

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.2 (Mar-2020)

E-mail: mouad.banane-etu@etu.univh2c.ma, belangour@gmail.com

 http://journals.uob.edu.bh

A New System for Massive RDF Data Management Using Big

Data Query Languages Pig, Hive, and Spark

Mouad Banane1 and Abdessamad Belangour1

1 Hassan II University, Casablanca, Morocco

Received 29 Sep. 2019, Revised 21 Dec. 2019, Accepted 30 Dec. 2019, Published 01 Mar. 2020

Abstract: The era of big data has emerged. The volume of generated data has never been greater. Massive quantities of data are

stored on a huge number of servers that are inter-connected and share their storage space. Computation methods have been developed

to perform computation operations directly on these machines, previously used mainly for storage. Tools such as Hive, Pig, and

Spark provide the means for data query and analysis but are not suitable for Semantic Data. For this kind of data, a specialized tool

called SPARQL is dedicated to query semantic data represented by the Resource Description Framework or RDF. The aim of our

work is to transform a given SPARQL query into a Hive program, a Pig program or a Spark script according to the user's choice. To

achieve this goal, we propose a Model-Driven Approach which consists of creating a metamodel for each of these tools, to define a

mapping between SPARQL metamodel on one hand and each of the previous Big Data query languages (Pig, Hive, and Spark). The

transformation is then performed using Atlas Transformation Language or ATL. We conducted that an experiment on three datasets

containing a large volume of distributed RDF data on a powerful server cluster to validate our approach.

Keywords: Semantic Web,RDF, SPARQL, Big Data, Hive, Pig, Spark.

1. INTRODUCTION

Storing information from the semantic web implies
being able to potentially manage very large volumes of
data. Hence the need to opt for a necessarily distributed
solution to be able to scale up. The problem encountered
at present is that the benchmarks for RDF are intended for
centralized architectures and do not take into account
certain aspects specific to the resolution of queries on a
distributed system. Indeed, the main advantage of
distributed storage, which is to more easily allow scaling
up, is offset by constraints linked to the algorithm applied
to retrieve data from the nodes constituting the distributed
system and then aggregate them.

On the other hand, with the advent of digital
technology and smart devices, a huge amount of digital
data is generated every day. This sharp increase in data,
both in size and form, is mainly due to social networks
that allow millions of users to share information express
and disseminate their ideas and opinions on a topic, and
show their attitudes towards content. All of these actions
stored on social media generate a massive body of opinion
that provides an opportunity for automated data mining
and analysis systems to determine Internet user trends.
Several researchers have shown a keen interest in using

this information to predict human behavior in areas as
diverse as medicine, politics, marketing, and so on.

It is in this context that we are witnessing the
emergence of a new massive data management system
called Hadoop. Hadoop is an open source framework
developed in Java, part of the projects of the Apache
Foundation. It has been designed to:

 Store very large volumes of data;

 Support data in various formats, structured,
semi-structured or unstructured.

Hadoop is based on a set of machines that form a
Hadoop cluster. Each machine is called a node. It is the
addition of storage and processing capabilities of its nodes
that ensures a large storage system and computing power.
The storage system is called the Hadoop Distributed File
System (HDFS) [20]. The computing power is based on
the MapReduce parallel programming paradigm [21].
There is the reason to believe that MapReduce will
become the normal mode of data processing in the digital
age and therefore that Hadoop will become the default
tool for data processing. The problem is that the
MapReduce is a very low level language, that is to say,
very close to the machine; it implies that the developer
knows how to interact with the cluster, which can be very

http://dx.doi.org/10.12785/ijcds/090211

260 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

difficult for a new developer in the world of parallel
processing, or business users. One of the ways to simplify
MapReduce development and Hadoop, in general, is to
provide what is called an abstraction language. An
abstraction language is a syntax language that is relatively
close to human language and allows you to express
business problems in the form of simple queries. The
abstraction comes from the fact that when the user
expresses his need in the form of a request, this request is
transformed below into machine instructions. Thus, the
abstraction language is a layer that masks the complexity
of expressing problems directly in low-level language as a
developer would. The higher the level of abstraction
offered by the language, the further away from the
machine and the easier it is for users. The Apache
foundation currently provides three abstraction languages
for MapReduce: Hive, Pig and Cascading. These three
languages, designed for a non-developer audience, make
it possible to express MapReduce jobs in a programming
style similar to that of SQL, familiar to users.
Subsequently, these languages transform written requests
into MapReduce Jobs that are submitted to the cluster for
execution. Overall, Hive offers a higher level of
abstraction language that Pig and Pig offer higher level
abstraction than Cascading. In this article, we will only
study Hive and Pig. Cascading is too low for business
analysts only familiar with SQL.

The rest of this document is organized as follows. In

section 2 we present the research work, and in the third

section, we discuss the technologies used in this work,

such as the RDF standard, the Pig, Hive, Spark languages,

and model-driven engineering. Section 4 presents the

architecture of our system, then we illustrate in Section 5,

the results of the experiments. The last section concludes

the work and presents our future work.

2. RELATED WORK

Numerous research studies have proposed methods for
querying semantic Web data stored in RDF format to
meet various needs. A study [2] evaluates approaches to
managing large volumes of RDF data based on Big Data
technologies. In the RDFSpark[3,4]. Spark is used to
execute complex SPARQL queries on massive RDF data.
And for querying RDF data stored in an RDFMongo
triplestore [5], we can use the query language of
MongoDB to handle this RDF data.

The work presented in [6] proposes a query system for
Linked Data which uses the equivalence relationships
between resources of different databases to propagate the
search for results of a query. This approach first queries a
known database of Linked Data and then uses the owl:
sameAs relationships of its resources to other databases to
find other results. This system fully uses the “Linked”
nature of Linked Data. Unlike our method, this approach
does not require having a list of Linked Data databases to
query as long as the starting database is sufficiently linked
in Linked Data. It nevertheless encounters latency time

problems when querying other databases, while our
method is designed to limit these latency times.

The SPARQL 1.1 standard defines the SERVICE
keyword making it possible to specify a particular
endpoint for parts of the body of a federated SPARQL
request, [7,8]. Similar to the previous work, the paper [9]
proposes a system for optimizing the sending of federated
SPARQL queries by parallelizing the processing of
queries to each database. This system divides a request
into different sub-requests according to their selectivity
and distributes them to the different databases according
to a heuristic based on their latency times.

In [10], the authors present the MapReduce
programming model and its implementation for massive
data processing. In this model, while the map function
filters the data, the reduce function aggregates them.
MapReduce jobs are divided into two sets of tasks, map
tasks and reduce tasks, which are distributed across a set
of servers. This allows developers, without any experience
with parallel and distributed programming, to easily use
such a system. With all these advantages MapReduce is
quite complicated hence the emergence of new Big Data
data processing tools such as Hive [11], Pig [12], and
Spark [13], these tools provide an intermediate layer
between User and MapReduce since a Pig program, or
Hive is finally transforming into a MapReduce job.

The existing work that deals with the processing of
SPARQL queries on Hadoop / Big Data is grouped in
[14], this survey discusses and compares these systems by
measuring the loading time and the execution time.

PigSparql [15] translates complex SPARQL queries at
the level of algebraic presentations such as the syntax tree,
and the algebra tree, into a program of the Latin Pig
language, this program finally is translated into
MapReduce jobs. Note that a SPARQL query is addressed
to the algebra part and that the expression of the SPARQL
algebra is interpreted as a tree, this expression will be
evaluated upwards through an optimizer. The SPARQL
query processing time concerns the size of the RDF data
proportionally. The work [16] presents a comparative
study of SPARQL query management systems in a
distributed environment using NoSQL databases
management systems such as HBase [17],
Cassandra[21,22], and MongoDB.

San et al. [17] present a distributed and scalable RDF
triplestore based on the HBase database, the RDF triples
are stored in column format, and to manage these data
RDF San and al proposes a new MapReduce strategy for
SPARQL BGP processing which stands for Basic Graph
Pattern, this strategy is suitable for the storage scheme in
HBase. To process a typical BGP, this technique uses
several MapReduce jobs. In each job, it uses a greedy
method to first select the join key and then eliminate
several triple patterns. Mammo et al.[18] present a
comparative study of two presto and Hive systems to

 Int. J. Com. Dig. Sys. 9, No.2, 259-270 (Mar-2020) 261

http://journals.uob.edu.bh

measure the performance of each in the processing of
large RDF data.

In RDF databases, resources are described by their
links to other resources and their links to literal values.
The semantics of RDF databases are therefore contained
in these relationships. However, there is a gap between the
structured representation that the user perceives and the
physical representation in an RDF database. Querying a
SimplePARQL query [19] is done via a transparent
rewriting of several SPARQL queries through the
endpoints of the Linked Data databases. These multiple
SPARQL queries, necessary to determine the inaccurate
elements of the user-defined SimplePARQL query, have a
direct impact on the execution time. With this solution,
users build structured queries in an intuitive way and
without requiring prior knowledge of the base vocabulary
and IRIs (Internationalized Resource Identifier). Among
the areas that require powerful tools to handle large
volumes of Semantic Web data we find the
recommendation systems [31], a recommendation system
based entirely on SPARQL named RecSPARQL was
introduced in [32]. The proposed tool extends the syntax
and semantics of SPARQL to allow flexible and generic
collaborative filtering and a recommendation based on
RDF graphs. In [33], the authors present an event
recommendation system based on Linked Data and the
diversity of users. A semantic extension of the SVD+++
model named SemanticSVD+++ is presented in [34] it
integrates semantic categories of items in the model.

3. BACKGROUND

We present in this section the different tools and
technologies used in this work as: SPARQL, Apache
Hive, Apache Pig, Spark and Model Engineering.

A. Semantic Web: RDF & SPARQL

Thanks to the efforts of the World Wild Web
Consortium (W3C), the information available on the web
can be processed automatically by machines, not by
humans. The idea is to make the Web intelligent, where
information will no longer be stored but understood by
machines to provide users with relevant answers. Several
languages have been developed as part of the Semantic
Web and most of these languages are based and use XML
syntax. OWL [25] and RDF [26] are the most important
languages of the Semantic Web, they are based on XML.
RDF increases the ease of automatic processing of web
resources. The RDF is the first W3C standard for
enriching web-based resources with detailed descriptions.
Descriptions can be characteristic of resources, such as the
author or the content of a website. These descriptions are
metadata. Enriching the Web with metadata allows the
development of what is called the Semantic Web. RDF is
also used to represent semantic graphs corresponding to a
specific knowledge modeling.

 RDF is a language developed by the (W3C) to put
a semantic layer on the Web. It allows connection
of web resources using directed and tagged arc.
The structure of RDF documents is complex. An
RDF document is a set of <subject, predicate,
object> triples. In addition, the predicate (also
called property) links the subject (resource) to the
object (value). Thus, the subject and the object are
nodes of the graph connected by a directed edge
of the subject towards the object. Nodes and arcs
belong to "resource" types. A resource is
identified by a unified resource identifier (URI).

 SPARQL [27] is the standard language for
querying semantic graphs. The SPARQL
language has gradually become the reference
language for querying RDF datasets. SPARQL
has become an official recommendation of the
(W3C) dedicated to the interrogation of semantic
graphs. SPARQL was designed to handle
complex query structures.

B. Hive

Hive is an IT infrastructure similar to the Data
Warehouse that provides query and aggregation services
for very large volumes of data stored on a distributed
HDFS file system. Hive provides an SQL-based query
language called Hive Query Language (HiveQL), which is
used to address queries to data stored on the HDFS.
HiveQL also enables advanced users / developers to
integrate Map and Reduce features directly to their
queries to cover a wider range of data management issues.
When you write a query in HiveQL, this query is
transformed into a MapReduce job and submitted to the
JobTracker for execution by Hive.

C. Pig

Pig is a runtime environment for interactive data flows
under Hadoop. It is composed of 2 elements:

 A data flow expression language called the
Latin Pig;

 And an interactive environment for executing
these data flows;

The language offered by Pig, the Latin Pig, is roughly
similar to a Scripting language such as Perl, Python, or
Ruby. However, it is more specific than the latter and
describes itself better on the term "data flow language". It
makes it possible to write queries in the form of sequential
flows of source data to obtain "target" data under Hadoop
in the manner of an ETL. These streams are then
transformed into MapReduce functions which are finally
submitted to the jobtracker for execution. To put it simply,
Pig is the Hadoop ETL. Programming in Pig Latin
amounts to describing as independent but nested streams
how data is loaded, transformed, and aggregated using
specific Pig instructions called operators. The mastery of
these operators is the key to mastering programming in

262 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

Latin Pig, especially since they are not numerous in
relation to the Hive for example.

D. Spark

Before explaining what Spark is, remember that for an
algorithm to run on multiple nodes of a Hadoop cluster, it
must be parallelizable. Thus, an algorithm is said to be
"scalable" if it is parallelizable (and thus can benefit from
the scalability of a cluster). Hadoop is an implementation
of the MapReduce calculation model. The problem with
MapReduce is that it is built on a Direct Acyclic Graph
model. In other words, the sequence of MapReduce
operations runs in three direct and straightforward
sequential phases (Map -> Shuffle -> Reduce), no phase is
iterative (or cyclic). The direct acyclic model is not
suitable for certain applications, especially those that
reuse data across multiple operations, such as most
statistical iterative algorithms, for the most part, and
interactive data analysis queries. Spark is a response to
these limitations; it is a calculation engine that performs
distributed processing in memory on a cluster. In other
words, it is a distributed in-memory calculation engine.
Compared to the MapReduce that works in batch mode,
the Spark calculation model works in interactive mode, ie,
mounts the data in memory before processing it and is
therefore very suitable for Machine Learning processing.

E. Model Driven Engineering

Since the beginning of software engineering, the size
and complexity of the software developed have been
growing faster and faster, while the constraints of
development time, quality, maintenance, and evolution
are always stronger. In this context, software engineering
techniques are constantly evolving to manage the
complexity and ensure the quality of the software product.
These techniques are grouped under Model-Driven
Engineering (MDE)[28]. This term reflects the evolution
of the software development process from
"contemplative" use to "productive" use of models. Where
models were used as elements of design, discussion or
documentation, the idea of MDE is to use them as an
input to the development process. In practice, this requires
formalizing the models to make them usable by the
machine and to produce programs for processing models.
In the terminology of the MDE, these programs are
grouped under the term model transformations. The two
originalities of the MDE are, on the one hand, more
formal models and, on the other hand, model
transformation programs. In order to ensure the quality of
the development process, and therefore the quality of the
software produced, it is necessary to ensure the quality of
the models and the correction of the transformations used.

4. SYSTEM ARCHITECTURE

The design of our system contains three parts: the
source metamodel part, the target metamodel, and the
transformation between these two metamodels. The
source metamodel that is unique is the SPARQL
metamodel, but for the target metamodel, we are going to
create a generic metamodel that acts as a metamodel of
Big Data query language, three metamodels of Apache
Hive, Apache Pig and Spark. The transformation step
makes it possible to take in input the SPARQL request
and transform it by using the ATL[29] transformation
language into a Hive, Pig program or a Spark script
according to the user's choice.

A. Hive metamodel

Hive allows you to write queries in a language
inspired by SQL and called HiveQL. These queries are
transformed into MapReduce jobs. To work, just define a
schema that is associated with the data. This schema gives
the names and types of the columns and structures the
information into tables that can be used by HiveQL. A
Hive SELECT query contains the following clauses:
WHERE, Having, Group By, and Order By. The figure 1
below shows our Hive metamodel.

Figure 1. Proposed Hive metamodel

B. Pig metamodel

Pig makes it possible to write useful processes on data,
without suffering the complexity of Java. The goal is to
make Hadoop accessible to non-computer scientists:
physicists, statisticians, mathematicians. . . Pig proposes a
scripting language called "Pig Latin". This language is
called "Data Flow Language". Its instructions describe
processes on a data stream. Conceptually, it looks like a
Unix tube; each command modifies the flow of data that
passes through it. Pig Latin also makes it possible to build
much more varied and non-linear treatments. Pig
translates Pig Latin programs into MapReduce jobs and
integrates results into the flow.

 Int. J. Com. Dig. Sys. 9, No.2, 259-270 (Mar-2020) 263

http://journals.uob.edu.bh

Figure 2. Proposed Pig metamodel

C. Spark metamodel

The main object of Spark is the RDD: Resilient

Distributed Dataset. It is a device for processing a

collection of data by robust parallel algorithms. A RDD

does not really contain data, only a treatment. This

abstraction makes it possible to manipulate data

distributed on several machines as simply as centralized

data. Spark relies on the MapReduce paradigm to offer

algebraic data manipulation operations (selection,

projection, grouping, etc.) that transform RDDs into other

RDDs. An RDD can thus be defined as a sequence of

algebraic operations and can be recalculated if necessary.

This allows Spark to keep data in memory according to

requests and to guarantee their recovery in the event of a

failure. Unlike Hadoop and Hive, Spark stores

intermediate results in memory and moves them to disk

only when necessary. Memory storage allows Spark to

avoid congestion due to disk I/O, especially for the

intermediate results of a map task. The notion of RDD

also allows Spark to define the partitioning of data at the

time of their creation.

Figure 3. Proposed Spark metamodel

Figure 4. Proposed Spark metamodel with meta-class properties

D. Proposition of Big Data query Language metamodel

To realize a metamodel big data query, we noticed that
the queries of all these Big Data querying systems are
transformed in the background to the MapReduce Jobs,
hence the idea of proposing a generic metamodel which
will be the metamodel of MapReduce. Figure 5 presents
the proposal of Big Data query language metamodel.

Figure 5. Proposed Big Data query Language metamodel

E. SPARQL metamodel

 To build a SPARQL metamodel it is necessary to
know its general structure of the requests, first remark is
that this structure is similar to the structure of language
SQL, secondly we there are three types of requests
SPARQL: SELECT, CONSTRUCT, and ASK, we begin

264 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

by the SELECT query since it is the most used and the
most important this query can extract RDF data according
to conditions specified in the WHERE clause, so it is a
query, second query a constructive query, CONSTRUCT
allows to generates a new RDF graph that completes the
queried graph. Each SELECT query contains the
following clauses: SELECT, FROM, and the condition
clause WHERE.

Figure 6. Proposed SPARQL metamodel

The following figure 7 illustrates an example of the

execution of our system which transforms a SPARQL

query into a program of PigLatin, HiveQL, and a Spark

script.

The choice is left to the user between the three

languages PigLatin, HiveQL, and Spark. The system can

simultaneously generate the translation of the SPARQL

query into these three Big Data languages, always

according to the choice of the user.

Figure 7. Example of converting a SPARQL query to Pig, Hive, and

Spak.

5. VALIDATION & EXPERIENCES

A. SPARAQL2Hive experiences

In order to measure the performance of our approach,

we used 3 instances of the LUBM[30] Benchmark. The

nine LUBM queries are run on these three datasets of

different sizes to better analyze the SPARQL2Hive

system. In the first part, we present the configuration and

context of our experiences, the version of Hive, and the

details of the datasets. Then we will analyze the results

obtained. Finally, we will evaluate the impact of the size

of the sample database on the quality of the model

transformation and we discuss the results of this

evaluation which are presented graphically and show the

efficiency of the SPARQL2Hive system.

SPARQL2Hive is implemented on the Hadoop 3.xy

version and the Hive 3.1.0 version on a machine with a

2.3 GHz Intel Xeon processor, this machine can store up

to 4 TB of hard disk storage and RAM storage of 16 GB.

LUBM1, LUBM2 and LUBM5 these three datasets used

in this experiment, they have the following triplets

number: 138 million triples, 275M and 689M and the

sizes of these three datasets are: 11.4 GB, 22, 77 GB and

56, 8 GB. The results obtained for the loading time of

these three games to give are presented in the table 1:

TABLE I. LOADING TIME FOR LUBM DATASETS

Dataset LUBM1 LUBM2 LUBM5

Loading Time(ms) 1,26 3,05 7,9

 Int. J. Com. Dig. Sys. 9, No.2, 259-270 (Mar-2020) 265

http://journals.uob.edu.bh

Table 2 illustrates the results of running the 14 LUBM

queries on the three instances of this Benchmark.

TABLE II. SYSTEM RUNTIME FOR LUBM QUERIES (MS)

Queries LUBM1 LUBM2 LUBM5

Q1 481 537 752

Q2 429 516 641

Q3 535 583 633

Q4 509 621 627

Q5 743 797 851

Q6 657 720 773

Q7 678 736 794

Q8 179 216 201

Q9 129 130 142

Q10 181 237 252

Q11 121 135 150

Q12 83 103 126

Q13 376 405 451

Q14 325 361 404

We compare our SPARQL to Hive system with Jena by

always using the three datasets LUBM1, LUBM2,

LUBM5, generally on the majority of the queries;

SPARQL2hive is more powerful than Jena at the runtime

of LUBM Benchmark queries. Figures 8, 9, 10, 11, 12,

13, 14,15, 16, 17,18,19,20 and 21 show the results of this

comparison for LUBM queries.

Figure 8. LUBM Q1 runtime(ms)

Figure 9. LUBM Q2 runtime(ms)

Figure 10. LUBM Q3 runtime(ms)

Figure 11. LUBM Q4 runtime(ms)

Figure 12. LUBM Q5 runtime(ms)

Figure 13. LUBM Q6 runtime(ms)

266 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

Figure 14. LUBM Q7 runtime(ms)

Figure 15. LUBM Q8 runtime(ms)

Figure 16. LUBM Q9 runtime(ms)

Figure 17. LUBM Q10 runtime(ms)

Figure 18. LUBM Q11 runtime(ms)

Figure 19. LUBM Q12 runtime(ms)

Figure 20. LUBM Q13 runtime(ms)

 Int. J. Com. Dig. Sys. 9, No.2, 259-270 (Mar-2020) 267

http://journals.uob.edu.bh

Figure 21. LUBM Q14 runtime(ms)

We can conclude from the analysis of the previous

results that SPARQL2Hive is scalable system, robustness

and fault tolerant. These results show the effectiveness of

SPARQL2Hive when the RDF data volume is very

important. SPARQL2Hive does not take a lot of time to

load the data. Because it performs a simple translation of a

given SPARQL query to a HiveQL program. Compared to

the Jena framework, whose operation becomes a little

complicated because the request goes through a set of

steps, which takes a lot of time, especially for loading

data, preparing data for recovery, much more that Jena

uses a lot of resources such as RAM.

B. Big Data query languages experiences

Now, we experimentally evaluate the efficiency and

scalability of our approach using the three Apache Hive,

Apache Pig, and Spark systems.

TABLE III. PIG, HIVE, AND SPARK RUNTIME USING LUBM1, LUBM2, AND LUBM3

Hive Pig Spark

LUBM1 LUBM2 LUBM5 LUBM1 LUBM2 LUBM5 LUBM1 LUBM2 LUBM5

Q1 481 537 752 511 752 817 437 614 803

Q2 429 516 641 463 621 502 369 536 511

Q3 535 583 633 502 619 688 548 592 673

Q4 509 621 627 631 642 594 516 637 592

Q5 743 797 851 670 803 692 671 786 664

Q6 657 720 773 664 761 685 654 728 687

Q7 678 736 794 682 718 727 628 705 730

Q8 179 216 201 134 227 169 151 251 108

Q9 129 130 142 86 116 123 123 134 216

Q10 181 237 252 213 235 261 157 253 259

Q11 121 135 150 155 148 187 69 143 174

Q12 83 103 126 92 125 165 104 119 156

Q13 376 405 451 429 412 509 341 422 521

Q14 325 361 404 406 353 453 368 410 423

268 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

Figure 22. Pig, Hive, and Spark Runtime using LUBM1, LUBM2, and LUBM3

We note by analyzing the results of the experiments
that the three systems are efficient for the management of
large volumes of RDF data, and the results are very
similar for the three systems and the three instances of
LUBM Benchmark, with a small note for LUBM1 Hive
and a bit faster than Pig and Spark for Q1, Q4, and Q14
queries versus Spark, which is good for some queries
running on the LUBM2 dataset and the same for Apache
Pig on the LUBM5 instance. We can conclude from this
analysis that the choice between the three Apache Hive,
Apache Pig, and Spark systems generally is not very
important because the results obtained almost the same for
all three systems on a dataset of the RDF data. Note also
that the query execution time that contains complex joins
is reduced compared to older systems like Jena, thanks to
the two Big Data principles ie. data storage distribution
and parallel processing of these data. Languages such as
PigLatin, HiveQL, and Spark have been proposed, with
the notable objective of expressing more powerful
operators (for example joins). These operators remain
executable in a MapReduce context, much like SQL is
executable in a system based on file browsing. Finally,
recently, systems offering richer alternatives to Hadoop
have started to emerge. The main motivation is to provide
support for algorithms that work by iteration. This is the
case for a large number of techniques in data mining
which progressively refine a result until obtaining an
optimal solution. MapReduce is (was) very poorly suited
to this type of execution. Systems like Spark or Flink are
major advances from this point of view. Spark allows you
to write complex treatments composed of several Map and
Reduce phases. We can also do this with YARN, but the
data from each phase must be stored on HDFS, to be
reused immediately after in the next phase. It takes a lot of
time and space. YARN jobs take a long time to launch
and execute. There are considerable latencies. On the
contrary, Spark makes much better use of the central
memory of the machines in the cluster and manages the

sequence of tasks itself. The treatments can be written in
several languages: Scala, Java, and Python. But this is not
the case for Hive and Pig.

CONCLUSION & FUTUR WORKS

Recently, the storage of large amounts of RDF data is
achieved using Big Data technologies like Hadoop and
NoSQL systems. To manipulate this data we will have to
use the SPARQL language above Hadoop and NoSQL
like the Apache Pig, Apache Hive and Spark systems. In
this paper, we presented a model-driven engineering-
based approach for the transformation of SPARQL
queries into an Apache Pig Latin program, Apache
HiveQL program, or a Spark script. In future works we
will study an area of application of our solution for
example e-Learning and recommendation systems, it is a
case study of the use of our system. In addition, As we
have seen in this work, the RDF language still poses many
performance issues at the moment, mainly for reasoning
over large volumes of knowledge. These efficiency needs
are found in the processing of semantic data flows, where
time is just as important. There are many methods to try to
solve them, most of them still in development. One of the
solutions studied concerns the use of RDF summaries: by
considering an RDF graph, it is possible to reduce the
volume of information it contains, while retaining
maximum precision, in order to be able to manipulate it in
a way more optimized. These summaries can be generated
in different ways depending on the systems. there is a
need to examine large volumes of data. Without effective
treatment methods, the result can be imprecise and very
long to obtain: it is, therefore, imperative to use methods
allowing to obtain the essential of the relevant elements
within a set of structured information.

 Int. J. Com. Dig. Sys. 9, No.2, 259-270 (Mar-2020) 269

http://journals.uob.edu.bh

REFRENCES

[1] Banane, Mouad, Allae Erraissi, and Abdessamad Belangour.
"SPARQL2Hive: An approach to processing SPARQL queries on
Hive based on meta-models." In 2019 8th International
Conference on Modeling Simulation and Applied Optimization
(ICMSAO), pp. 1-5. IEEE, 2019.

[2] Mouad Banane, and Abdessamad Belangour. « An Evaluation and
Comparative study of massive RDF Data management approaches
based on Big Data Technologies». International Journal of
Emerging Trends in Engineering Research. 7, nᵒ 7 (2019): 48 –
53.

[3] Banane, Mouad, and Abdessamad Belangour. "RDFSpark: a new
solution for querying massive RDF data using spark."
International Journal of Engineering & Technology 8, no. 3
(2019).

[4] Mouad Banane, and Abdessamad Belangour. « Querying massive
RDF data using Spark». International Journal of Advanced Trends
in Computer Science and Engineering 8, nᵒ 4 (2019): 1481 - 1486.

[5] Mouad Banane, and Abdessamad Belangour. « RDFMongo: A
MongoDB Distributed and Scalable RDF management system
based on Meta-model». International Journal of Ad-vanced Trends
in Computer Science and Engineering 8, nᵒ 3 (2019): 734 – 741.

[6] Hartig, Olaf, Christian Bizer, and Johann-Christoph Freytag.
"Executing SPARQL queries over the web of linked data." In
International Semantic Web Conference, pp. 293-309. Springer,
Berlin, Heidelberg, 2009.

[7] Prud’hommeaux, E. and Aranda, C. B. (2013). SPARQL 1.1
federated query. W3C recommendation, W3C.
http://www.w3.org/ TR/sparql11-federated-query/.

[8] Solbrig, Harold R., Eric Prud'hommeaux, Grahame Grieve, Lloyd
McKenzie, Joshua C. Mandel, Deepak K. Sharma, and Guoqian
Jiang. "Modeling and validating HL7 FHIR profiles using
semantic web Shape Expressions (ShEx)." Journal of biomedical
informatics 67 (2017): 90-100.

[9] Wang, Xin, Thanassis Tiropanis, and Hugh C. Davis. "Lhd:
Optimising linked data query processing using parallelisation."
(2013).

[10] Dean, J. and Ghemawat, S. (2004). MapReduce : Simplified data
processing on large clusters. In Sixth Symposium on Operating
System Design and Implementation, pages 137–150.

[11] Du, Dayong. Apache Hive Essentials: Essential techniques to help
you process, and get unique insights from, big data. Packt
Publishing Ltd, 2018.

[12] Wadkar, Sameer, Madhu Siddalingaiah, and Jason Venner. Pro
Apache Hadoop. Apress, 2014.

[13] Karau, Holden, and Rachel Warren. High performance Spark: best
practices for scaling and optimizing Apache Spark. " O'Reilly
Media, Inc.", 2017.

[14] Banane, Mouad, and Abdessamad Belangour. "A Survey on RDF
Data Store Based on NoSQL Systems for the Semantic Web
Applications." International Conference on Advanced Intelligent
Systems for Sustainable Development. Springer, Cham, 2018.

[15] Schätzle, Alexander, Martin Przyjaciel-Zablocki, and Georg
Lausen. "PigSPARQL: Mapping SPARQL to pig latin."
Proceedings of the International Workshop on Semantic Web
Information Management. ACM, 2011.

[16] Banane, Mouad, Abdessamad Belangour, and Labriji El Houssine.
"Storing RDF data into big data NoSQL databases." First
International Conference on Real Time Intelligent Systems.
Springer, Cham, 2017.

[17] Sun, Jianling, and Qiang Jin. "Scalable rdf store based on hbase
and mapreduce." 2010 3rd international conference on advanced
computer theory and engineering (ICACTE). Vol. 1. IEEE, 2010.

[18] Mammo, Mulugeta, and Srividya K. Bansal. "Distributed sparql
over big rdf data: A comparative analysis using presto and
mapreduce." 2015 IEEE International Congress on Big Data.
IEEE, 2015.

[19] Djebali, Sonia, and Thomas Raimbault. "SimplePARQL: a new
approach using keywords over SPARQL to query the web of
data." Proceedings of the 11th International Conference on
Semantic Systems. ACM, 2015.

[20] Dhruba Borthakur. 2008. HDFS architecture guide. HADOOP
APACHE Proj. Httphadoop Apache Orgcommondocscurrenthdfs.

[21] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: a flexible
data processing tool. Commun. ACM 53, 1 (2010), 72–77.

[22] Dimiduk, N., Khurana, A., Ryan, M. H., & Stack, M. (2013).
HBase in action. Shelter Island: Manning.

[23] Aniceto, R., Xavier, R., Guimarães, V., Hondo, F., Holanda, M.,
Walter, M. E., & Lifschitz, S. (2015). Evaluating the Cassandra
NoSQL database approach for genomic data persistency.
International journal of genomics, 2015.

[24] Chodorow, Kristina. MongoDB: the definitive guide: powerful
and scalable data storage. " O'Reilly Media, Inc.", 2013.

[25] Sirin, Evren, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur, and Yarden Katz. "Pellet: A practical owl-dl
reasoner." Web Semantics: science, services and agents on the
World Wide Web 5, no. 2: 51-53. Elsevier.

[26] Özsu, M. Tamer. "A survey of RDF data management systems."
Frontiers of Computer Science 10.3 (2016): 418-432. Elsevier.

[27] Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., & Lausen, G.
(2016). S2RDF: RDF querying with SPARQL on spark.
Proceedings of the VLDB Endowment, 9(10), 804-815.

[28] Schmidt, Douglas C. "Model-driven engineering." COMPUTER-
IEEE COMPUTER SOCIETY- 39.2: 25.

[29] Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A
model transformation tool. Science of computer programming,
72(1-2), 31-39. Elsevier.

[30] Guo, Yuanbo, Zhengxiang Pan, and Jeff Heflin. "LUBM: A
benchmark for OWL knowledge base systems." Web Semantics:
Science, Services and Agents on the World Wide Web 3.2-3: 158-
182. Elsevier.

[31] Lee, C. I., Hsia, T. C., Hsu, H. C., & Lin, J. Y. (2017, April).
Ontology-based tourism recommendation system. In 2017 4th
International Conference on Industrial Engineering and
Applications (ICIEA) (pp. 376-379). IEEE.

[32] Ayala, V. A. A., Przyjaciel-Zablocki, M., Hornung, T., Schätzle,
A., & Lausen, G. (2014, June). Extending sparql for
recommendations. In Proceedings of Semantic Web Information
Management on Semantic Web Information Management (pp. 1-
8). ACM.

[33] Khrouf, H., & Troncy, R. (2013, October). Hybrid event
recommendation using linked data and user diversity. In
Proceedings of the 7th ACM conference on Recommender
systems (pp. 185-192). ACM.

[34] Rowe, Matthew. "SemanticSVD++: incorporating semantic taste
evolution for predicting ratings." 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT). Vol. 1. IEEE, 2014.

270 Mouad Banane & Abdessamad Belangour: A New System For Massive RDF Data Management …

http://journals.uob.edu.bh

Mouad Banane is a PhD at the

Faculty of Sciences Ben M‘Sik,

Laboratory of Information

Technology and Modeling

(LTIM), Hassan II University of

Casablanca,

Morocco. His research fields:

Model Driven Engineering,

Semantic Web, Big Data and

Analytics and Internet of Thing .

Abdessamad Belangour is a

professor of higher education at

the Faculty of Sciences Ben

M‘Sik from Laboratory of

Information Technology and

Modeling (LTIM), Hassan II

University of Casablanca,

Morocco His major research

interest is on Systems engineering

Model Driven Engineering, Big

Data, and Internet of Thing.

