance,"

Proceedings of 27th Annual ACM/IEEE International Symposium
on Microarchitecture, 1994, pp. 22-31.

[12] D.Jiménez, “Fast path-based neural branch prediction,”

Proceedings of 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003, pp. 243-252.

[13] M.Evers, “Improving Branch Prediction by Understanding Branch

Behavior,” PhD thesis, Computer Science and Engineering, The

University of Michigan, 2000.

[14] B. Kalla, N. Santhi, A. Badawy, G. Chennupati, and S. Eidenbenz,

“A Probabilistic Monte Carlo Framework for Branch Prediction,”
Proceedings of 2017 IEEE International Conference on Cluster

Computing, 2017, pp. 651-652.

Shadi Abudalfa received the BSc
and MSc Degrees both in Computer
Engineering from the Islamic
University of Gaza (IUG), Palestine in
2003 and 2010 respectively. He just
completed his PhD program in Computer
Science and Engineering at King Fahd
University of Petroleum & Minerals
(KFUPM),Kingdom of Saudi Arabia in
2018.He isa lecturer at the University
Collage of Applied Sciences (UCAS),
Palestine. From July2003 to August 2004,
he worked as a research assistant at

Projects andResearch Lab in IUG. From February 2004 to August 2004,
he worked as a teaching assistant at Faculty of Engineering in
IUG.Abudalfa is a member of IEEE andhas served as a technical
program committee member and a reviewer of some international
conferences and a journal.His current research interests includeartificial
intelligence, data mining, data clustering, machine learning,and
sentiment analysis.

Mayez Al-Mouhamed is specialized in
computer architecture, parallel algorithms
and programming, and robotics. He has over
80 publications in the above areas. He
received the Silver Medal from the
International Geneva Conventions in 2012
and was awarded the Certificate of
Distinguished Research Project, First
Degree, Golden, from King Abdulaziz City
for Science and Technology (KCST) for his
work in Tele-Robotics in 2006. He also

received many Excellence Awards from KFUPM for his
accomplishments in research, teaching, and services. In HPC related
issues, he worked on parallel compiler restructuring for automatic and
directive-based parallelization. He extensively analyzed the issues
of array organization in parallel memories and proposed systematic
address mapping schemes to favor predefined data access patterns.
Currently he is working on the design of restructuring tools for
optimizing CUDA programming and exploring new programming
methodologies for the efficient implementation of some hierarchical
algorithms on GPUs.

 Int. J. Com. Dig. Sys. 8, No.1, 33-41 (Jan-2019) 41

http://journals.uob.edu.bh

Moataz Ahmed received his PhD in
computer science from George Mason
University in 1997. Dr. Ahmed is currently
a faculty member with the Information and
Computer Science Department, King Fahd
University of Petroleum and Minerals,
Kingdom of Saudi Arabia. He also serves as
an Adjunct/Guest Professor in a number of
universities in the US and Italy. During his
career, he worked as a software architect in
several software houses. His research

interest includes softcomputing-based software engineering, especially,
soft- ware testing, software reuse, and cost estimation; and software
metrics and quality models. He has supervised a number of theses and
published a number of scientific papers in refereed journals and
conferences in these areas.

