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Abstract: Two-dimensional principal component analysis (2DPCA) and its variants have been successfully used for the task of face 

recognition (FR). However, one of the major limitations of 2DPCA-based FR methods is that they only consider the holistic 

information of a given training dataset, ignoring both class-specific discriminant information and class-separation components, which 

could further improve recognition performance. To address this limitation, this paper suggests a class-wise 2DPCA (CW2DPCA) 

framework that seeks to model class-specific subspaces, where each subspace retains the discriminatory information of a particular 

class, as well as class separability information. In this way, CW2DPCA not only feeds discriminative representations of facial images 

to the classification model, but also enables a high degree of separation between the different classes present in the training dataset. 

Experimental evaluation on two face datasets proved the effectiveness of the proposed CW2DPCA in FR.  

 

Keywords: Face recognition, Two-Dimensional Principal Component Analysis (2DPCA), Feature Extraction.  

1. INTRODUCTION  

Face recognition (FR) is an important and common 
task within a wide range of pattern recognition and 
computer vision applications, including human-computer 
interaction [1], biometrics [2], and visual surveillance [3]. 
The definitive goal of FR systems is to automatically 
specify the correct class membership of unknown human 
faces through extrapolation from training datasets. While 
there are various approaches to developing FR systems 
[4][5], subspace methods, particularly those based on 
principal component analysis (PCA), have attracted 
intense interest over the last few decades due to their 
algorithmic simplicity and efficacy [6]–[8].  

In the context of FR, PCA is known as an eigenface 
method used to produce a compact set of principal 
components or eigenfaces of the original training dataset. 
In other words, PCA applies a linear transformation to the 
facial training samples and extracts a new subspace 
(eigenspace) that holds the key features of these samples. 
The fundamental assumption in PCA-based methods is 
that all the facial samples under consideration must be 
unfolded into column vectors, which, however, induce 
extensive computational costs and usage of space. 
Moreover, the use of vectorized facial images results in 
disregarding the fact that such images very often possess 
specific spatial structures. In order to obviate these 
implications, Yang et al. [9] developed the two-
dimensional PCA (2DPCA) method, where the feature 

space is specified through a direct use of 2D face images. 
In essence, 2DPCA learns a projection matrix reflecting 
the underlying structural information in the row direction 
of image-as-matrix training instances. This entails that 
once an image covariance (scatter) matrix is obtained, the 
projection matrix can be formed from its orthonormal 
eigenvectors that correspond to the dominant eigenvalues. 
Besides being less computationally demanding compared 
to PCA, 2DPCA allows for the spatial relationships 
between facial images to be preserved and more structural 
information to be incorporated into the extracted features, 
hence endowed with significantly better performance. 
However, one shortcoming of 2DPCA is that it uses more 
feature coefficients than the classical PCA for 
representing image content [10]. Since it was first 
introduced, 2DPCA has been widely reported as an 
effective, yet simple, technique for FR [11]–[13].  

Inspired by its success in face recognition and 
representation, many variants of 2DPCA [14]–[23] have 
been developed in an effort to improve its performance. 
The three notable examples are perhaps the bilateral-
projection-based 2DPCA (B2DPCA) [14], the two-
directional 2DPCA ((2D)

2
PCA) [15], and the diagonal 

PCA (DiaPCA) [16]. The B2DPCA has been formulated 
as a more general framework that employs a bilateral 
projection scheme, instead of unilateral projection scheme 
as in 2DPCA, in order to cut off redundant information in 
both directions of 2D images, bringing down the number 
of coefficients within the feature matrices. Similarly, 
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(2D)
2
PCA projects each facial image onto two separate 

(left and right) projection matrices simultaneously; the left 
one is obtained via alternative 2DPCA (A2DPCA) [15] 
and the right one via 2DPCA. Note that both B2DPCA 
and (2D)

2
PCA achieve very similar recognition results if 

the dimensionalities of the counterpart projection matrices 
are equal. In DiaPCA, the image scatter matrix is 
evaluated from the diagonalized facial images, such that 
the row and column information can be intermingled to 
exploit some useful local structures carried by the original 
images. Later, a group of methods have been developed as 
extensions of or modifications to (2D)

2
PCA, such as 

block-wise two-directional 2DPCA (B(2D)
2
PCA) [21] 

and sequential row-column 2DPCA (RC2DPCA) [17]. In 
parallel, other methods have focused on minimizing the 
reconstruction error in 2DPCA by replacing its default 
error measurement metric (L2-norm) with L1-norm [20], 
Lp-norm [22], or F-norm [23]. Thus, such methods are 
favorable for image compression.    

2DPCA and its variants share the same general 
structure: a set of feature matrices representing facial 
images and a distance function evaluating the similarities 
between the testing and training images in the feature 
space. Notwithstanding their apparent usefulness in 
providing a compact representation of a given dataset, 
2DPCA methods do not lend themselves to identifying the 
discriminative features of each class (subject), i.e., those 
features that capture class-specific invariant 
characteristics, with which further improvement in 
recognition accuracy can be brought. For instance, in 
2DPCA, while this representation is valuable from an 
image compression perspective, it means that each class 
contributes equally to the calculation of the image scatter 
matrix. Consequently, each column entry of the learned 
projection matrix is a linear combination of all the training 
images, making the identification of class-specific 
discriminant information almost impossible. In addition, 
as the elements of the projection matrix are evenly 
involved in the computation of the feature matrices, a test 
feature matrix may tend to correspond to different classes 
present in the dataset, especially when the number of 
eigenvectors that make up the projection matrix is 
relatively large. This could partly explain why the 
recognition accuracy of 2DPCA diminishes, to some 
extent, as additional eigenvectors are included in the 
projection matrix. Therefore, the features extracted by 
2DPCA methods are suboptimal from an image 
recognition standpoint.   

In order to enhance the recognition capability of 
2DPCA, this paper proposes a class-wise 2DPCA 
(CW2DPCA) framework, and demonstrates its 
effectiveness in FR. The premise behind CW2DPCA is to 
construct class-wise projection matrices, each holding the 
invariant characteristics of a particular class and class-
separation components. Consistent with this premise, the 
classification is performed in class-specific subspaces 
generated by the constructed projection matrices. Under 
this framework, the classification task is performed based 

on the rule that the feature representation of a test image 
belonging to a specific subject is more likely to lie close 
to that of the training set from the same subject. A nearest 
neighbor (NN) classifier is deployed to accomplish this 
task.  

It is worthwhile to point out that there are very few 
attempts to exploit the idea of face-specific/class-wise 
subspaces representation for developing FR methods. 
Shan et al. [24] proposed to use face-specific subspaces 
modeled by applying PCA to each subject independently. 
Apart from the inherent limitations of the PCA itself, this 
approach is far from being practical because it requires 
enlargement of the training set of each subject with 
additional or virtually derived facial images, so as to be 
able to infer sufficient and well representative face-
specific principal components. Recently, Turhan and 
Bilge [25] tried to develop FR method based on class-
wise 2DPCA operated in Haar-like space, where the 
projection matrix for each particular class is found by 
minimizing the within-class scatter. Admittedly, the 
minimization of within-class scatter does not yield any 
discriminative or class-separation information, and it only 
reflects classes distribution [26].    

The rest of this paper is structured as follows: Section 

2 presents a brief review of the related work; details of the 

proposed CW2DPCA are offered in Section 3; the 

experimental results are reported in Section 4, and, finally, 

Section 5 concludes the paper. 

2. BRIEF REVIEW OF RELATED WORK  

A. Two-dimensional PCA (2DPCA) 

2DPCA [9] attempts to learn a projection matrix 
whose column vectors maximize the scatter of the 
projected training instances. Note here that these column 
vectors are the orthonormal eigenvectors of the image 
scatter/covariance matrix associated with the dominant 
eigenvalues. More formally, let 𝑭 = {𝑭𝑖}𝑖=1

𝑐 , 𝑭𝑖 ∈ ℝ𝑚×𝑛, 
be a training dataset composed of 𝑐 facial samples divided 
into exclusive classes. The image covariance matrix 
(𝑮2𝐷𝑃𝐶𝐴) is computed as follows: 

𝑮2𝐷𝑃𝐶𝐴 =
1

𝑐
∑(𝑭𝑖 − 𝑭̅)𝑇

𝑐

𝑖=1

(𝑭𝑖 − 𝑭̅), #(1)  

where 𝑭̅  is the total mean of the training dataset and 
𝑮2𝐷𝑃𝐶𝐴 ∈ ℝ𝑛×𝑛 . It follows, by performing eigenvalue 
decomposition on the 𝑮2𝐷𝑃𝐶𝐴 matrix, that the selected 𝑑 
most dominant eigenvectors form the projection matrix 

𝑼 = [𝒖1, ⋯ , 𝒖𝑑] ∈ ℝ𝑛×𝑑. This projection is then used to 
transform the training images into feature matrices, 
producing the following set of training feature matrices: 

𝒀 = {𝒀𝑖}𝑖=1
𝑐 , 𝒀𝑖 = 𝑭𝑖𝑼 ∈ ℝ𝑚×𝑑 . #(2)  

To classify a given test sample 𝑹 ∈ ℝ𝑚×𝑛, its feature 

matrix 𝑿 = 𝑹𝑼 ∈ ℝ𝑚×𝑑  is matched against all the 
training feature matrices and is assigned the identity of the 
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class that has the highest similarity score, most often via 
an NN technique. 

B. Two-directional 2DPCA ((2D)
2
PCA) 

In [15], 2DPCA is extended to operate in both row and 
column directions of the sample images, and is termed 
two-directional 2DPCA ((2D)

2
PCA). The goal of 

(2D)
2
PCA is to find two (left and right) projection 

matrices to project facial images onto a common space. 
The right projection matrix is actually the 𝑼 of 2DPCA, 
while the left, 𝑽 = [𝒗1, ⋯ , 𝒗𝑞] ∈ ℝ𝑚×𝑞, is formed by the 

𝑞  most dominant eigenvectors of the alternative image 
covariance matrix (𝑮𝐴2𝐷𝑃𝐶𝐴), which is given by  

𝑮𝐴2𝐷𝑃𝐶𝐴 =
1

𝑐
∑(𝑭𝑖 − 𝑭̅)(𝑭𝑖 − 𝑭̅)𝑇 ,

𝑐

𝑖=1

#(3)  

where 𝑮𝐴2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑚.  Like 2DPCA, a set of 𝑐 training 
feature matrices can be obtained as follows:  

𝒀 = {𝒀𝑖}𝑖=1
𝑐 , 𝒀𝑖 = 𝑽𝑇𝑭𝑖𝑼 ∈ ℝ𝑞×𝑑 . #(4)  

For any test image  𝑹 , the feature matrix 𝑿  is 

computed as 𝑿 = 𝑽𝑇𝑹𝑼 ∈ ℝ𝑞×𝑑 . The feature matrices 
are then used to represent facial images for classification.  

The one advantage of (2D)
2
PCA over 2DPCA is that 

the former performs faster during the testing phase, since 
it requires fewer coefficients to represent an image. But as 
regards recognition accuracy, (2D)

2
PCA only achieves a 

slight improvement over 2DPCA.  

Similarly, in [14], 2DPCA is extended to bilateral-
projection-based 2DPCA (B2DPCA), in which the 
projection matrices are learned simultaneously. However, 
compared to (2D)

2
PCA, B2DPCA takes more training 

time because the projection matrices are computed 
through iterative processes. Interestingly, both (2D)

2
PCA 

and B2DPCA deliver very similar recognition 
performances when their counterpart projection matrices 
are the same size.  

C. Diagonal PCA (DiaPCA) 

In [16], diagonal PCA (DiaPCA) is developed to 
enhance the recognition accuracy of 2DPCA. DiaPCA 
aims at uncovering more local structural information by 
learning a projective matrix from the diagonalized version 
of the original facial images. Conceptually, DiaPCA is 
quite similar to 2DPCA, with the exception that it replaces 
the image covariance matrix with a diagonal covariance 
matrix. In this sense, after computing the diagonal 
covariance matrix ( 𝑮𝐷𝑖𝑎𝑃𝐶𝐴 ), the remainder of the 
procedure is identical to the 2DPCA procedure. As such, 
𝑮𝐷𝑖𝑎𝑃𝐶𝐴 is obtained by means of (1) with the diagonalized 
version of 𝑭, and the generation of the feature matrices 𝒀 
and 𝑿 follows that in 2DPCA.   

The advantage of DiaPCA is that it takes into 
consideration the global structure of the training dataset as 
well as certain salient facial structures to model a more 

expressive feature space than those modeled by 2DPCA 
and (2D)

2
PCA. On the other hand, although 2DPCA, 

(2D)
2
PCA, and DiaPCA exhibiting relative differences in 

the required time for training or testing phases, their 
computational performances are generally comparable 
with respect to the overall time expense.  

Moreover, while the aforementioned methods are 
guaranteed to produce intrinsic representation of the 
underlying face dataset, they, however, only address the 
global structure of the facial samples. Indeed, this is a 
consequence of the fact that the projection matrices of 
these methods are solved by maximizing the total scatter 
of the transformed samples, leading to disregard both the 
inherent characteristics of each individual class and class 
separability information, which are essential in satisfying 
the requirements for modelling discriminant feature 
spaces. 

3. CLASS-WISE 2DPCA (CW2DPCA)  

In contrast to 2DPCA, which finds a projection matrix 
that maximizes the total scatter in the modeled feature 
space, CW2DPCA constructs class-wise projection 
matrices, each one containing the projection axes that 
maximize the scatter of projected sample images of a 
particular class and the principal components that 
maximize between-class separability. This ensures that for 
a given training dataset, CW2DPCA is more likely to 
model distinct feature subspaces, which in turn facilitating 
the subsequent classification task. That is, within each 
subspace, the similarity measurement is performed to 
evaluate the identity of a test sample, and the 
classification decision is taken from the subspace that 
exhibits the highest similarity measure.   

The proposed CW2DPCA-based FR method is 
implemented through two major stages. The first is the 
feature extraction stage, at which the class-specific feature 
subspaces are derived from the training dataset. The 
second stage assigns a test image to one of the training 
classes. 

A. Feature Extraction  

In view of the fact that sample images of the same 
class are naturally highly correlated, the application of 
2DPCA to each class separately allows to select the most 
discriminative features within individual classes. In line 
with this, the suggested method initially applies 2DPCA 
to each class present in the training dataset. To do so, 

suppose that there are 𝑝 classes 𝑭𝑘, 𝑘 = 1, ⋯ , 𝑝, in the 𝑭 
training dataset, where each class contains 𝑣 images, and 

the 𝑘th class is expressed as 𝑭𝑘 = {𝑭𝑖
𝑘}𝑖=1

𝑣 . Based on the 
2DPCA concept, CW2DPCA defines the image scatter 

matrix (𝑮𝐶𝑊2𝐷𝑃𝐶𝐴
𝑘 ) for the 𝑘th class as:  

𝑮𝐶𝑊2𝐷𝑃𝐶𝐴
𝑘 =

1

𝑣
∑(𝑭𝑖

𝑘 − 𝑭̅𝑘)𝑇

𝑣

𝑖=1

(𝑭𝑖
𝑘 − 𝑭̅𝑘), #(5)  
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where 𝑭̅𝑘  refers to the mean image of the 𝑘th class and 

𝑮𝐶𝑊2𝐷𝑃𝐶𝐴
𝑘 ∈ ℝ𝑛×𝑛. Also, the projection matrix for the 𝑘th 

class, 𝑼𝑘 = [𝒖1
𝑘 , ⋯ , 𝒖𝑑

𝑘] ∈ ℝ𝑛×𝑑, is obtained by applying 

eigenvalue decomposition to the 𝑮𝐶𝑊2𝐷𝑃𝐶𝐴
𝑘  and taking the 

first 𝑑 dominant eigenvectors. 

Although each subject possesses specific invariant 
characteristics, human faces do share common configural 
properties across various subjects. Without taking this 
observation into account, the class-wise projection 
matrices may retain similar global geometrical 
information, in particular those conveyed by the class 
means, thereby limiting the degree of class-separation. A 
possible way to account for this and at the same time to 
ensure wider separation between the different classes is to 

augment 𝑼𝑘  with the orthonormal eigenvectors that 
maximize the between-class scatter (𝑺 ) [27], which is 
given, in the case of image-as-matrix, by the following 
expression [28]:  

𝑺 = ∑ 𝑣

𝑝

𝑘=1

(𝑭̅𝑘 − 𝑭̅)𝑇(𝑭̅𝑘 − 𝑭̅), #(6)  

where 𝑺 ∈ ℝ𝑛×𝑛 . Accordingly, let the columns of 
𝑼𝑠 = [𝒖1

𝑠, ⋯ , 𝒖𝑟
𝑠], 𝑼𝑠 ∈ ℝ𝑛×𝑟 , be the first 𝑟 orthonormal 

eigenvectors of 𝑺  corresponding to the leading 

eigenvalues. By concatenating 𝑼𝑘  and 𝑼𝑠  into a single 
matrix, followed by orthonormalizing the columns of the 
concatenated matrix using the well-known Gram–Schmidt 
(QR) orthonormalization procedure, the final projection 
matrix for the 𝑘 th class is obtained and denoted by 

𝑾𝑘 = [𝑼𝑘𝑼𝑠] ∈ ℝ𝑛×(𝑑+𝑟). Recall that the significance of 

𝑾𝑘  is that its first 𝑑  columns preserve the invariant 
characteristics of the 𝑘th class, whereas the remaining 𝑟 
columns reflect the class separability. With this matrix, 
the feature matrices of training images in the 𝑘th class can 
be derived as follows:  

𝒀𝑘 = {𝒀𝑖
𝑘}𝑖=1

𝑣 , 𝒀𝑖
𝑘 = 𝑭𝑖

𝑘𝑾𝑘 ∈ ℝ𝑚×(𝑑+𝑟). #(7)  

From the above formulation, it is obvious that 
CW2DPCA learns 𝑝  projection matrices 𝑾1, ⋯ , 𝑾𝑝  to 
respectively transform the images from 𝑝  classes 
𝑭1, ⋯ , 𝑭𝑝  onto 𝑝 distinct subspaces 𝒀1, ⋯ , 𝒀𝑝 , such that 
each subspace encodes both the most expressive 
information of its corresponding class and the class-
separation information. This is in contrast to other related 
works, which endeavor to derive a common feature space, 
where neither class-specific discriminant information nor 
class separability are considered. Therefore, it is natural to 
expect that feature extraction through CW2DPCA would 
induce a more discriminative classification model.  

 

 

 

 

B. Classification Based on Class-wise Representation 

As mentioned earlier, the key property of CW2DPCA 
is that its ability to project the original training dataset into 
class-specific subspaces, each uniquely representing its 
respective class. Thus, each facial class is represented by a 
number of feature matrices corresponding to its training 
samples. Based on this representation, the classification of 
a given test sample is conducted by first projecting it onto 
each subspace, then employing an NN classifier to assign 
the class identity of the nearest subspace to the test 
sample.  

More specifically, assume that 𝑹 ∈ ℝ𝑚×𝑛  is a test 
image. The evidence for 𝑹 belonging to either of the 𝑝 
classes is the minimum distance, within each subspace, 
between the feature matrix of 𝑹 and the training feature 

matrices. Without loss of generality, let 𝑿𝑘 be the feature 
matrix of 𝑹 generated with the subspace basis of the 𝑘th 

class as 𝑿𝑘 = 𝑹𝑾𝑘 ∈ ℝ𝑚×(𝑑+𝑟). The minimum distance 

between 𝑿𝑘 and 𝒀𝑘 can be easily determined as follows:   

𝒟𝑘 = min𝑖(‖𝑿𝑘 − 𝒀𝑖
𝑘‖

𝐹
) ,        𝑖 = 1, ⋯ , 𝑣#(8)

where ‖∙‖𝐹  stands for Frobenius norm. By returning 
𝒟 = min (𝒟1, ⋯ , 𝒟𝑝) , the class membership of 𝑹  is 
simply the class identity of the returned minimum 
distance to 𝒟. 

4. EXPERIMENTAL RESULTS   

This section demonstrates the effectiveness of the 
introduced CW2DPCA in FR and compares it with the 
2DPCA [9], (2D)

2
PCA [15], and DiaPCA [16] on two 

publicly available face datasets: the ORL (AT&T 
Laboratories Cambridge) [29] and the Yale [30]. In all the 
experiments, the classification is carried out with NN 
technique based on the Frobenius norm. The performance 
of each method is evaluated regarding its recognition 
ability.   

A. Experiments on the ORL Dataset 

The ORL [29] face dataset comprises 400 images 

from 40 subjects. For each subject, there are 10 sample 

images with various face details, expressions, scales, and 

poses. All the images are gray-level with size of 112  92 

pixels. Fig. 1 displays the sample images of one subject 

from the ORL dataset. 

For evaluation purposes, four experimental scenarios 
are created through the partitioning of the ORL dataset 
into non-overlapping training and testing sets, such that 
the first 𝑓 (𝑓 = 2, 3, 4, and 5) samples of each subject are 
assigned as training set and the remainder as testing set. 
The training samples are used to compute the projection 
matrices of the 2DPCA, (2D)

2
PCA, DiaPCA, and 

CW2DPCA methods.  
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Figure 1.  Sample images of one subject in the ORL dataset. 

TABLE I.  COMPARISON OF CW2DPCA WITH 2DPCA, (2D)2PCA, AND DIAPCA ON THE ORL DATASET IN TERMS OF ARR (%) AND HRR (%). 

Method 
𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

ARR HRR ARR HRR ARR HRR ARR HRR 

2DPCA 81.68 86.87 84.84 88.57 88.38 91.66 89.51 93.00 

(2D)2PCA 81.71 86.68 84.90 88.07 88.43 91.58 89.76 93.00 

DiaPCA 83.17 85.87 86.26 89.57 89.83 92.08 91.18 93.50 

CW2DPCA 85.19 87.61 88.29 91.12 91.89 94.00 93.20 95.50 

 

Since, in general, the recognition rates vary with 

respect to the dimensionality of the produced feature 

matrices, the number of selected eigenvectors 𝑑 in each 

projection matrix is varied from 1 to 30 in increments of 

one. Note that for (2D)
2
PCA, the number of eigenvectors 

𝑞 in the left projection matrix 𝑽 is set to 27, as it yielded 

the best recognition rates on this dataset [15]. For the 

same reason, the number of eigenvectors 𝑟 used to form 

𝑼𝑠 in the class-wise projection matrices of CW2DPCA is 

fixed at 15.  

Fig. 2 exhibits the recognition performances of the 

2DPCA, (2D)
2
PCA, DiaPCA, and CW2DPCA on the 

ORL dataset. As can be seen, in all the stated scenarios, 

CW2DPCA comprehensively outperformed the other 

three methods and provided a more consistent recognition 

performance, despite the increased dimensionality of 

class-wise projection matrices.  

Table 1 presents a detailed comparison of the four 

methods in terms of the average recognition rate (ARR) 

and the highest recognition rate (HRR). In this 

comparison, CW2DPCA improved the ARR by about 

3.5% compared to the 2DPCA and (2D)
2
PCA. It also 

resulted in an up to 2% better ARR than DiaPCA. 

Furthermore, as shown in Table 1, CW2DPCA 

persistently attained the best HRR in all the experimental 

scenarios. For instance, in the case of 𝑓 = 5, the achieved 

HRR by CW2DPCA is 95.5%, outperforming 

2DPCA/(2D)
2
PCA and DiaPCA by a margin of 2.5% and 

2%, respectively. 

B. Experiments on the Yale Dataset  

The Yale dataset [30] contains 15 distinct subjects, 

with 11 frontal gray-level images per subject, 

characterizing various variations, including facial details, 

expressions, and lighting conditions. In the experiments 

on this dataset, the original images are cropped to 100  

80 pixels, according to the face’s location. Fig. 3 shows 

cropped images of a typical subject in the Yale dataset. 

In a same manner as with the ORL dataset, four 

experimental scenarios are adopted, in which the first 𝑓 

( 𝑓 = 2, 3, 4, and 5) samples from each subject are 

designated as training set, while the rest are employed for 

testing. In all the experiments, the number of eigenvectors 

𝑑 is varied in the range of 1 to 30, with an interval of one. 

Also, the numbers of eigenvectors 𝑞  and 𝑟 , used for 

building 𝑽 and 𝑼𝑠, are set to 20 and 8, respectively. 

Fig. 4 displays the recognition rates of the 2DPCA, 

(2D)
2
PCA, DiaPCA, and CW2DPCA methods from each 

experimental scenario. Again, it can clearly be seen that 

the recognition performance achieved with CW2DPCA is 

better than those achieved with the other three methods in 

this challenging dataset. Along with this, CW2DPCA 

exhibited the smallest performance degradation among all 

the competing methods.  

The ARRs and HRRs obtained by the four methods 

are reported in Table 2. In an overall sense, CW2DPCA 

increased the ARR by 3.3-4.25% compared to both 

2DPCA and (2D)
2
PCA. It also increased the ARR by 2-

2.75% compared to DiaPCA. Additionally, CW2DPCA 

consistently outperformed 2DPCA, (2D)
2
PCA, and 

DiaPCA in terms of HRR. For example, in the case of 
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𝑓 =  2, CW2DPCA reached an HRR of 68.19%, while 

2DPCA/(2D)
2
PCA and DiaPCA reached HRRs of 65.92% 

and 66.22%, respectively.  
 

 

(a) 

 

 

(b) 

 

 

(c) 

 

(d) 

Figure 2.   Recognition rates of the 2DPCA, (2D)2PCA, DiaPCA, and CW2DPCA on the ORL dataset: (a) 𝑓 = 2, (b) 𝑓 = 3, (c) 𝑓 = 4, and (d) 𝑓 = 5.  

           

         

Figure 3.   Cropped images of one subject from the Yale dataset.  
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TABLE II.  COMPARISON OF CW2DPCA WITH 2DPCA, (2D)2PCA, AND DIAPCA ON THE YALE  DATASET IN TERMS OF ARR (%) AND HRR (%). 

Method 
𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

ARR HRR ARR HRR ARR HRR ARR HRR 

2DPCA 60.96 65.92 78.00 81.33 84.15 88.57 86.85 91.11 

(2D)2PCA 60.99 65.92 78.13 82.50 84.30 87.62 86.92 90.00 

DiaPCA 62.29 66.22 79.50 83.33 85.54 89.74 88.40 92.11 

CW2DPCA 64.77 68.19 82.24 84.83 87.58 90.32 90.89 93.52 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4.  Recognition rates of the 2DPCA, (2D)2PCA, DiaPCA, and CW2DPCA on the Yale dataset: (a) 𝑓 = 2, (b) 𝑓 = 3, (c) 𝑓 = 4, and (d) 𝑓 = 

5.   

C. Computational Performance 

The CW2DPCA and the competitive methods are 

implemented in MATLAB running on an Intel Core i3 at 

2.26 GHz CPU speed with 4GB RAM. It may be 

interesting to mention that, due to the formulation of 

2DPCA-based FR methods, including the proposed 

CW2DPCA, is made up based on image-as-matrix 

calculation, their overall computational performances are 

expected to be relatively short and comparable. 

Nevertheless, as the CW2DPCA method requires explicit 

computation of 𝑝 sets of training feature matrices in the 
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training phase and 𝑝 test feature matrices in the testing 

phase, it is not surprising that the total computation time 

(TCT) of this method is slightly longer among the 

compared methods. Table 3 presents the TCT of each 

method when 𝑑 = 1 in the preceding experiments on the 

ORL and Yale datasets. It is apparent in this table that the 

TCT of CW2DPCA still fairly comparable to those of the 

2DPCA, (2D)
2
PCA, and  DiaPCA. 

 

TABLE III.  THE REQUIRED TCT (S) FOR THE 2DPCA, (2D)2PCA, DIAPCA, AND CW2DPCA. 

Method 
ORL Yale 

𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5 

2DPCA 0.175 0.187 0.204 0.225 0.482 0.538 0.570 0.598 

(2D)2PCA 0.173 0.181 0.197 0.218 0.470 0.522 0.553 0.587 

DiaPCA 0.209 0.238 0.250 0.277 0.529 0.613 0.669 0.727 

CW2DPCA 0.293 0.321 0.361 0.387 0.629 0.709 0.795 0.838 

 

D. Discussion  

According to the results of the conducted experiments 
on the ORL and Yale datasets, the CW2DPCA framework 
presented in this paper continuously produced promising 
recognition performance, in terms of ARR and HRR, 
across all the experimental scenarios. These results 
suggest that by capturing sufficient class-wise features 
and class-separation information, it is possible to model 
expressive and separable face-specific subspaces, which 
are much useful for classifying human faces.   

As expected, the experimental results revealed that 
CW2DPCA method always delivered better and more 
consistent recognition performances over the compared 
methods, namely 2DPCA, (2D)

2
PCA, and DiaPCA. 

However, the one drawback of this method is that it 
requires slightly more total computational time, which, 
fortunately, can be remarkably shortened by the pre-
computation of the class-specific projection matrices. 
Further, the results also showed that the four methods 
share similar behavior regarding the ARR and TCT, that 
is, both of them tended to increase as the size of training 
sets increased.   

5. CONCLUSIONS  

This paper introduced class-wise 2DPCA 
(CW2DPCA) as a variant of the classical 2DPCA 
technique. Unlike other 2DPCA-based FR methods that 
only consider the holistic information of a given training 
dataset, CW2DPCA emphasized the importance of class-
specific discriminant information to contribute to 
improving FR accuracy. Furthermore, it leveraged the 
strength of 2DPCA to prune redundant information within 
individual classes and the advantage of inter-class 
relationships to account for class-separation. As a result, 
the CW2DPCA method modeled discriminative subspaces 
and maximized the separation between the classes in the 
training dataset.  

The recognition performance of CW2DPCA was 
evaluated using the ORL and Yale face datasets. The 
reported experimental results verified the effectiveness of 
this method for FR. In addition, CW2DPCA outperformed 
2DPCA, (2D)

2
PCA, and DiaPCA methods, and yielded a 

more consistent recognition performance for the 
benchmark datasets. Overall, in terms of average 
recognition rate, the ordering was CW2DPCA > DiaPCA 
> (2D)

2
PCA ≥ 2DPCA. Finally, since CW2DPCA is a 

general framework, it can be utilized to solve other 
computer vision problems, such as multiple objects 
classification. 
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