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Abstract:  Convolutional Neural Networks have proved an excellent efficiency in several modern applications, for example, systems 

of face identification, like VGGFace and DeepFace, have achieved an excellent performance. However, these models still require 

huge memory for computation that involves an expensive computation cost especially for applications that use huge databases and 

that are running in embedded devices. To deal with this problem, we propose in this paper a hybrid identification system that is based 

on the compression of the VGGFace model for the feature extraction step, and on the indexation and the parallelization for the 

identification task. The proposed system has been evaluated in term of the Rank-1 prediction, the time of identification and the 

speed-up using two public face databases. Our experimental results illustrate the ability of the proposed system to preserve the 

performance while keeping a reasonable time of identification compared to two face identification systems based, respectively, on 

the original VGGFace model and on the Inception V3 model.  

The Compressed Model can be downloaded from this Github link: https://github.com/Majdouline-Meddad/CompressedVGGFace 
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1. INTRODUCTION  

      Convolutional neural networks furnish a powerful 

framework to deal with unstructured data such as images, 

speeches to automatically extract pertinent features. These 

networks achieved significant successes in various fields, 

including clustering and object detection, classification, 

semantic segmentation and face identification. 

      Although the achievements in the literature are 

brilliant in face identification like VGGFace [1], 

DeepFace [2] and others. This CNN models still require 

huge memory for computation that involves an expensive 

computation cost especially for applications that use huge 

databases and that are running in embedded devices. 

      In general, to deal with this problem, only the 

parameter sharing among all spatial locations, which is an 

intrinsic technique of CNNs, is used to decrease the 

number of parameters.  

      Among the applications that use massive databases, 

namely in literature scalability database [3][71], there are 

face identification systems like Indian Aadhaar that 

comprises millions of identities. These becomes more 

challenging in the case of identification systems that are 

running on embedded devices. In fact, we cannot run the 

current CNN architecture in such devices because of their 

very large sizes (for example, VGGFACE size is 553Mo 

and DEEPFace size is 488Mo). 

      In this paper, we are concerned with scalability and 

the performance issues in embedded devices.  In this 

context, we have built a hybrid system that combines 

three categories that deal with this problem: compression, 

indexation and parallelization approaches. 

      For the compression part of our model we have 

compressed the VGGFace [1] by a factor of 5639x which 

reduce the size from 566475ko to 312ko. For indexation 

approaches, we have used the LBG algorithm [4]. For the 

parallelization, we have used several workers to 

parallelize the identification tasks [5]. 

      The rest of the paper is organized as follows. Section 2 

presents the related works. Section 3 presents our 

methodology to build our proposed hybrid system. Our 

experimental results and comparisons are presented in 

Section 4. Our conclusions and perspectives for future 

work are provided in Section 5. 

 

http://dx.doi.org/10.12785/ijcds/090416 
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Figure 1 . Diverse approaches to reduce the training and identification time 

 

 

2. RELATED WORKS 

The scalability issue in embedded devices for 
identification systems have given rise to new problems 
and challenges related to the performance and execution 
time. Due to these problems, there are currently many 
research efforts underway to make such systems faster 
and efficient. We believe that proposed solutions in the 
literature can be divided into two main categories: 
Software solution and Hardware Solution. Each category 
can be further divided into several sub-categories (see 
Fig.1). The main idea of software solution is the 
optimization of techniques that can prompt the execution 
time in order to be used in embedded devices. For 
Hardware approaches, their key idea is to create chipsets 
to compress and distribute learning among different 
memories (S-Ram and D-Ram). 

      Software solution can be divided into two sub-
categories: Training phase approaches and indexation 
approaches The key idea of training phase approaches, is 
to compress or distribute learning algorithms that take a 
considerable time to find the right weights and biases in 
order to optimize the model. For indexation approaches, 
their main idea is to reduce the list of potential identities 
that will allow the test images to be matched to a smaller 
number of identities. Indexation approaches take place 
usually during the identification phase.  

      Training phase approaches can be divided into two 
sub-categories: compression approaches [6] and 
parallelization approaches [7]. Compression approaches 
present the different techniques that aim to squeeze and 
speed up the developed models. For parallelization 
approaches, they use the big data technologies and the 

cloud computing platforms to deal with the tremendous 
amount of data.  

      Compressing approaches can be divided as well into 
four categories: Pruning approaches [8-35], Low-Rank 
Factorization approaches [36-39], Transferred 
Convolutional filters approaches [40-42] and Knowledge 
Distillation approaches [43-46]. For pruning approaches, 
the main idea is to remove parameters that are not 
substantial to the model performance. For Low-Rank 
Factorization approaches, the general idea is using 
Tensor/Matrix decomposition to estimate informative 
parameters and speed up the computation. For Transferred 
Convolutional filters, the main idea is to use compressing 
CNN models by the equivariant group theory that claims 
that both convolutional weight sharing and translation 
invariant property are important for good predictive 

performance. For Knowledge Distillation approaches, the 
general idea is to get shallower model by compressing 
wide and deep ones, where the compressed model imitate 
the function learned by the complex one by shifting 
knowledge from a large model to small one. 

      It should be noted that, Pruning approaches can be 
divided into three categories: Quantization approaches, 
sharing approaches and Structural Matrix approaches. For 
Quantification approaches, they try either to compress the 
network by reducing the number of bits required to 
represent each weight or to directly learn activation binary 
weights during the model training. For Sharing 
approaches, faced the major problem which is decreasing 
the complexity of a model and handle the overfitting 
issue. For Structural Matrix approaches, the major idea is 
to prune parameters by imposing the input x layer as a 
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parameterized structural matrix which can represented 
with much few parameters.  

      For quantification approaches, we can cite Gong et al. 
[8] and Wu et al. [9] that have used k-means scalar 
quantization to the values of the parameters. Vanhoucke et 
al. [10] claims that 8-bit quantization of the parameters 
can outcome a significant speed up with decreasing loss 
accuracy. Gupta et al. [11] applied 16-bit fixed point 
representation in stochastic based CNN training, which 
safely minimized float point operations and memory 
usage with much less loss in classification accuracy. Han 
et al. [12] proposed a method that quantizes the link 
weights, using the sharing of weight and thereafter-
applied Huffman coding, to additional reduce the rate of 
memory usage. Choi et al. [13] proved as well that hessian 
weight could be used to adjust the prominent network 
parameter. In addition, many approaches are used to each 
present each weight by 1-bit such as BinaryConnect[14], 
BinaryNet [15], XNORNetwork [16]. Merolla et al. [17] 
proved that specific weight distortions including binary 
weights could be resilient while training a network with 
back-propagation. Sang et al. [18] propose to compress 
the Alex-net and VGG-16 models in three steps: firstly, 
prune the neural network model to remove redundant 
connections while keeping important connections. 
Secondly, quantize weights in three steps: 1) identify the 
shared weights that fall in the same cluster by using K-
means clustering. 2) generate a codebook then quantize 
the weights with codebook generated before. 3) retrain the 
code Book. Thirdly, apply the Huffman coding to have 
more compressing and to take more advantage of the 
biases distribution. Iandola et al. [19] proposed a 
SqueezeNet method to compress Alex-net Model by using 
8-bit/6-bit quantization, 100%/50%/33% sparsity and fire 
module which contains 1x1 filters in his squeeze part 
(squeeze convolutional layer) to replace 3x3 filters then 
feeding into expanding part that contains a mix of 3x3 and 
1x1 convolutional filters that help to limit the number of 
the input image. The main drawback of these approaches 
category is that the accuracy of the binary nets is 
significantly good only when we are dealing with a thin 
CNNs model. 

      For Sharing approaches, many works are proposed to 
reduce the non-crucial parameters of a model such as 
Biased Weight Decay [20], Optimal Brain Damage [21] 
and the Optimal Brain Surgeon [22], which minimize the 
number of connections, based on Hessian loss function, 
and perform high accuracy. Srinivas and Babu [23] 
proposed a data-free pruning method to remove the 
redundancy among neurons. Chen et al. [24] proposed a 
method for parameter sharing based on creating a 
HashedNets model to group weights into buckets using a 
low-cost hash function. Han et al. [12] proposed a deep 
compression method by deleting redundant connections 
and quantizing the weights, then use Huffman Coding to 
encode the quantized weights. Ullrich et al. [25] proposed 
a simple regularization method based on soft weight 

sharing, which uses pruning and quantization in one 
simple retraining procedure. Lebedev et al. [26] imposed 
some sparsity constraints on the convolutional filters to 
realize structural brain damage method to reduce the 
number of connections. Li et al. [27] use L1-norm 
regularizers to prune and select less influencing filters. 
Ioffe and Szegedy [28] proposed a method to perform the 
normalization for each training mini-batch and make it a 
part of the model architecture. The main drawback of 
these approaches is that require, first, a manual setup 
sensitivity of layers and second, more iterations to 
converge the model while using regularizers. 

      For Structural matrix approaches, Cheng et al. 

[29][30] proposed an efficient and simple method, based 

on circulant projections, that presere competitive error 

rates. Yang et al. [31] introduced a novel adaptive 

FastFood transform to reparametrize the matrix-vector 

multiplication of fully connected layers. The work in 

Sindhwani et al. [32] showed an effective new notion of 

parsimony in the theory of structured matrices that can be 

extended into diverse other structured classes, including 

multi-level Toeplitz-like [33] matrices and block related 

to multi-dimensional convolution [34]. Moczulski et al. 

[35] proposed a general structured efficient linear layer 

module applied of CNNs to reduce the number of 

parameters and operations. The main drawback of these 

approaches is hard to find a structural matrix because 

there is no theoretical way to derive it out. 

 
      For Low-Rank approaches, we can cite Jaderberg et 
al. [36] and Yuri et al. [37] introduced a proposition to use 
different tensor decomposition schemes to speed up the 
training. Lebedev et al. [38] proposed Canonical Polyadic 
(CP) decomposition for the kernel tensors that uses 
nonlinear least squares. Tai et al. [39] introduced a new 
algorithm for training low-rank constrained CNNs from 
scratch by computing the low-rank tensor decomposition 
and using Batch Normalization to transform the activation 
of the internal hidden units. The main drawback of these 
approaches category is that the implementation is not easy 
to be performed since it involves some decomposition 
operation that are computationally expensive. In addition, 
these approaches perform low-rank approximation layer 
by layer, which make them unable to perform a global 
compression of parameters. 

      For Transferred Convolutional filters approaches, 
Cohen et al. [40] proposed equivariant group theory to 
transfer convolution filters and compress CNN models. Li 
et al. [41] and Zhai et al. [42] introduced a convolutional 
layer from a set of base filters. We think that the main 
drawback of this category is that these methods cannot 
achieve competitive performance in wide and deep 
architectures (i.e; Googlenet, Residual Net). In addition, 
the transfer assumptions are sometimes too strong to 
guide the learning, which makes the result unstable. 
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      For knowledge distillation approaches, we can cite 
Bucilua et al. [43] that have exploited knowledge transfer 
to compress the model by training classifiers by using 
pseudo-data labeled, and then reproduce the output of the 
original larger network. Hinton et al. [44] introduced a 
knowledge distillation compression framework based on 
the student and teacher paradigm that makes the training 
of deep network easier and more efficient. Luo et al. [45] 
introduced the knowledge by using the neurons in the 
higher hidden layer, which preserves as much information 
as the label probabilities. Chen et al. [46] proved that 
instantaneously transfer of knowledge from a previous 
network to each new deeper or wider network accelerates 
the experimentation process by using the concept of 
function-preserving transformation. The main drawback 
of Knowledge distillation approaches is that can be 
applied only during the classification task with a softmax 
loss function. Moreover, the model assumptions are 
sometimes too strict to make a competitive performance 
with other types of approaches. 

      For parallelization approaches (see Fig.1), they can be 

divided into two sub-categories: Training approaches [47-

49] and processing parallelization approaches [50-53], For 

training approaches, Deep Neural Network (DNN) is slow 

in computation particularly when the size of data is wide 

which requires the use of cloud computing platforms to 

speed up the training. For processing parallelization 

approaches, the main issue treated by this approach is that 

a single computer can process a large-scale of information 

in few time such as a video analysis, therefore, perform a 

parallel-distributed process using the computational 

resources (Big Data technologies) in a cloud platform. 

 
      For training approaches, Sun et al. [47] implemented 
and designed Map-Reduced neural network algorithm on 
large-scale data for handwriting character recognition. 
Basit et al. [48] proposed to improve the accuracy of a 
naive model by implementing two methods: applied 
elastic distortion to the training input and implemented 
distributed computing method by mapping the training 
dataset onto various machines, then the training process 
take place simultaneously in Hadoop platform. Liu et al. 
[49] introduced three parallel neural network methods 
(MRBPNN 1, MRBPNN 2 and MRBPNN 3) based on the 
Map-Reduce computing model technique to deal with 
data-intensive scenarios respectively in the condition of 
the size classification dataset (testing data to be 
classified), the size of training dataset, the size of neurons. 

      For processing parallelization, Yamamoto et al. [50] 

have introduced the process of converting the video frame 

to grey scale images by using Map-Reduce to extract 

some features from the video images. Bao et al. [51] 

compared Sun Grid Engine (SGE) and Map-Reduce 

performance in terms of processing duration in medical 

application. 

Chebbi et al. [52] presented an approach for 

processing and storing large satellite images by using 

OTB remote sensing processing tools integrated into 

Hadoop Map-Reduce technique.  Manojbhai et al. [53] 

introduced a model parallel execution that uses Hadoop 

Map-Reduce technique for tumor image pattern similarity. 

The main drawback of all parallelization approaches is 

that clustering management is hard and if the master node 

fails all the processing will break down. Moreover, Map-

Reduce processes large datasets consumes more time to 

execute tasks. In addition, in Map-Reduce, data is 

processed and distributed over the cluster that increases 

time and reduces processing speed. 

 

      For Indexing approaches (see Fig.1), they can be 

divided into two sub-categories: LSH and its variant 

approaches [54-57], code index approaches [58-59]. For 

Locality Sensitive Hashing (LSH) and its variant 

approaches, a specific algorithm is used to hash similar 

input to the same buckets that are smaller of the number 

of input terms. For code index approaches, a specific 

method to create a code index to reduce the list of 

potential identities during classification. 

 

      For LSH and its variant, Indyk and Motwani [54] 

proposed the Locality Sensitive Hashing (LSH) algorithm 

and applied it to sub-linear time similarity searching 

context. In [55-57] a variant of LSH algorithm is proposed 

to reduce the target identities list. The main drawback of 

LSH approaches and its variant is that these algorithms it 

required quite a lot of memory storage to achieve a good 

performance. 

 

      For code index approaches, Ratha et al. [58] proposed 

different method for different biometric traits. For 

fingerprint recognition, they proposed to create a hash 

table of minutiae by putting the same minutiae in one row 

(code index) of the hash table and computing the most 

recurrent identities of each minutia to get the identity of 

the test template. For iris recognition, they proposed to 

compute the distance of a part of the iris code with all 

small part of the template (code index) database then 

compute the rotation, thereafter the distance between the 

whole iris code of the test template and selected images 

from the database is calculated. Aglika and Ross proposed 

in [59] a method to calculate a code index to select 

reference images and compare them with the test template 

for multimodal biometric databases. We believe that the 

main drawback of the hash table/code index approaches is 

that we are not sure that the right identities are selected 

during the first step of selection, which can influence the 

performance considerably. 
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Figure 2 . Compressed CNN Model based on VGGFace Model 

 

 

      For Hardware Solution [60-62], they can be divided in 

three categories: Compression, parallelization and hybrid 

approaches [62] that reduces time by distributing tasks 

overall memories or processing elements. 

     For Hardware Solution, in this context, Chen et al. [60] 

designed a materiel accelerator for large-scale DNNs and 

CNNs that take in consideration the impact of memory, 

performance and energy. Chen et al. [61] proposed a 

custom multi-ship machine learning architecture with a 

speedup of 450.65x and reduce energy 150.31x. 

      For hybrid approach, several categories of approaches 

described above can be combined. For example, Han et al. 

[62] proposed an Efficient Inference Engine that firstly 

prune the Alex-net model in a factor of 10x then reduce 

the weight sharing to only 4-bits per weight then fetch the 

small model to SRAM instead of DRAM to give a 120x 

energy saving and interleaving the matrix of weights over 

multiple processing elements for distributing the matrix-

vector computation. 
      In this paper, we propose a hybrid method that 
combine the compress approach, parallelization and 
indexing techniques to choose the reference identities and 
uses as well the big data technologies to parallelize the 
comparison of identities to get as result the identity of the 
person in little time. Next section describes the proposed 
method. 

3. METHODOLOGY 

      In this section, we present a hybrid approach for face 

identification, based on compression, parallelization and 

indexation. The main idea of the proposed approach is 

compressing a deep CNN model then extract discriminant 

features from it and distribute or/and indexed feature 

vectors afterward to speed up the identification time.  

      We firstly, input the test template in the CNN model 

to extract the pertinent features then we identify the 

identity of the entered image by choosing one of the three 

methods, which are Indexing Method, Processing 

Parallelization and Indexing with Parallelization Method. 

For feature extraction, we have compressed a VGGFace 

model [1] to extract discriminant features (see Figure.2).  

     The compressed VGGFace uses 8 layers instead of 16 

as shown in Fig.2. We have passed from layer to another 

by adding respectively 2, 4, or multiplying by 6 the 

number of filters instead of multiplying by 2 and 8. 

      Our compressed VGGFace model for facial 

identification is implemented using a deep CNN 

architecture with eight layers comprising five 

convolutional layers and three fully connected layers. The 

choice of this network model is defined by the nature of 

the employed datasets and the peculiarities of the 

classification problem to solve. We also consider the 

network as a solution to reduce the problem of overfitting. 

Unlike the network architecture proposed in [1], During 

training, we preprocess the input face images by resizing 

them into 60x60 pixels before being fed to the network. 

      Furthermore, the image is passed through the eight-

layer CNN-based architecture as follows: 

The first convolutional layer learned 8, 3 x 3 kernels and 

a stride of 1 x 1, then followed by an activation layer 

(rectified linear unit (ReLU)) and a max-pooling layer. 

The second, third and fourth and fifth series of 

convolutional layers applied the same structure only with 

different filter sizes. Second convolutional layer learns 

10, 5 x 5 filters, third is near identical to the second 

convolutional layers but with an increase in the number 

of filters to 12. The fourth convolutional layer set has a  
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filter of 16  and the fifth convolutional layer set has a

filter of 20. We have applied a Relu function and max 

polling after each convolutional layer to down sample the 

maps. 

      The composition of the first fully connected layer, 

contains 128 neurons, followed by a ReLU [63]. In the 

second fully connected layer, contains 60 neurons. In the 

final fully connected layer the output from the previous 

layer of size 60 features are densely mapped to 15 

neurons for facial classification. A softmax with cross-

entropy loss function is adopted to obtain a probability 

for each class. More details of the network architecture 

are given in Figure 2. 

      We get the feature vector 60-D by extracting the 7th 

layer of compressed model after training the model for 

500000 iterations, and applying the Softmax of the 8th 

layer to compute loss, and get the accuracy of the model. 

It is important to understand that like in any other neural 

network, a convolutional neural network also has the 

input data x which is an image and weight filters (i.e., W). 

Once the weights and the input image is convolved, we 

get the weighted output W * x and then we add the bias b 

as introduced in the equation (1), we use the convolution 

in five first layers with different number of filters that are 

respectively (8,10,12,16,20) with 3 as height and 3 as 

weight (3x3). 

 S = ∑ Wi,jj *xj + bi             

      We use the max pooling after each convolution layer 

to subsampling the size of the feature map to half and 

reduce the number of parameters. Max pooling is the 

most known sample-based discretization process. The 

objective is to reduce an input representation (image, 

hidden-layer output matrix, etc.) to reduce process the 

computational cost by reducing the number of parameters 

to learn and provides basic translation invariance to the 

internal representation. 
      The output of max pooling is fed to one of the key 
functions, which is the RELU activation function 
(REctified Linear Unit). Relu function helps better train/ 
learn the model weights for the generalized case and add 
non-linearity to the learning model as introduced in 
equation (2). We use the Relu function after each max-
pooling layer and at the first fully connected layer (6th 
layer) of a vector of 128 numbers. 

Y = Max(0, S)              (2) 

      To get the probability of each identity in the last layer 
of fully connected layer we use Softmax function which is 
a function that takes as input a vector of S real numbers, 
and normalizes it into a probability distribution consisting 

of S probabilities. That is, after applying softmax, each 
component will be in the interval (0,1) (3). We use a 
Softmax function in the last fully connected layer of 15 
numbers (identity number) to classify a training image 
and get the performance of the model in each iteration. 

Y =   𝑒𝑆𝑖

∑ 𝑒
𝑆𝑗

𝑗

             (3) 

      To get the best performance with less error, we define 
the cost value. It gives the information about how far our 
model is from the desired value [64]. In other words, an 
error value should be minimized. For our compressed 
model, we have used Adam Optimizer with learning rate 
equal to 10-4, the batch size was set to 100 for both 
training and validation sets. The training not regularized 
by weight decay like VGGFace and without dropout 
regularization for the first two fully connected layers 
(dropout ratio set to 0.5) like VGGFace because the 
compressed model doesn’t overfit. To do this, we have 
calculated the loss function by using cross entropy loss 
defined in (4). 

L =  - ∑ y'
j  (j) log σ(y)(j)   (4) 

   -where "y" is the output of the last layer of the network 

      (8 th layer). 

   -"y'" is the label of the one hot vector (putting bit 1 in 

      the correct label and 0 for others). 

   -".(j) " denotes jth dimension of a given vector. 

   -"𝜎(. )" denotes probability estimate 

      After getting the best model for facial identification 

system, we extract features from the seventh layer of the 

compressed model than to get the identity, we should 

compare the feature vector of probe image to whole 

gallery features vectors in the database and choose the 

minimum distance between two vectors. 

      Our compressed model has a compression rate of 

5639,28X. The VGGFace model is compressed from 145 

million parameters (145002878) to 25713 parameters (26 

K) and we have used 8 layers instead of 16 layers (see 

Table. I). 

      In the case of large scale databases, this comparison is 

time-consuming, because of that we propose three 

methods to reduce the identification time per probe, which 

are Indexing Approach, Processing Parallelization 

Approach and the combination of parallelization and 

indexation Approaches. 

      The main idea of indexing approach is to reduce the 

reference list that is compared with test template by 

comparing the quantized vectors of training templates 

with   the   test   template   then   comparing   it   with   the  
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TABLE I.  CNN CONFIGURATIONS (SHOWN IN COLUMNS). THE CONVOLUTIONAL LAYER PARAMETERS ARE DENOTED AS 

“CONV(KERNEL SIZE)-(NUMBER OF CHANNEL)”.  

Compressed 
Model 

Number of parameters VGGFACE  
Number of parameters Compression rate 

8 weight layers 25713  16 weight layers 145002878  5639,28X 

Input (60 x 60 RGB image) Input (224 x 224 RGB image)  

Conv3-8 224 
Conv3-64 

Conv3-64 

38720 172,85X 

MaxPool  

Conv3-10 730 
Conv3-128 
Conv3-128 

 
221440 

303,34X 

MaxPool  

Conv3-12 1092 
Conv3-256 
Conv3-256 

Conv3-256 

 
1475328 

1351,03X 

MaxPool  

Conv3-16 1744 

Conv3-512 

Conv3-512 
Conv3-512 

5899776 3382,89X 

MaxPool  

Conv3-20 2900 

Conv3-512 

Conv3-512 

Conv3-512 

7079424 2441,18X 

MaxPool  

FC-128 10368 FC-4096 102764544 9911,70X 

FC-60 7740 FC-4096 16781312 2168,12X 

FC-15 915 FC-2622 10742334 11740,25X 

  

completely training templates of reference identities (see 

figure 3). 

      The main idea of processing parallelization approach 

is to reduce the identification time by parallelizing the 

identities to each worker of a cluster (see fig.4). 

 

       

 

The main idea of indexing with parallelization 

approach is to reduce the reference identities by using 

indexing approach while parallelizing these identities to 

each worker of a cluster by using processing 

parallelization approach. 
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Figure 4 . Processing Distribution Approach for identification phase 

 

 

For Indexing Approach, we firstly create the first database 

from the second one (see figure 5), we take the whole 

feature vectors of each identity and we quantize them by 

using the Linde Buzo and Gray LBG algorithm [4] to get 

one quantized vector that represents well the identity. 

      An f-level x-dimensional quantizer is a mapping q, 

that assigns to each input vector, 𝑠 = (𝑠0, … , 𝑠𝑥−1) , a 

reproduction vector, 𝑠̂ = 𝑞(𝑠) , drawn from a finite 

reproduction alphabet, 𝐴 =  {𝑦𝑖 ;   𝑖 = 1, … , 𝑓}. 

      The quantizer q is completely described by the 

reproduction alphabet (or codebook) A together with the 

partition, 𝑆 =  {𝑆𝑖 ; 𝑖 = 1, … , 𝑓}, of the input vector space 

into the sets 𝑆𝑖 =  {𝑠: 𝑞(𝑠) = 𝑦
𝑖
} of input vectors 

mapping into the 𝑖𝑡ℎ  reproduction vector (or codeword), 

such quantizers are also called block quantizers, vector 

quantizers, and block source codes. 

      Firstly, we get the feature vector of the training 

images by input them in the CNN model (Compressed 

VGGFace/ VGGFace) of each identity then we compute  

 

the distance between each identity (quantized Vector of 

each identity). 
      We select N identities with a minimum cosine 
distance equation (5) afterwards as reference identities. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋, 𝑌) = 1 −
𝑋.𝑌

‖𝑋‖.‖𝑌‖
= 1 −

∑ 𝑋𝑖𝑌𝑖
𝑆
𝑖=1

∑ √𝑋𝑖
2 ∑ √𝑌𝑖

2𝑆
𝑖=1

𝑆
𝑖=1

  (5) 

      Secondly, we compute the distance between the 
feature vector of the probe with hole feature vectors of 
reference identities (N=5/38 identities with minimum 
cosine distance) from Database 2 as shown in Fig.3 then 
we take the identity of a minimum distance between two 
vectors. 

      For processing parallelization Approach, we extract a 
feature vector from CNN Model, then each worker takes 
the whole feature vectors of one identity and compute the 
cosine distance between the training templates of this 
identity and test template then we take the minimum 
cosine distance with his/her identity as shown in Fig.5. 
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Finally, we choose the minimum distance got from all 

workers with the equivalent identity as the identity of the 

test template. 

      For parallelization and indexation approach, we 

compute a quantized vector by using LBG algorithm then 

we compute the minimum cosine distance to get the N 

nearest identities of the test template, then each worker 

takes the hole training templates of one identity and 

compute the cosine distance (5) with the test template as 

shown in FIG.5. 

      Finally, each worker gives the minimum distance with 

his/her identity, then we choose the minimum distance 

with his/her identity as the identity of the test template.  

In this case, we use the indexing method in the first part of 

the identification system then processing parallelization 

method in the second part of the system. 

4. EXPERIMENTAL RESULTS 

      In this section, we evaluate the accuracy and 

identification time of several identification systems that 

use different CNN Models:  our proposed hybrid model, 

VGGFace [1] and Inception v3 [65] is a CNN model 

contains 48 layers and can classify 1000 object categories 

such as animals, pencil, mouse. 

      We have used the Extended Yale faces B database 

[66] for training and evaluation the compressed model and 

we have also evaluate it by vidTIMIT database [67] for 

our experimentation. 

a) Database Description and Evaluation 

      The vidTIMIT database [67] is contain video and 

audio recordings of 43 identities that used in many topics 

such as automatic lip reading, multi-view face 

recognition, multi-modal speech recognition and person 

identification, for each identity the person is moving 

his/her head to the left, right, back to the center, up, then 

down and finally return to the center. Thus, the used 

database comprises 102004 images that we have split into 

two parts as described in Table II. 

TABLE II.  VIDTIMIT DATABASE DISTRIBUTION 

 Training Test 

Number of human subject 43 43 

Number of images 1700 (3-2596) 

Total 73100 28904 

 

      The extensive Yale Face database [68] contains 16128 

images of 28 identities with 9 poses and 64 lighting 

conditions [69]. In our case, we are only interested in 15 

identities and we have applied 17 transformations (e.g., 

Noise, Rotation, etc) for each identity to enhance the 

intra/inter-subject variations to make the database larger 

and the recognition task harder. Thus, the used database 

contains 81000 images. We have divides the database into 

two parts as described in Table.III. 

TABLE III.  DATABASE DISTRIBUTION OF 

AUGMENTATED YALE  

 Training Test 

Number of human subject 15 15 

Number of images 201 99 

Number of transformations 17 17 

Total 54270 26730 

 

      To evaluate our system, we have used the Closed-set 

Identification scenario [70] where only templates of 

enrolled identities are used for test. 

      The performance of the evaluation is calculated by the 

Rank-1 prediction, which is the right identity that belong 

with first minimum cosine distance. We have also 

calculated the speed-up of each system following four 

scenarios:  1) original systems, 2) original systems with 

indexation, 3) original systems with parallelization, 4) 

original system with indexation and parallelization. 

      The vidTimit database, is used in our experimentation. 

This database contains several multi-view images per 

identity with fixed background which makes the 

identification task not complicated.  

      To make the identification harder we have used an 

augmented Extended Yale Face B that contain different 

transformations (Scale, Rotation, Noise…). 

The features and databases can be downloaded from this 

Github link: https://github.com/Majdouline-Meddad/Com 

pressedVGGFace 

b) Results and Discussion  

      For the first set of experiments with the VidTimit 

database as shown in Table IV (i.e., yellow columns), the 

identification time per image using VGGFace is equal to 

2046s with a Rank-1 Prediction of 100%, and it is equal to 

315s using the Inception V3 Model with a Rank-1 

Prediction of 100% as well. However, after applying the 

compression for the VGGFace, the identification time per 

image becomes 11s with a Rank-1 Prediction of 99.9%, 

which means that the compression gives a gain of 186X 

the identification time using VGGFace, while keeping an 

excellent performance. 

      After applying the indexation approach with N=38 on 

the three original models (i.e., green columns), the 

identification time per image using the VGGFace Model 

becomes 1773s with a speed-up of 14.02% and a 

performance of 100%. For the Inception V3 Model, the 

identification time becomes 268s with a speed-up of 

16.06% and a performance of 100% as well. Then, the 

identification time using the compressed VGGFace 

becomes 9s (i.e., gain of 197x) with a speed-up of 18.18% 

and a performance of 99.30%. These results prove that the 

https://github.com/Majdouline-Meddad/CompressedVGGFace
https://github.com/Majdouline-Meddad/CompressedVGGFace
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indexation approach decrease the execution time of the 

three models while keeping the same performance without 

indexation. 

TABLE IV.  OVERALL PERFORMANCE COMPARISON BETWEEN THE DIFFERENT CNN MODELS WITH THEIR IDENTIFICATION TIME

 

      After applying the parallelization approach with a 

number of thread equal to 4 on the three original models 

(i.e., blue columns), the identification time per image 

using the VGGFace Model becomes 1860s with a speed-

up of 9.55% and always a performance equal to 100%. 

For the inception V3 Model, the identification time 

becomes 278s with a speed-up of 11,74% and a 

performance of 100%. Then, for the compressed 

VGGFace, the identification time decreased to 5s (i.e., 

gain of 372x) with a speed-up of 45.45% and a 

performance of 99.90%. We can conclude these results 

that the parallelization decrease as well the identification 

time, hence the idea to combine the indexation and 

parallelization. 

 

 

       

Finally, after applying the indexation and the 

parallelization on the three models (i.e., brown columns), 

the identification time per image using the VGGFace 

Model becomes 1415s with a speed-up of 32.42% and a 

performance equal to 100%. For the Inception V3 Model, 

the identification time becomes 165s with a speed-up of 

38,28% and a performance of 100%. Then for our hybrid 

approach, the identification time decreased to 3s (i.e., gain 

of 471x) with a speed-up of 72.72% and a performance of 

99.30%. The results prove that the proposed approach 

significantly decrease the execution time while keeping an 

excellent performance. 

      For the second set of experiments with the Extended 

yale Face B database, as shown in Table IV, the 

identification time per image using the VGGFace is equal 

to 950s with a Rank-1 Prediction of 99.82%. For the 

 VidTIMIT  Database Extended Yale B Database 

Identification time 

per image 

Rank-1 

Prediction 

Speed-UP Identification 

time per image 

Rank-1 

Prediction 

Speed-UP 

Compressed VGGFace  11s 99,90% 

 

0% 4,35s 96,48% 

 

0% 
 

Compressed VGGFace 

with indexing method 
             9s 99,30% 

 

18,18% 

 

1,45s 96,50 % 

 

66.66% 

Compressed VGGFace  

with parallelization 
method 

5s 99,90% 

 

45,45% 
 

1.37s 96,48% 

 

68,50% 

   Hybrid Approach              3s 99,30% 

 

72,72% 

 

1,12s 96,50 % 

 

74.25% 

Inception V3  315s 100% 

 

0% 

 

9,14s 74,10 % 

 

0% 

Inception V3 with 
indexing method 

268s 100% 

 

16,06% 

 

3,41s 74,03% 

 

62,69% 

Inception V3 with 
parallelization method 

278s 100% 

 

11,74% 

 

3,91s 74,10 % 

 

57,22% 

Inception V3 with 

indexing+distribution 

method 

165s 100% 

 

38,25% 2,87s 74,03 % 

 

68,60% 

VGGFACE  2046s 100% 
            
           0% 

 

950s 99,82% 
 

0% 

VGGFACE with 

indexing method 
          1773s 100% 

 
14.02% 

 

362s 99,79% 
 

61.89% 

VGGFACE with 

parallelization method 
1860s 100% 

 
9,55% 

 

450s 99,82% 
 

52,63% 

VGGFACE with 
indexation and 

distribution method 

1415s 100% 
 

32,42% 320s 99,79% 
 

66,31% 
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inception V3 Model, the identification time is equal to 

9.14s and a performance of 74.10%. Then, for our 

compressed VGGFace, the identification time decreased 

to 4.35s with a speed-up while keeping a performance of 

96.48%. We can conclude from these results that, in the 

presence of intra/inter-subject variations, the Inception V3 

Model lost the performance while the VGGFace and the 

compressed VGGFace were able to conserve it. 

      After applying the indexation approach with N=5 on 

the three original models, the identification time per 

image using VGGFace Model becomes 362s with a 

speed-up of 61,89% and a performance of 99.79%. For 

the inception V3 Model, the identification time becomes 

3.41s with a speed-p of 62,69% and a stabilized 

performance at 74.03%. Then, the identification time 

using the compressed VGGFace becomes 1.45s (i.e., gain 

of 249.65x) with speed-up of 66.66% and a performance 

of 96.46%. These results confirm, like the first set of 

experiments, that the indexation approach decrease the 

execution time of the three models. 

      After applying the parallelization approach with a 

number of thread equal to 4 on the three original models, 

the identification time per image using VGGFace Model 

becomes 450s with a speed-up of 52.63% and always the 

same performance of 99.82%.  For the Inception V3 

Model, the identification time becomes 3.91s with a 

speed-up of 57.22% and a performance of 74.10%. Then, 

for the compressed VGGFace, the identification time 

decreased to 3.91s (i.e., gain of 328.46x) with a speed-up 

of 68.50% and a performance of 96.48%. These resultas 

prove again that the parallelization decrease as well the 

identification time. 

      Finally, after applying the indexation and the 

parallelization on the three models, the identification time 

per image using the VGGFace Model becomes 320s with 

a speed-up of 66.31% and a performance equal to 99.79%. 

For the Inception V3 Model, the identification time 

becomes 2.87s with a speed-up of 68.60% and a 

performance of 74.03%. Then, for out hybrid approach, 

the identification time decreased to 1.12s (i.e., gain of 

378.88x) with a speed-up of 74.25% and a performance of 

96.50%. These results prove that the proposed approach 

significantly decrease the execution time while keeping an 

excellent performance even in the presence of intra/inter-

subject variations.  

      We would like to mention that the results shown in 

Table.IV are get from a laptop i5 with 2.4HZ of the CPU 

frequency and 4 Go of Ram Memory. 

5. CONCLUSION AND FUTURE WORK 

      In this paper, we have proposed a new hybrid face 

identification system based on the compression of the 

VGGFace model for the feature extraction step, and on 

the indexation and parallelization for the identification 

task, the proposed system has been evaluated according to 

the time of identification per image, the speed-up and the 

Rank-1 accuracy. We have compared the proposed model 

with the original VGGFace model and the Inception V3 

Model. Our experimental results indicate that the 

proposed system decrease the identification time and 

conserves an excellent performance, which make it 

suitable for embedded devices. In our future work, we 

plan to create a compressed CNN model for medical 

image analysis. 
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