

International Journal of Computing and Digital Systems
 ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.4 (July-2020)

E-mail: majdouline.meddad@um5s.net.ma, chouaib.moujahdi@um5.ac.ma, mikram@ieee.org, rziza@fsr.ac.ma

http://journal.uob.edu.bh

A Hybrid Face Identification System using a Compressed

CNN in a Big Data Environment for Embedded Devices

Majdouline Meddad1, Chouaib Moujahdi2, Mounia Mikram1,3 and Mohammed Rziza1

1 LRIT Laboratory, Associated Unit to CNRST (URAC 29), Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat,

Morocco

2Scientific Institute of Rabat, Mohammed V University in Rabat, Morocco

3School of Information Science in Rabat, Morocco

Received 25 Nov. 2019, Revised 12 Jun. 2020, Accepted 23 Jun. 2020, Published 1 Jul. 2020

Abstract: Convolutional Neural Networks have proved an excellent efficiency in several modern applications, for example, systems

of face identification, like VGGFace and DeepFace, have achieved an excellent performance. However, these models still require

huge memory for computation that involves an expensive computation cost especially for applications that use huge databases and

that are running in embedded devices. To deal with this problem, we propose in this paper a hybrid identification system that is based

on the compression of the VGGFace model for the feature extraction step, and on the indexation and the parallelization for the

identification task. The proposed system has been evaluated in term of the Rank-1 prediction, the time of identification and the

speed-up using two public face databases. Our experimental results illustrate the ability of the proposed system to preserve the

performance while keeping a reasonable time of identification compared to two face identification systems based, respectively, on

the original VGGFace model and on the Inception V3 model.

The Compressed Model can be downloaded from this Github link: https://github.com/Majdouline-Meddad/CompressedVGGFace

Keywords: Face Identification, Deep Learning, VGGFace, CNN compression, Inception V3, Big Data, Embedded Devices.

1. INTRODUCTION

 Convolutional neural networks furnish a powerful

framework to deal with unstructured data such as images,

speeches to automatically extract pertinent features. These

networks achieved significant successes in various fields,

including clustering and object detection, classification,

semantic segmentation and face identification.

 Although the achievements in the literature are

brilliant in face identification like VGGFace [1],

DeepFace [2] and others. This CNN models still require

huge memory for computation that involves an expensive

computation cost especially for applications that use huge

databases and that are running in embedded devices.

 In general, to deal with this problem, only the

parameter sharing among all spatial locations, which is an

intrinsic technique of CNNs, is used to decrease the

number of parameters.

 Among the applications that use massive databases,

namely in literature scalability database [3][71], there are

face identification systems like Indian Aadhaar that

comprises millions of identities. These becomes more

challenging in the case of identification systems that are

running on embedded devices. In fact, we cannot run the

current CNN architecture in such devices because of their

very large sizes (for example, VGGFACE size is 553Mo

and DEEPFace size is 488Mo).

 In this paper, we are concerned with scalability and

the performance issues in embedded devices. In this

context, we have built a hybrid system that combines

three categories that deal with this problem: compression,

indexation and parallelization approaches.

 For the compression part of our model we have

compressed the VGGFace [1] by a factor of 5639x which

reduce the size from 566475ko to 312ko. For indexation

approaches, we have used the LBG algorithm [4]. For the

parallelization, we have used several workers to

parallelize the identification tasks [5].

 The rest of the paper is organized as follows. Section 2

presents the related works. Section 3 presents our

methodology to build our proposed hybrid system. Our

experimental results and comparisons are presented in

Section 4. Our conclusions and perspectives for future

work are provided in Section 5.

http://dx.doi.org/10.12785/ijcds/090416

https://github.com/Majdouline-Meddad/CompressedVGGFace

690 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

Diverse
approaches to

reduce the training
and Identification

time

Software Solution

[6-59]

Indexation

[54-59]

Lsh and its variants

[54-57]

Code Index

[58-59]

Training Phase

[6-53]

Compression

[6]

Pruning

[8-35]

Quantization

[8-19]

Sharing

[20-28]

Sructural Matrix

[29-35]

Low Rank
Factorization

[36-39]

Transferred
Convolutional

Filters

[40-42]

Knowledge
Distillation

[43-46]

Parallelization

[7]

Training

[47-49]

Processing

[50-53]

Hardware Solution

[60-62]

Compression

[62]

Parallelization

[62]

Figure 1 . Diverse approaches to reduce the training and identification time

2. RELATED WORKS

The scalability issue in embedded devices for
identification systems have given rise to new problems
and challenges related to the performance and execution
time. Due to these problems, there are currently many
research efforts underway to make such systems faster
and efficient. We believe that proposed solutions in the
literature can be divided into two main categories:
Software solution and Hardware Solution. Each category
can be further divided into several sub-categories (see
Fig.1). The main idea of software solution is the
optimization of techniques that can prompt the execution
time in order to be used in embedded devices. For
Hardware approaches, their key idea is to create chipsets
to compress and distribute learning among different
memories (S-Ram and D-Ram).

 Software solution can be divided into two sub-
categories: Training phase approaches and indexation
approaches The key idea of training phase approaches, is
to compress or distribute learning algorithms that take a
considerable time to find the right weights and biases in
order to optimize the model. For indexation approaches,
their main idea is to reduce the list of potential identities
that will allow the test images to be matched to a smaller
number of identities. Indexation approaches take place
usually during the identification phase.

 Training phase approaches can be divided into two
sub-categories: compression approaches [6] and
parallelization approaches [7]. Compression approaches
present the different techniques that aim to squeeze and
speed up the developed models. For parallelization
approaches, they use the big data technologies and the

cloud computing platforms to deal with the tremendous
amount of data.

 Compressing approaches can be divided as well into
four categories: Pruning approaches [8-35], Low-Rank
Factorization approaches [36-39], Transferred
Convolutional filters approaches [40-42] and Knowledge
Distillation approaches [43-46]. For pruning approaches,
the main idea is to remove parameters that are not
substantial to the model performance. For Low-Rank
Factorization approaches, the general idea is using
Tensor/Matrix decomposition to estimate informative
parameters and speed up the computation. For Transferred
Convolutional filters, the main idea is to use compressing
CNN models by the equivariant group theory that claims
that both convolutional weight sharing and translation
invariant property are important for good predictive

performance. For Knowledge Distillation approaches, the
general idea is to get shallower model by compressing
wide and deep ones, where the compressed model imitate
the function learned by the complex one by shifting
knowledge from a large model to small one.

 It should be noted that, Pruning approaches can be
divided into three categories: Quantization approaches,
sharing approaches and Structural Matrix approaches. For
Quantification approaches, they try either to compress the
network by reducing the number of bits required to
represent each weight or to directly learn activation binary
weights during the model training. For Sharing
approaches, faced the major problem which is decreasing
the complexity of a model and handle the overfitting
issue. For Structural Matrix approaches, the major idea is
to prune parameters by imposing the input x layer as a

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 691

http://journal.uob.edu.bh

parameterized structural matrix which can represented
with much few parameters.

 For quantification approaches, we can cite Gong et al.
[8] and Wu et al. [9] that have used k-means scalar
quantization to the values of the parameters. Vanhoucke et
al. [10] claims that 8-bit quantization of the parameters
can outcome a significant speed up with decreasing loss
accuracy. Gupta et al. [11] applied 16-bit fixed point
representation in stochastic based CNN training, which
safely minimized float point operations and memory
usage with much less loss in classification accuracy. Han
et al. [12] proposed a method that quantizes the link
weights, using the sharing of weight and thereafter-
applied Huffman coding, to additional reduce the rate of
memory usage. Choi et al. [13] proved as well that hessian
weight could be used to adjust the prominent network
parameter. In addition, many approaches are used to each
present each weight by 1-bit such as BinaryConnect[14],
BinaryNet [15], XNORNetwork [16]. Merolla et al. [17]
proved that specific weight distortions including binary
weights could be resilient while training a network with
back-propagation. Sang et al. [18] propose to compress
the Alex-net and VGG-16 models in three steps: firstly,
prune the neural network model to remove redundant
connections while keeping important connections.
Secondly, quantize weights in three steps: 1) identify the
shared weights that fall in the same cluster by using K-
means clustering. 2) generate a codebook then quantize
the weights with codebook generated before. 3) retrain the
code Book. Thirdly, apply the Huffman coding to have
more compressing and to take more advantage of the
biases distribution. Iandola et al. [19] proposed a
SqueezeNet method to compress Alex-net Model by using
8-bit/6-bit quantization, 100%/50%/33% sparsity and fire
module which contains 1x1 filters in his squeeze part
(squeeze convolutional layer) to replace 3x3 filters then
feeding into expanding part that contains a mix of 3x3 and
1x1 convolutional filters that help to limit the number of
the input image. The main drawback of these approaches
category is that the accuracy of the binary nets is
significantly good only when we are dealing with a thin
CNNs model.

 For Sharing approaches, many works are proposed to
reduce the non-crucial parameters of a model such as
Biased Weight Decay [20], Optimal Brain Damage [21]
and the Optimal Brain Surgeon [22], which minimize the
number of connections, based on Hessian loss function,
and perform high accuracy. Srinivas and Babu [23]
proposed a data-free pruning method to remove the
redundancy among neurons. Chen et al. [24] proposed a
method for parameter sharing based on creating a
HashedNets model to group weights into buckets using a
low-cost hash function. Han et al. [12] proposed a deep
compression method by deleting redundant connections
and quantizing the weights, then use Huffman Coding to
encode the quantized weights. Ullrich et al. [25] proposed
a simple regularization method based on soft weight

sharing, which uses pruning and quantization in one
simple retraining procedure. Lebedev et al. [26] imposed
some sparsity constraints on the convolutional filters to
realize structural brain damage method to reduce the
number of connections. Li et al. [27] use L1-norm
regularizers to prune and select less influencing filters.
Ioffe and Szegedy [28] proposed a method to perform the
normalization for each training mini-batch and make it a
part of the model architecture. The main drawback of
these approaches is that require, first, a manual setup
sensitivity of layers and second, more iterations to
converge the model while using regularizers.

 For Structural matrix approaches, Cheng et al.

[29][30] proposed an efficient and simple method, based

on circulant projections, that presere competitive error

rates. Yang et al. [31] introduced a novel adaptive

FastFood transform to reparametrize the matrix-vector

multiplication of fully connected layers. The work in

Sindhwani et al. [32] showed an effective new notion of

parsimony in the theory of structured matrices that can be

extended into diverse other structured classes, including

multi-level Toeplitz-like [33] matrices and block related

to multi-dimensional convolution [34]. Moczulski et al.

[35] proposed a general structured efficient linear layer

module applied of CNNs to reduce the number of

parameters and operations. The main drawback of these

approaches is hard to find a structural matrix because

there is no theoretical way to derive it out.

 For Low-Rank approaches, we can cite Jaderberg et
al. [36] and Yuri et al. [37] introduced a proposition to use
different tensor decomposition schemes to speed up the
training. Lebedev et al. [38] proposed Canonical Polyadic
(CP) decomposition for the kernel tensors that uses
nonlinear least squares. Tai et al. [39] introduced a new
algorithm for training low-rank constrained CNNs from
scratch by computing the low-rank tensor decomposition
and using Batch Normalization to transform the activation
of the internal hidden units. The main drawback of these
approaches category is that the implementation is not easy
to be performed since it involves some decomposition
operation that are computationally expensive. In addition,
these approaches perform low-rank approximation layer
by layer, which make them unable to perform a global
compression of parameters.

 For Transferred Convolutional filters approaches,
Cohen et al. [40] proposed equivariant group theory to
transfer convolution filters and compress CNN models. Li
et al. [41] and Zhai et al. [42] introduced a convolutional
layer from a set of base filters. We think that the main
drawback of this category is that these methods cannot
achieve competitive performance in wide and deep
architectures (i.e; Googlenet, Residual Net). In addition,
the transfer assumptions are sometimes too strong to
guide the learning, which makes the result unstable.

692 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

 For knowledge distillation approaches, we can cite
Bucilua et al. [43] that have exploited knowledge transfer
to compress the model by training classifiers by using
pseudo-data labeled, and then reproduce the output of the
original larger network. Hinton et al. [44] introduced a
knowledge distillation compression framework based on
the student and teacher paradigm that makes the training
of deep network easier and more efficient. Luo et al. [45]
introduced the knowledge by using the neurons in the
higher hidden layer, which preserves as much information
as the label probabilities. Chen et al. [46] proved that
instantaneously transfer of knowledge from a previous
network to each new deeper or wider network accelerates
the experimentation process by using the concept of
function-preserving transformation. The main drawback
of Knowledge distillation approaches is that can be
applied only during the classification task with a softmax
loss function. Moreover, the model assumptions are
sometimes too strict to make a competitive performance
with other types of approaches.

 For parallelization approaches (see Fig.1), they can be

divided into two sub-categories: Training approaches [47-

49] and processing parallelization approaches [50-53], For

training approaches, Deep Neural Network (DNN) is slow

in computation particularly when the size of data is wide

which requires the use of cloud computing platforms to

speed up the training. For processing parallelization

approaches, the main issue treated by this approach is that

a single computer can process a large-scale of information

in few time such as a video analysis, therefore, perform a

parallel-distributed process using the computational

resources (Big Data technologies) in a cloud platform.

 For training approaches, Sun et al. [47] implemented
and designed Map-Reduced neural network algorithm on
large-scale data for handwriting character recognition.
Basit et al. [48] proposed to improve the accuracy of a
naive model by implementing two methods: applied
elastic distortion to the training input and implemented
distributed computing method by mapping the training
dataset onto various machines, then the training process
take place simultaneously in Hadoop platform. Liu et al.
[49] introduced three parallel neural network methods
(MRBPNN 1, MRBPNN 2 and MRBPNN 3) based on the
Map-Reduce computing model technique to deal with
data-intensive scenarios respectively in the condition of
the size classification dataset (testing data to be
classified), the size of training dataset, the size of neurons.

 For processing parallelization, Yamamoto et al. [50]

have introduced the process of converting the video frame

to grey scale images by using Map-Reduce to extract

some features from the video images. Bao et al. [51]

compared Sun Grid Engine (SGE) and Map-Reduce

performance in terms of processing duration in medical

application.

Chebbi et al. [52] presented an approach for

processing and storing large satellite images by using

OTB remote sensing processing tools integrated into

Hadoop Map-Reduce technique. Manojbhai et al. [53]

introduced a model parallel execution that uses Hadoop

Map-Reduce technique for tumor image pattern similarity.

The main drawback of all parallelization approaches is

that clustering management is hard and if the master node

fails all the processing will break down. Moreover, Map-

Reduce processes large datasets consumes more time to

execute tasks. In addition, in Map-Reduce, data is

processed and distributed over the cluster that increases

time and reduces processing speed.

 For Indexing approaches (see Fig.1), they can be

divided into two sub-categories: LSH and its variant

approaches [54-57], code index approaches [58-59]. For

Locality Sensitive Hashing (LSH) and its variant

approaches, a specific algorithm is used to hash similar

input to the same buckets that are smaller of the number

of input terms. For code index approaches, a specific

method to create a code index to reduce the list of

potential identities during classification.

 For LSH and its variant, Indyk and Motwani [54]

proposed the Locality Sensitive Hashing (LSH) algorithm

and applied it to sub-linear time similarity searching

context. In [55-57] a variant of LSH algorithm is proposed

to reduce the target identities list. The main drawback of

LSH approaches and its variant is that these algorithms it

required quite a lot of memory storage to achieve a good

performance.

 For code index approaches, Ratha et al. [58] proposed

different method for different biometric traits. For

fingerprint recognition, they proposed to create a hash

table of minutiae by putting the same minutiae in one row

(code index) of the hash table and computing the most

recurrent identities of each minutia to get the identity of

the test template. For iris recognition, they proposed to

compute the distance of a part of the iris code with all

small part of the template (code index) database then

compute the rotation, thereafter the distance between the

whole iris code of the test template and selected images

from the database is calculated. Aglika and Ross proposed

in [59] a method to calculate a code index to select

reference images and compare them with the test template

for multimodal biometric databases. We believe that the

main drawback of the hash table/code index approaches is

that we are not sure that the right identities are selected

during the first step of selection, which can influence the

performance considerably.

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 693

http://journal.uob.edu.bh

3x
3

Co
nv

, 8

3x
3

Co
nv

, 1
0

3x
3C

on
c,

 1
6

3x
3C

on
v,

 2
0

Fc
12

8

Fc
60

3x
3

Co
nv

, 1
2

Fc
15

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Re
lu

Compressed Model

VggFace Model

3x
3

Co
nv

, 6
4

3x
3

Co
nv

, 6
4

3x
3

Co
nv

, 1
28

3x
3

Co
nv

, 1
28

3x
3

Co
nv

, 2
56

3x
3

C
on

v,
 2

56

3x
3C

on
c,

 5
12

3x
3C

on
c,

 5
12

3x
3C

on
c,

 5
12

3x
3C

on
v,

 5
12

3x
3C

on
v,

 5
12

3x
3C

on
v,

 5
12

Fc
40

96

Fc
40

96

Fc
26

22

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Number of
filter x 2

Number of
filter x 2

Number of
filter x 2

Number of
filter x 1

Number of
filter x 8

Po
ol

 /
2

Number of
filter + 2

Number of
filter + 4

Number of
filter x 6

3x
3

Co
nv

, 2
56

Number of
filter + 2

Number of
filter + 4

Quantization

Features Vector

Workers

Indexation

Parallelization

3x
3

C
on

v,
 8

3x
3

C
on

v,
 1

0

3x
3C

on
c,

 1
6

3x
3C

on
v,

 2
0

Fc
12

8

Fc
60

3x
3

C
on

v,
 1

2

Fc
15

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Re
lu

Compressed Model

VggFace Model

3x
3

C
on

v,
 6

4

3x
3

C
on

v,
 6

4

3x
3

C
on

v,
 1

28

3x
3

C
on

v,
 1

28

3x
3

C
on

v,
 2

56

3x
3

C
on

v,
 2

56

3x
3C

on
c,

 5
12

3x
3C

on
c,

 5
12

3x
3C

on
c,

 5
12

3x
3C

on
v,

 5
12

3x
3C

on
v,

 5
12

3x
3C

on
v,

 5
12

Fc
40

96

Fc
40

96

Fc
26

22

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Po
ol

 /
2

Number of
filter x 2

Number of
filter x 2

Number of
filter x 2

Number of
filter x 1

Number of
filter x 8

Po
ol

 /
2

Number of
filter + 2

Number of
filter + 4

Number of
filter x 6

3x
3

C
on

v,
 2

56

Number of
filter + 2

Number of
filter + 4

Quantization

Features Vector

Workers

Indexation

Parallelization

Figure 2 . Compressed CNN Model based on VGGFace Model

 For Hardware Solution [60-62], they can be divided in

three categories: Compression, parallelization and hybrid

approaches [62] that reduces time by distributing tasks

overall memories or processing elements.

 For Hardware Solution, in this context, Chen et al. [60]

designed a materiel accelerator for large-scale DNNs and

CNNs that take in consideration the impact of memory,

performance and energy. Chen et al. [61] proposed a

custom multi-ship machine learning architecture with a

speedup of 450.65x and reduce energy 150.31x.

 For hybrid approach, several categories of approaches

described above can be combined. For example, Han et al.

[62] proposed an Efficient Inference Engine that firstly

prune the Alex-net model in a factor of 10x then reduce

the weight sharing to only 4-bits per weight then fetch the

small model to SRAM instead of DRAM to give a 120x

energy saving and interleaving the matrix of weights over

multiple processing elements for distributing the matrix-

vector computation.
 In this paper, we propose a hybrid method that
combine the compress approach, parallelization and
indexing techniques to choose the reference identities and
uses as well the big data technologies to parallelize the
comparison of identities to get as result the identity of the
person in little time. Next section describes the proposed
method.

3. METHODOLOGY

 In this section, we present a hybrid approach for face

identification, based on compression, parallelization and

indexation. The main idea of the proposed approach is

compressing a deep CNN model then extract discriminant

features from it and distribute or/and indexed feature

vectors afterward to speed up the identification time.

 We firstly, input the test template in the CNN model

to extract the pertinent features then we identify the

identity of the entered image by choosing one of the three

methods, which are Indexing Method, Processing

Parallelization and Indexing with Parallelization Method.

For feature extraction, we have compressed a VGGFace

model [1] to extract discriminant features (see Figure.2).

 The compressed VGGFace uses 8 layers instead of 16

as shown in Fig.2. We have passed from layer to another

by adding respectively 2, 4, or multiplying by 6 the

number of filters instead of multiplying by 2 and 8.

 Our compressed VGGFace model for facial

identification is implemented using a deep CNN

architecture with eight layers comprising five

convolutional layers and three fully connected layers. The

choice of this network model is defined by the nature of

the employed datasets and the peculiarities of the

classification problem to solve. We also consider the

network as a solution to reduce the problem of overfitting.

Unlike the network architecture proposed in [1], During

training, we preprocess the input face images by resizing

them into 60x60 pixels before being fed to the network.

 Furthermore, the image is passed through the eight-

layer CNN-based architecture as follows:

The first convolutional layer learned 8, 3 x 3 kernels and

a stride of 1 x 1, then followed by an activation layer

(rectified linear unit (ReLU)) and a max-pooling layer.

The second, third and fourth and fifth series of

convolutional layers applied the same structure only with

different filter sizes. Second convolutional layer learns

10, 5 x 5 filters, third is near identical to the second

convolutional layers but with an increase in the number

of filters to 12. The fourth convolutional layer set has a

694 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

filter of 16 and the fifth convolutional layer set has a

filter of 20. We have applied a Relu function and max

polling after each convolutional layer to down sample the

maps.

 The composition of the first fully connected layer,

contains 128 neurons, followed by a ReLU [63]. In the

second fully connected layer, contains 60 neurons. In the

final fully connected layer the output from the previous

layer of size 60 features are densely mapped to 15

neurons for facial classification. A softmax with cross-

entropy loss function is adopted to obtain a probability

for each class. More details of the network architecture

are given in Figure 2.

 We get the feature vector 60-D by extracting the 7th

layer of compressed model after training the model for

500000 iterations, and applying the Softmax of the 8th

layer to compute loss, and get the accuracy of the model.

It is important to understand that like in any other neural

network, a convolutional neural network also has the

input data x which is an image and weight filters (i.e., W).

Once the weights and the input image is convolved, we

get the weighted output W * x and then we add the bias b

as introduced in the equation (1), we use the convolution

in five first layers with different number of filters that are

respectively (8,10,12,16,20) with 3 as height and 3 as

weight (3x3).

 S = ∑ Wi,jj *xj + bi 

 We use the max pooling after each convolution layer

to subsampling the size of the feature map to half and

reduce the number of parameters. Max pooling is the

most known sample-based discretization process. The

objective is to reduce an input representation (image,

hidden-layer output matrix, etc.) to reduce process the

computational cost by reducing the number of parameters

to learn and provides basic translation invariance to the

internal representation.
 The output of max pooling is fed to one of the key
functions, which is the RELU activation function
(REctified Linear Unit). Relu function helps better train/
learn the model weights for the generalized case and add
non-linearity to the learning model as introduced in
equation (2). We use the Relu function after each max-
pooling layer and at the first fully connected layer (6th
layer) of a vector of 128 numbers.

Y = Max(0, S) (2)

 To get the probability of each identity in the last layer
of fully connected layer we use Softmax function which is
a function that takes as input a vector of S real numbers,
and normalizes it into a probability distribution consisting

of S probabilities. That is, after applying softmax, each
component will be in the interval (0,1) (3). We use a
Softmax function in the last fully connected layer of 15
numbers (identity number) to classify a training image
and get the performance of the model in each iteration.

Y = 𝑒𝑆𝑖

∑ 𝑒
𝑆𝑗

𝑗

 (3)

 To get the best performance with less error, we define
the cost value. It gives the information about how far our
model is from the desired value [64]. In other words, an
error value should be minimized. For our compressed
model, we have used Adam Optimizer with learning rate
equal to 10-4, the batch size was set to 100 for both
training and validation sets. The training not regularized
by weight decay like VGGFace and without dropout
regularization for the first two fully connected layers
(dropout ratio set to 0.5) like VGGFace because the
compressed model doesn’t overfit. To do this, we have
calculated the loss function by using cross entropy loss
defined in (4).

L = - ∑ y'
j (j) log σ(y)(j) (4)

 -where "y" is the output of the last layer of the network

 (8 th layer).

 -"y'" is the label of the one hot vector (putting bit 1 in

 the correct label and 0 for others).

 -".(j) " denotes jth dimension of a given vector.

 -"𝜎(.)" denotes probability estimate

 After getting the best model for facial identification

system, we extract features from the seventh layer of the

compressed model than to get the identity, we should

compare the feature vector of probe image to whole

gallery features vectors in the database and choose the

minimum distance between two vectors.

 Our compressed model has a compression rate of

5639,28X. The VGGFace model is compressed from 145

million parameters (145002878) to 25713 parameters (26

K) and we have used 8 layers instead of 16 layers (see

Table. I).

 In the case of large scale databases, this comparison is

time-consuming, because of that we propose three

methods to reduce the identification time per probe, which

are Indexing Approach, Processing Parallelization

Approach and the combination of parallelization and

indexation Approaches.

 The main idea of indexing approach is to reduce the

reference list that is compared with test template by

comparing the quantized vectors of training templates

with the test template then comparing it with the

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 695

http://journal.uob.edu.bh

Vectors of
ID 1

Quantization

Database 1

Database 2

Vectors
of ID 1

Vectors
of ID n

…

CNN Model

Feature
Vector

Co
sin

e
Di

st
an

ce

Re
fe

re
nc

e
Id

en
tit

ie
s

Identity

Figure 3 . Indexing Approach for identification phase

TABLE I. CNN CONFIGURATIONS (SHOWN IN COLUMNS). THE CONVOLUTIONAL LAYER PARAMETERS ARE DENOTED AS

“CONV(KERNEL SIZE)-(NUMBER OF CHANNEL)”.

Compressed
Model

Number of parameters VGGFACE
Number of parameters Compression rate

8 weight layers 25713 16 weight layers 145002878 5639,28X

Input (60 x 60 RGB image) Input (224 x 224 RGB image)

Conv3-8 224
Conv3-64

Conv3-64

38720 172,85X

MaxPool

Conv3-10 730
Conv3-128
Conv3-128

221440

303,34X

MaxPool

Conv3-12 1092
Conv3-256
Conv3-256

Conv3-256

1475328

1351,03X

MaxPool

Conv3-16 1744

Conv3-512

Conv3-512
Conv3-512

5899776 3382,89X

MaxPool

Conv3-20 2900

Conv3-512

Conv3-512

Conv3-512

7079424 2441,18X

MaxPool

FC-128 10368 FC-4096 102764544 9911,70X

FC-60 7740 FC-4096 16781312 2168,12X

FC-15 915 FC-2622 10742334 11740,25X

completely training templates of reference identities (see

figure 3).

 The main idea of processing parallelization approach

is to reduce the identification time by parallelizing the

identities to each worker of a cluster (see fig.4).

The main idea of indexing with parallelization

approach is to reduce the reference identities by using

indexing approach while parallelizing these identities to

each worker of a cluster by using processing

parallelization approach.

696 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

Vectors of
ID 1

Quantization

Database 1

Database 2

CNN Model

Feature
Vector

Co
si

ne
D

is
ta

nc
e

Re
fe

re
nc

e
Id

en
tit

ie
s

Ve
ct

or
s

of
 ID

 1
Ve

ct
or

s
of

 ID
 n

Worker n

Worker 1

Identity

Ve
ct

o
rs

o
f

ID
 1

Ve
ct

o
rs

o
f

ID
 n

…

CNN Model

C
o

si
n

e
D

is
ta

n
ce

Identity

Worker n

Worker 1

Figure 5. Hybrid proposed model architecture

Figure 4 . Processing Distribution Approach for identification phase

For Indexing Approach, we firstly create the first database

from the second one (see figure 5), we take the whole

feature vectors of each identity and we quantize them by

using the Linde Buzo and Gray LBG algorithm [4] to get

one quantized vector that represents well the identity.

 An f-level x-dimensional quantizer is a mapping q,

that assigns to each input vector, 𝑠 = (𝑠0, … , 𝑠𝑥−1) , a

reproduction vector, 𝑠̂ = 𝑞(𝑠) , drawn from a finite

reproduction alphabet, 𝐴 = {𝑦𝑖 ; 𝑖 = 1, … , 𝑓}.

 The quantizer q is completely described by the

reproduction alphabet (or codebook) A together with the

partition, 𝑆 = {𝑆𝑖 ; 𝑖 = 1, … , 𝑓}, of the input vector space

into the sets 𝑆𝑖 = {𝑠: 𝑞(𝑠) = 𝑦
𝑖
} of input vectors

mapping into the 𝑖𝑡ℎ reproduction vector (or codeword),

such quantizers are also called block quantizers, vector

quantizers, and block source codes.

 Firstly, we get the feature vector of the training

images by input them in the CNN model (Compressed

VGGFace/ VGGFace) of each identity then we compute

the distance between each identity (quantized Vector of

each identity).
 We select N identities with a minimum cosine
distance equation (5) afterwards as reference identities.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋, 𝑌) = 1 −
𝑋.𝑌

‖𝑋‖.‖𝑌‖
= 1 −

∑ 𝑋𝑖𝑌𝑖
𝑆
𝑖=1

∑ √𝑋𝑖
2 ∑ √𝑌𝑖

2𝑆
𝑖=1

𝑆
𝑖=1

 (5)

 Secondly, we compute the distance between the
feature vector of the probe with hole feature vectors of
reference identities (N=5/38 identities with minimum
cosine distance) from Database 2 as shown in Fig.3 then
we take the identity of a minimum distance between two
vectors.

 For processing parallelization Approach, we extract a
feature vector from CNN Model, then each worker takes
the whole feature vectors of one identity and compute the
cosine distance between the training templates of this
identity and test template then we take the minimum
cosine distance with his/her identity as shown in Fig.5.

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 697

http://journal.uob.edu.bh

Finally, we choose the minimum distance got from all

workers with the equivalent identity as the identity of the

test template.

 For parallelization and indexation approach, we

compute a quantized vector by using LBG algorithm then

we compute the minimum cosine distance to get the N

nearest identities of the test template, then each worker

takes the hole training templates of one identity and

compute the cosine distance (5) with the test template as

shown in FIG.5.

 Finally, each worker gives the minimum distance with

his/her identity, then we choose the minimum distance

with his/her identity as the identity of the test template.

In this case, we use the indexing method in the first part of

the identification system then processing parallelization

method in the second part of the system.

4. EXPERIMENTAL RESULTS

 In this section, we evaluate the accuracy and

identification time of several identification systems that

use different CNN Models: our proposed hybrid model,

VGGFace [1] and Inception v3 [65] is a CNN model

contains 48 layers and can classify 1000 object categories

such as animals, pencil, mouse.

 We have used the Extended Yale faces B database

[66] for training and evaluation the compressed model and

we have also evaluate it by vidTIMIT database [67] for

our experimentation.

a) Database Description and Evaluation

 The vidTIMIT database [67] is contain video and

audio recordings of 43 identities that used in many topics

such as automatic lip reading, multi-view face

recognition, multi-modal speech recognition and person

identification, for each identity the person is moving

his/her head to the left, right, back to the center, up, then

down and finally return to the center. Thus, the used

database comprises 102004 images that we have split into

two parts as described in Table II.

TABLE II. VIDTIMIT DATABASE DISTRIBUTION

 Training Test

Number of human subject 43 43

Number of images 1700 (3-2596)

Total 73100 28904

 The extensive Yale Face database [68] contains 16128

images of 28 identities with 9 poses and 64 lighting

conditions [69]. In our case, we are only interested in 15

identities and we have applied 17 transformations (e.g.,

Noise, Rotation, etc) for each identity to enhance the

intra/inter-subject variations to make the database larger

and the recognition task harder. Thus, the used database

contains 81000 images. We have divides the database into

two parts as described in Table.III.

TABLE III. DATABASE DISTRIBUTION OF

AUGMENTATED YALE

 Training Test

Number of human subject 15 15

Number of images 201 99

Number of transformations 17 17

Total 54270 26730

 To evaluate our system, we have used the Closed-set

Identification scenario [70] where only templates of

enrolled identities are used for test.

 The performance of the evaluation is calculated by the

Rank-1 prediction, which is the right identity that belong

with first minimum cosine distance. We have also

calculated the speed-up of each system following four

scenarios: 1) original systems, 2) original systems with

indexation, 3) original systems with parallelization, 4)

original system with indexation and parallelization.

 The vidTimit database, is used in our experimentation.

This database contains several multi-view images per

identity with fixed background which makes the

identification task not complicated.

 To make the identification harder we have used an

augmented Extended Yale Face B that contain different

transformations (Scale, Rotation, Noise…).

The features and databases can be downloaded from this

Github link: https://github.com/Majdouline-Meddad/Com

pressedVGGFace

b) Results and Discussion

 For the first set of experiments with the VidTimit

database as shown in Table IV (i.e., yellow columns), the

identification time per image using VGGFace is equal to

2046s with a Rank-1 Prediction of 100%, and it is equal to

315s using the Inception V3 Model with a Rank-1

Prediction of 100% as well. However, after applying the

compression for the VGGFace, the identification time per

image becomes 11s with a Rank-1 Prediction of 99.9%,

which means that the compression gives a gain of 186X

the identification time using VGGFace, while keeping an

excellent performance.

 After applying the indexation approach with N=38 on

the three original models (i.e., green columns), the

identification time per image using the VGGFace Model

becomes 1773s with a speed-up of 14.02% and a

performance of 100%. For the Inception V3 Model, the

identification time becomes 268s with a speed-up of

16.06% and a performance of 100% as well. Then, the

identification time using the compressed VGGFace

becomes 9s (i.e., gain of 197x) with a speed-up of 18.18%

and a performance of 99.30%. These results prove that the

https://github.com/Majdouline-Meddad/CompressedVGGFace
https://github.com/Majdouline-Meddad/CompressedVGGFace

698 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

indexation approach decrease the execution time of the

three models while keeping the same performance without

indexation.

TABLE IV. OVERALL PERFORMANCE COMPARISON BETWEEN THE DIFFERENT CNN MODELS WITH THEIR IDENTIFICATION TIME

 After applying the parallelization approach with a

number of thread equal to 4 on the three original models

(i.e., blue columns), the identification time per image

using the VGGFace Model becomes 1860s with a speed-

up of 9.55% and always a performance equal to 100%.

For the inception V3 Model, the identification time

becomes 278s with a speed-up of 11,74% and a

performance of 100%. Then, for the compressed

VGGFace, the identification time decreased to 5s (i.e.,

gain of 372x) with a speed-up of 45.45% and a

performance of 99.90%. We can conclude these results

that the parallelization decrease as well the identification

time, hence the idea to combine the indexation and

parallelization.

Finally, after applying the indexation and the

parallelization on the three models (i.e., brown columns),

the identification time per image using the VGGFace

Model becomes 1415s with a speed-up of 32.42% and a

performance equal to 100%. For the Inception V3 Model,

the identification time becomes 165s with a speed-up of

38,28% and a performance of 100%. Then for our hybrid

approach, the identification time decreased to 3s (i.e., gain

of 471x) with a speed-up of 72.72% and a performance of

99.30%. The results prove that the proposed approach

significantly decrease the execution time while keeping an

excellent performance.

 For the second set of experiments with the Extended

yale Face B database, as shown in Table IV, the

identification time per image using the VGGFace is equal

to 950s with a Rank-1 Prediction of 99.82%. For the

 VidTIMIT Database Extended Yale B Database

Identification time

per image

Rank-1

Prediction

Speed-UP Identification

time per image

Rank-1

Prediction

Speed-UP

Compressed VGGFace 11s 99,90%

0% 4,35s 96,48%

0%

Compressed VGGFace

with indexing method
 9s 99,30%

18,18%

1,45s 96,50 %

66.66%

Compressed VGGFace

with parallelization
method

5s 99,90%

45,45%

1.37s 96,48%

68,50%

 Hybrid Approach 3s 99,30%

72,72%

1,12s 96,50 %

74.25%

Inception V3 315s 100%

0%

9,14s 74,10 %

0%

Inception V3 with
indexing method

268s 100%

16,06%

3,41s 74,03%

62,69%

Inception V3 with
parallelization method

278s 100%

11,74%

3,91s 74,10 %

57,22%

Inception V3 with

indexing+distribution

method

165s 100%

38,25% 2,87s 74,03 %

68,60%

VGGFACE 2046s 100%

 0%

950s 99,82%

0%

VGGFACE with

indexing method
 1773s 100%

14.02%

362s 99,79%

61.89%

VGGFACE with

parallelization method
1860s 100%

9,55%

450s 99,82%

52,63%

VGGFACE with
indexation and

distribution method

1415s 100%

32,42% 320s 99,79%

66,31%

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 699

http://journal.uob.edu.bh

inception V3 Model, the identification time is equal to

9.14s and a performance of 74.10%. Then, for our

compressed VGGFace, the identification time decreased

to 4.35s with a speed-up while keeping a performance of

96.48%. We can conclude from these results that, in the

presence of intra/inter-subject variations, the Inception V3

Model lost the performance while the VGGFace and the

compressed VGGFace were able to conserve it.

 After applying the indexation approach with N=5 on

the three original models, the identification time per

image using VGGFace Model becomes 362s with a

speed-up of 61,89% and a performance of 99.79%. For

the inception V3 Model, the identification time becomes

3.41s with a speed-p of 62,69% and a stabilized

performance at 74.03%. Then, the identification time

using the compressed VGGFace becomes 1.45s (i.e., gain

of 249.65x) with speed-up of 66.66% and a performance

of 96.46%. These results confirm, like the first set of

experiments, that the indexation approach decrease the

execution time of the three models.

 After applying the parallelization approach with a

number of thread equal to 4 on the three original models,

the identification time per image using VGGFace Model

becomes 450s with a speed-up of 52.63% and always the

same performance of 99.82%. For the Inception V3

Model, the identification time becomes 3.91s with a

speed-up of 57.22% and a performance of 74.10%. Then,

for the compressed VGGFace, the identification time

decreased to 3.91s (i.e., gain of 328.46x) with a speed-up

of 68.50% and a performance of 96.48%. These resultas

prove again that the parallelization decrease as well the

identification time.

 Finally, after applying the indexation and the

parallelization on the three models, the identification time

per image using the VGGFace Model becomes 320s with

a speed-up of 66.31% and a performance equal to 99.79%.

For the Inception V3 Model, the identification time

becomes 2.87s with a speed-up of 68.60% and a

performance of 74.03%. Then, for out hybrid approach,

the identification time decreased to 1.12s (i.e., gain of

378.88x) with a speed-up of 74.25% and a performance of

96.50%. These results prove that the proposed approach

significantly decrease the execution time while keeping an

excellent performance even in the presence of intra/inter-

subject variations.

 We would like to mention that the results shown in

Table.IV are get from a laptop i5 with 2.4HZ of the CPU

frequency and 4 Go of Ram Memory.

5. CONCLUSION AND FUTURE WORK

 In this paper, we have proposed a new hybrid face

identification system based on the compression of the

VGGFace model for the feature extraction step, and on

the indexation and parallelization for the identification

task, the proposed system has been evaluated according to

the time of identification per image, the speed-up and the

Rank-1 accuracy. We have compared the proposed model

with the original VGGFace model and the Inception V3

Model. Our experimental results indicate that the

proposed system decrease the identification time and

conserves an excellent performance, which make it

suitable for embedded devices. In our future work, we

plan to create a compressed CNN model for medical

image analysis.

ACKNOWLEDGMENT

Majdouline Meddad acknowledges the financial support

of the "Centre National pour la Recherche Scientifique et

Technique" CNRST, Morocco.

REFERENCES

[1] Karen Simonyan, Andrew Zisserman, Very Deep Convolutional
Networks For Large-Scale Image Recognition. ICLR 2015, 2015.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verification.
In CVPR, pages 1701–1708, 2014

[3] Avita Katal, Mohammad Wazid, R. H. Goudar, Big data: Issues,
challenges,tools and Good practices. 2013 Sixth International
Conference on Contemporary Computing (IC3), 2013.

[4] YOSEPH LINDE, Andres Buzo, Robert M. Gray, An Algorithm
for Vector Quantizer Design. IEEE TRANSACTIONS ON
COMMUNICATIONS, 1980.

[5] Desai Devanshi Manojbhai, Kodrani Kajal Pradipkumar, R. Raj
Amenakshi, Big Image Analysis for Identifying Tumor Pattern
Similarities. International Conference on Advanced
Communication Control and Computing Technologies
(ICACCCT), 2016.

[6] Yu Cheng, Duo Wang, Pan Zhou, Tao Zhang, A Survey of Model
Compression and Acceleration for Deep Neural Networks. IEEE
SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON
DEEP LEARNING FOR IMAGE UNDERSTANDING, 2019.

[7] TAL BEN-NUN, Torsten Hoefler, Demystifying Parallel and
Distributed Deep Learning: An In-Depth Concurrency Analysis.
arXiv:1802.09941v2 [cs.LG], 2018.

[8] Y. Gong, Liu Liu, Ming Yang, Lubomir Bourdev ,Compressing
deep convolutional networks using vector quantization. CoRR,
vol. abs/1412.6115, 2014.

[9] Y. W. Q. H. Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao
Hu, Jian Cheng, Quantized convolutional neural networks for
mobile devices. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[10] V. Vanhoucke, Andrew Senior, Mark Z. Mao , Improving the
speed of neural networks on cpus. Deep Learning and
Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[11] S. Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish
Narayanan, Deep learning with limited numerical precision.
Proceedings of the 32Nd International Conference on
International Conference on Machine Learning, 2015.

[12] S. Han, Huizi Mao, William J. Dally, Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Conference on
Learning Representations (ICLR), 2016.

[13] Y. Choi, Mostafa El-Khamy, Jungwon Lee, Towards the limit of
network quantization. CoRR, vol. abs/1612.01543, 2016.

700 Majdouline Meddad, et al.: A Large-Scale Face Identification using Deep Learning in Big Data …

http://journal.uob.edu.bh

[14] M.Courbariaux,YoshuaBengio, Jean-Pierre David, Binaryconnect:
Training deep neural networks with binary weights during
propagations. Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information
Processing Systems 2015, 2015.

[15] M.Courbariaux, Itay Hubara, Daniel oudry, Ran El-Yaniv, Yoshua
Bengio, Binarized neural network: Training deep neural networks
with weights and activations constrained to +1 or -1. CoRR, vol.
abs/1602.02830, 2016.

[16] M. Rastegari, Vicente Ordonez, Joseph Redmon, Ali Farhadi
,Xnor-net: Imagenet classification using binary convolutional
neural networks. ECCV, 2016.

[17] Lu. Hou, Quanming Yao, James T. Kwok, Loss-aware
binarization of deep networks. CoRR, vol. abs/1611.01600, 2016.

[18] S. Han, H. Mao, and W. Dally. Deep compression: Compressing
DNNs with pruning, trained quantization and huffman coding.
arxiv:1510.00149v3, 2015.

[19] Forrest N. Iandola1, Song Han, Matthew W. Moskewicz, Khalid
Ashraf, William J. Dally, Kurt Keutzer. SQUEEZENET:
ALEXNET-LEVEL ACCURACY WITH 50X FEWER
PARAMETERS AND <0.5MB MODEL SIZE. arxiv:
1602.07360, 2016.

[20] S. J. Hanson, Lorien Y. Pratt, Comparing biases for minimal
network construction with back-propagation. in Advances in
Neural Information Processing Systems 1, D. S. Touretzky, Ed.,
1989.

[21] Y. L. Cun, J. S. Denker, and S. A. Solla, Advances in neural
information processing systems 2. D. S. Touretzky, Ed., 1990.

[22] B. Hassibi, David G. Stork, Second order derivatives for network
pruning: Optimal brain surgeon. Advances in Neural Information
Processing Systems 5, 1993.

[23] S. Srinivas, R. Venkatesh Babu, Data-free parameter pruning for
deep neural networks. in Proceedings of the British Machine
Vision Conference 2015, BMVC 2015, Swansea, UK, September
7-10, 2015.

[24] W. Chen, James T.Wilson, Stephen Tyree, Kilian Q. Weinberger,
Yixin Chen, Compressing neural networks with the hashing trick.
JMLR Workshop and Conference Proceedings, 2015.

[25] K. Ullrich, Edward Meeds, Max Welling, Soft weight-sharing for
neural network compression. CoRR, vol. abs/1702.04008, 2017.

[26] V. Lebedev, Victor Lempitsky, Fast convnets using group-wise
brain damage. 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, 2016.

[27] Hao. Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter
Graf, Pruning filters for efficient convnets. CoRR, vol.
abs/1608.08710, 2016.

[28] Sergey Ioffe, Christian Szegedy, Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. ICML'15 Proceedings of the 32nd International
Conference on International Conference on Machine Learning,
2015.

[29] Yu. Cheng, Felix X. Yu, Rogerio S. Feris, Sanjiv Kumar, Alok
Choudhary, Shih-Fu Chang, An exploration of parameter
redundancy in deep networks with circulant projections.
International Conference on Computer Vision(ICCV), 2015.

[30] Y. Cheng, Felix X Yu, Rogerio S. Feris, Sanjiv Kumar, Alok
Choudhary, S. Chang Fast neural networks with circulant
projections. CoRR, vol. abs/1502.03436, 2015.

[31] Z. Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex
Smola, Le Song, Ziyu Wang, Deep fried convnets. International
Conference on Computer Vision (ICCV), 2015.

[32] V. Sindhwani, Tara N. Sainath, Sanjiv Kumar, Structured
transforms for small-footprint deep learning. in Advances in
Neural Information Processing Systems 28, 2015.

[33] J. Chun, T. Kailath, Generalized Displacement Structure for
Block- Toeplitz, Toeplitz-block, and Toeplitz-derived Matrices.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.

[34] M. V. Rakhuba, I. V. Oseledets, Fast multidimensional
convolution in low-rank tensor formats via cross approximation.
SIAM J. Scientific Computing, 2015.

[35] M. Moczulski, Misha Denil, Jeremy Appleyard, Nando de Freitas,
Acdc: A structured efficient linear layer. International Conference
on Learning Representations (ICLR), 2016.

[36] M. Jaderberg, Andrea Vedaldi, Andrew Zisserman, Speeding up
convolutional neural networks with low rank expansions.
Proceedings of the British Machine Vision Conference. BMVA
Press, 2014.

[37] Yury Vizilter, Vladimir Gorbatsevich , Andrey Vorotnikov,
Nikita Kostromov, Real-Time Face Identification via Multi-
convolutional Neural Network and Boosted Hashing Forest, Deep
Learning for Biometrics. Advances in Computer Vision and
Pattern Recognition, 2017.

[38] V. Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets,
Victor Lempitsky , Speeding-up convolutional neural networks
using fine-tuned cpdecomposition. CoRR, vol. abs/1412.6553,
2014.

[39] C. Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, Weinan E,
Convolutional neural networks with low-rank regularization. vol.
abs/1511.06067, 2015.

[40] T. S. Cohen, Max Welling Group equivariant convolutional
networks. arXiv preprint arXiv:1602.07576, 2016.

[41] H. Li, Wanli Ouyang, Xiaogang Wang, Multi-bias non-linear
activation in deep neural networks. arXiv preprint
arXiv:1604.00676, 2016.

[42] S. Zhai, Yu Cheng, Weining Lu, Zhongfei Zhang, Doubly
convolutional neural networks. Advances In Neural Information
Processing Systems, 2016.

[43] C. Bucila, Rich Caruana, Alexandru Niculescu-Mizil, Model
compression. in Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2006.

[44] G. E. Hinton, Oriol Vinyals, Jeff Dean ,Distilling the knowledge
in a neural network. CoRR, vol. abs/1503.02531, 2015.

[45] P. Luo, Zhenyao Zhu1*, Ziwei Liu1, Xiaogang Wang2,3, and
Xiaoou Tang1, Face model compression by distilling knowledge
from neurons. Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[46] T. Chen, Ian Goodfellow, Jonathon Shlens , Net2net: Accelerating
learning via knowledge transfer. CoRR, vol. abs/1511.05641,
2015.

[47] Kairan Sun, Xu Wei, Gengtao Jia, Risheng Wang, Ruizhi Li,
Large-scale Artificial Neural Network: MapReduce-based Deep
Learning. Project Report for Cloud Computing and Storage. Dept.
of Electrical and Computer Engineering, University of Florida,
2015.

[48] [45] Nada Basit, Yutong Zhang, Hao Wu, Haoran Liu, Jieming
Bin, Yijun He, Abdeltawab M. Hendawi, MapReduce-based Deep
Learning With Handwritten Digit Recognition Case Study. 2016
IEEE International Conference on Big Data (Big Data), 2016.

[49] [46] Yang Liu, Jie Yang, Yuan Huang, Lixiong Xu, Siguang Li,
and Man Qi , MapReduce Based Parallel Neural Networks in
Enabling Large Scale Machine Learning . Hindawi Publishing
Corporation Computational Intelligence and Neuroscience, 2015.

[50] Muneto Yamamoto, Kunihiko Kaneko, Parallel Image Database
Processing With Mapreduce and Performance Evaluation in
Pseudo Distributed mode. International Journal of Electronic
Commerce Studies, 2012.

 Int. J. Com. Dig. Sys. 9, No.4, 689-701 (July-2020) 701

http://journal.uob.edu.bh

[51] [48] Shunxing Bao, Weitendorf FD, Plassard AJ, Huo Y,
Gokhale A, Landman BA.Theoretical and Empirical Comparison
of Big Data Image Processing with Apache Hadoop and Sun Grid
Engine .Medical Imaging 2017: Imaging Informatics for
Healthcare Research and Applications, 2017.

[52] I. Chebbi, W. Boulila, I. R. Farah, Improvement of Satellite Image
Classification : Approach Based on Hadoop/Map Reduce, 2nd
International Conference on Advanced Technologies for Signal
and Image Processing - ATSIP'2016, 2016.

[53] Desai Devanshi Manojbhai, Kodrani Kajal Pradipkumar, R. Raj
Amenakshi, Big Image Analysis for Identifying Tumor Pattern
Similarities. International Conference on Advanced
Communication Control and Computing Technologies
(ICACCCT), 2016.

[54] Piotr Indyk, RAJEEV MoTwani, Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. Proceedings of
the 30th Symposium on Theory of Computing, 1998.

[55] Aristides Gionis, Piotr Indyk, Rajeev Motwani, Similarity Search
in High Dimensions via Hashing. Proceedings of the 25th VLDB
conference, 1999.

[56] Naser Damer, Philipp Terhörst, Andreas Braun, Arjan Kuijper,
Fingerprint And Iris Multi-Biometric Data Indexing and Retrieval.
2018 21st International Conference on Information Fusion
(FUSION) , 2018.

[57] M. Bawa, Tyson Condie, Prasanna Ganesan, Lsh forest: Self-
tuning indexes for similarity search. Proceedings of the 14th
International Conference on World Wide Web, 2005.

[58] N. K. Ratha, Jonathan Connell, S. Pankanti, Big Data Approach to
biometric-based identity analytics . IBM Jounal of Research and
Development, 2015.

[59] Aglika Gyaourova , Arun Ross,. A Coding Scheme for Indexing
Multimodal Biometric Databases Proc. of IEEE Computer Society
Workshop on Biometrics at the Computer Vision and Pattern
Recogniton (CVPR) conference, 2009.

[60] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O.
Temam. Diannao: a small-footprint high-throughput accelerator
for ubiquitous machine-learning, in ASPLOS, 2014.

[61] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam. Dadiannao: A machine-learning
supercomputer, in MICRO, 2014.

[62] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram
Mark A. Horowitz, William J. Dally. EIE: Efficient Inference
Engine on Compressed Deep Neural Network,
arxiv:1602.01528v2, 2016.

[63] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks. In NIPS,
pp. 1106–1114, 2012.

[64] Aamir Khan, Hasan Farooq, Principal Analysis-Linear
Discriminant Analysis Feature Extraction for Pattern Recognition.
IJCSI International Journal of Computer Science Issues, 2011.

[65] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, Zbigniew Wojna Rethinking the Inception Architecture
for Computer Vision. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[66] K.C. Lee, J. Ho, D. Kriegman: Extended Yale Face B.
http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html,
2016.

[67] C. Sanderson and B.C. Lovell. Multi-Region Probabilistic
Histograms for Robust and Scalable Identity Inference. Lecture
Notes in Computer Science (LNCS), Vol. 5558, pp. 199-208,
2009.

[68] Georghiades A.S., Belhumeur P.N., Kriegman, D.J.: ‘From Few to
Many: Illumination Cone Models for Face Recognition under
Variable Lighting and Pose’.IEEE Transaction on Pattern
Analysis and Machine Intelligence, 2001.

[69] K.C. Lee, J. Ho, D. Kriegman: ‘Acquiring Linear Subspaces for
Face Recognition under Variable Lighting’.IEEE Transaction on
Pattern Analysis and Machine Intelligence, 2005.

[70] Stan Z.Li, Anil. K. Jain, Handbook of face recognition. Springer
Science+Business Media, 2005.

[71] Amit B, Chinmay C, Anand K, Debabrata B, Emerging trends in
IoT and big data analytics for biomedical and health care
technologies, Elsevier: Handbook of Data Science Approaches for
Biomedical Engineering, Ch. 5, 2019.

Majdouline Meddad is a Ph.D Student at the
IT and Telecommunications Research
Laboratory of Mohamed V University in Rabat,
Morocco. Her research field is the artificial
intelligence. The current work focuses on
biometrics and compressing of convolutional
neural network models.

Chouaib Moujahdi is an Associate Professor

at the Scientific Institute of Rabat. He received

both the Master's and the Ph.D. degrees in

Computer Science and Telecommunications

from Mohammed V University. He was a

Fulbright visiting student at University of

Nevada - Reno between 2012 and 2014. His

research interests include Biometrics and Pattern Recognition.

Current work focuses on "Biometric Security Protection" and

on "Automated Plant Species Identification".

Mounia Mikram is an Associate Professor of
computer sciences and mathematics at the
School of Information Sciences, Rabat since
2010. She received her master degree from
Mohammed V University Rabat (2003) and
her PhD degree from Mohammed V
University, Rabat, and Bordeaux I University
(2008). Her research interests include pattern

recognition, computer vision, and biometrics security
systems and artificial intelligence.

Mohammed Rziza is Received his national
Doctorate in engineering sciences, image
processing specialty, from the Faculty of
Science of the Mohammed V-Agdal
University, Rabat, Morocco, in 2002. He
joined the Faculty of Science, Rabat,
Morocco, in 2003, as an assistant professor.
Since 1997, he is a member of the GSCM

group. His research interests include image
processing, pattern recognition, and stereovision.

