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Abstract: This paper presents a hybrid approach based on digital bandpass filtering with non-parametric estimation techniques for 

the analysis of deoxyribonucleic acid (DNA) sequences. These spectral estimation techniques improve the analysis of DNA 

sequences and enable the extraction of some desirable information about them. The electron-ion interaction pseudopotential (EIIP) 

numerical representation method is used to convert a DNA sequence to numerical values through a mapping function. Also, 

mathematical modelling is used to create closed formulas for the represented DNA data sequences with different studied methods. 

The importance of this process is that the mathematical models can be used for any further processing or identification when applied 

to DNA sequences. The metrics used for performance evaluation are root mean square error (RMSE) and correlation coefficient (R) 

metrics. Also, the objective of this paper is investigating and predicting the location of the coding region (exon) in DNA sequences 

using the proposed approach. The results of gene prediction from DNA sequences for the original and modelled DNA sequences 

coincide and ensure the success of the proposed sum-of-sinusoids method for modelling of DNA sequences. 
 

 
 

Keywords: DNA representation; mathematical modelling; RMSE; Correlation Coefficient; Non-Parametric Spectral Estimation 

Techniques.  

 

1. INTRODUCTION 
 

Bioinformatics is the science of how information is 

generated, transmitted, received, and interpreted in 

biological systems. It comprises the application of 

information technology in the field of biology [1-3]. 

Genomic information is encoded in the form of DNA 

inside the nuclei of cells. A DNA molecule is a long 

linear polymeric chain, composed of four types of sub-

units. Each sub-unit is called a base. The four bases in 

DNA are adenine (A), thymine (T), guanine (G), and 

cytosine (C). DNA is a pair of strands. Bases pair up 

across the two strands. A always pairs with T, and G 

always pairs with C. Hence, the two strands are 

complementary [4-6].  

Genomic information nature is digital, and it is 

represented with the shape of sequences in which each 

element can be one out of a finite number of entities. 

DNA and proteins have been described by character 

strings in which each character is a letter of an alphabet. 

In the DNA case, the alphabet consists of 4 letters, while 

in the case of proteins, the alphabet size is 20 [4-6]. DNA 

sequence representation is a vital topic in several fields of 

bioinformatics. DNA sequences generally comprise four 

different symbols with different periodicities that convey 

very vital information in fields such as gene prediction.  

Before applying different computational methods, it 

is necessary to convert the DNA sequences (A, T, C, and 

G) into numeric sequences. The method called electron-

ion interaction pseudopotential (EIIP) is used to convert 

the DNA sequences into numeric sequences [5, 6]. It is 

possible to create such mathematical models with 

polynomial, exponential, Gaussian, and sum-of-sinusoids 

closed formulas. Accuracy is an essential factor to be 

maximized through any modelling process. 

This paper demonstrates the analysis of DNA 

sequences to predict the protein-coding regions called 

exons. The exact locations and positions of exons are 

determined. Some spectral analysis techniques are 

developed to serve these purposes. Protein coding regions 

http://dx.doi.org/10.12785/ijcds/090406 
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and non-coding regions from DNA sequences are 

examined and predicted using a proposed hybrid 

approach based on a digital bandpass filtering with non-

parametric spectral estimation techniques. Furthermore, 

this paper presents different modelling methods, 

including polynomial, exponential, Gaussian, and sum-

of-sinusoids models. It is possible to create such models 

as closed formulas. Accuracy is studied based on 

statistical analysis with RMSE and correlation coefficient 

(R) metrics.  

The rest of the paper is organized as follows. Section 

2 represents the related work. Section 3 describes the 

DNA dataset. Section 4 gives the DNA numerical 

representation with the EIIP method. Section 5 presents 

the proposed solution methodology. Section 6 illustrates 

the proposed mathematical modelling method. Section 7 

presents the performance evaluation metrics. Section 8 

introduces non-parametric spectral estimation techniques. 

Section 9 presents the prediction of the exon region using 

the proposed hybrid approach. Section 10 introduces the 

result discussion and a comparison study. Finally, section 

11 gives the concluding remarks.  
 

2. RELATED WORK 
 

Digital Signal Processing (DSP) techniques have 

been exploited in the analysis of DNA sequences. Some 

attempts have been reported in the literature for the 

application of spectral analysis for exon detection. In [3, 

7-9], different Fourier-based methods have been used for 

the analysis of DNA sequences. These methods depend 

on the direct application of the Fourier transform on the 

DNA sequences and the estimation of the peaks in the 

spectral domain to detect exons. Some other attempts 

adopt the digital filtering for pre-processing of DNA 

sequences for noise removal [6]. 

It has been described in the literature that exons give 

specific peaks in the spectra that can lead to easy 

detection of them [10]. The detectability of the exons 

depends on the used efficiency and resolution of the 

spectral estimation method [10, 11].  

Besides, in [12], the similarity/dissimilarity analysis 

of DNA sequences is performed using a 3D dynamic 

representation. The usefulness of the measurement of the 

similarity/dissimilarity ensures that it may be taken as a 

convenient mathematical tool in computational biology. 

In [13], different aspects of similarity, such as the 

asymmetry of the gene structure, have been studied 

either using new similarity measures related to four-

component spectral representations of the DNA 

sequences or using alignment techniques with 

adjustments. In [14], the concepts of graphical 

bioinformatics have been introduced. These concepts 

emphasize the distinction between the branch of 

bioinformatics concerned with comparative studies of 

bio-sequences and the branch of bioinformatics that 

depends on arrangements with graphical representations 

of DNA and proteins.  

The authors of [15, 16] considered a diversity of 

non-parametric spectral estimation techniques and 

compared between them for the application of exon 

detection for actual DNA sequences. 

This paper considers the non-parametric spectral 

estimation techniques which include the periodogram, 

average periodogram (Bartlett), modified average 

periodogram (Welch), and Blackman and Tukey 

methods [17-21] in the proposed hybrid approach for 

exon prediction. The sensitivity of the exon detection 

process to the used spectral estimation technique is 

studied. Moreover, bandpass filtering is considered in 

conjunction with spectral estimation to enhance the 

detectability of exons. 

The objective of these spectral estimation techniques is to 

investigate the locations of exons in DNA sequences for 

gene prediction from DNA sequences for both actual and 

optimum mathematical modelling. A comparison study is 

presented in this paper between the suggested spectral 

estimation techniques from the exon prediction 

perspective.  
 

3. DNA DATASET DESCRIPTION 
 

There are different types of dataset for DNA 

sequences, such as fasta, text, afa, ann, ftb, msf…... In 

this paper, we are concerned with the type of datasets 

called fasta [22]. It consists of a header and the DNA 

sequence. MATLAB using (fastaread) reads the 

subsequent file. 

[>gi|1293613|gb|U49845.1|SCU49845:1-5028 

Saccharomyces cerevisiae TCP1-beta gene, partial cds; 

and Axl2p (AXL2) and Rev7p (REV7) genes, complete 

cds  
 

GATCCTCCATATACAACGGTATCTCCACCTCAGG

TTTAGATCTCAACAACGGAACCATTGCCGACAT

GAGACAGTTAGGTATCGTCGAGAGTTACAAGCT

AAAACGAGCAGTAGTCAGCTCTGCATCTGAAGC

CGCTGAAGTTCTACTAAGGGTGGATAACATCAT

CCGTGCAAGACCAAGAACCGCCAATAGACAACA

TATGTAACATATTTAGGATATACCTCGAAAATAA

TAAACCGCCACACTGTCATTATTATAATTAGAAA

CAGAACGCAAAAATTATCCACTATATAATTCAA

AGACGCGAAAAAAAAAGAACAACGCGTCATAG

AACTTTTGGCAATTCGCG…..]  
 

4. DNA NUMERICAL REPRESENTATION (EIIP) 

METHOD 
 

In DNA numerical representation, each nucleotide of 

the DNA sequence is converted to a numerical value 

through a mapping function. Digital signal processing 

techniques can be applied to the numerically converted 

sequences to extract some desirable features and 

information from the DNA sequences.  
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The EIIP method is a coding method based on 

replacing the four binary indicator sequences by just one 

sequence. It is called the “EIIP indicator sequence”. The 

EIIP values of amino acids are used to exchange the 

corresponding amino acids in protein sequences. In the 

current work, the EIIP values of nucleotides have been 

used instead of the values of amino acids. The EIIP 

values of nucleotides are defined as, A= 0.1260, 

G=0.0806, C=0.1340 and T=0.1335 [4-6, 23-26]. 

The EIIP representation method can improve the 

discrimination capability of gene finding techniques. 

Also, this method reduces the computational overhead by 

75%. [23-26]. 
 
 

5. THE PROPOSED APPROACH 
 

Figure 1 illustrates the block diagram of the 

proposed hybrid approach to estimate the PSD of the 

DNA sequences and to identify the coding regions. 

 

 

 

 
 

 

 

 

 

 
 
 

 

Figure.1 Proposed approach block diagram 
 

The main steps of the proposed approach are 

summarized as follows: 

1- Reading the DNA sequence using MATLAB function 

fastaread. 

2- Encoding the DNA sequence into a numeric sequence 

using the EIIP method. 

3- Applying the data modelling approach to represent the 

DNA sequence with a mathematical formula. 

4- Utilization of a digital bandpass filter for extraction of 

the coding region and noise suppression. 

5- The output of the digital filter is passed through the 

non-parametric spectral estimation methods for 
estimating the power spectra of both the actual data and 

the mathematical model. 
6- On the estimated spectra, determine the peak to locate 

the exon region in the DNA sequence. 
 

Note: for all illustrated figures given in the next section, 

all real (actual) data is indicated by a solid line, while a 

thin line shows the obtained theoretical result. 
 

 

 

 

 

 

6. THE PROPOSED MATHEMATICAL 

MODELING APPROACH 
 

This section presents the proposed DNA 

mathematical modelling approach. This approach is used 

to perform the transformation of DNA sequences to 
mathematical functions. The selected optimum 

mathematical model is based on minimizing the error and 

maximizing the correlation coefficient between the actual 

data and the obtained mathematical form. The data 

modelling approach is used to perform the representation 

of DNA sequences as different mathematical functions. 

In this section, the simulation model is presented for 

different cases using the simulation capabilities of the 

MATLAB software package. 
 

A.  DNA Polynomial Modeling 

The mathematical representation using a 

polynomial function with order 9 is represented as: 
 

F(x) = 3.279e-30 x9 - 7.676e-26 x8 + 7.599e-22x7 - 

4.131e-18 x6 + 1.336e-14 x5 - 2.583e-11 x4 + 2.817e-08 x3 

- 1.472e-05 x2 + 0.002403 x + 0.3125                            (1)  
 

B. DNA Exponential Modeling 

The mathematical equation using the exponential 

function is given as: 

F(x) = -2871 e-0.0007404 x + 2872 e-0.0007402 x                         (2) 
 

C. DNA Gaussian Modeling   

The mathematical form using the general Gaussian model 

with 8 coefficients is represented as: 

F(x) = 0.8818 exp(-((x- 1583)/ 197.3)2) +0.6943 exp(-

((x- 2361)/ 187.3)2) +0.1777 exp(-((x- 1788)/ 117.9)2) 

+0.3109 exp(-((x- 1111)/ 156.8)2) +0.1641 exp(-((x- 

2154)/ 97.3)2) +0.1266 exp(-((x- 2638)/ 2838)2) 

+0.4249 exp(-((x- 153.1)/ 179.7)2) -0.03567 exp(-((x- 

1340)/ 81.88)2)                                                           (3) 
  

Figure 2-a, 2-b, and 2-c present the results of the actual 

DNA sequence using the given database and the obtained 

mathematical representations using polynomial, 

exponential and Gaussian models with a number of terms 

= 8, respectively. 
 

 

Figure. 2-a polynomial 
function results 

 

Figure.2-b exponential function 
results 
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Figure. 2-c Gaussian function results 

 

D. DNA Sum of Sinusoids (SoS) Modeling 
 

This section gives a brief discussion of the data 

modelling using the SoS model. Figures (3-a) to (3-d) 

present the representations of the actual DNA sequence 

and the representation using SoS model with a number of 

terms equal to 2, 4, 6, and 7, respectively. Also, the 

mathematical equation for each model is presented. 
 

 Using No. of Sinusoidal Terms = 2 
 

The mathematical equation for this model is represented 

as: 

F(x) = 0.4358 sin (0.000548 x+ 0.7682) + 0.2014 sin 

(0.002473 x+ 3.012)                                              (4) 
 

 Using No. of Sinusoidal Terms = 4 
 

 

The mathematical equation for this model is represented 

as: 

F(x) = 0.4319 sin (0.000585x+0.6188) + 0.1954 sin 

(0.002427x+3.194) + 0.1457 sin (0.008924x-0.3117) + 

0.09679 sin (0.005505x+0.1261)                           (5) 
 

 Using No. of Sinusoidal Terms = 6 
 

The mathematical equation for this model is represented 

as: 

F(x) = 0.4488 sin (0.0006096x+0.5916) + 0.2126 sin 

(0.002671x+2.623) + 0.1465 sin (0.00921x-1.034) + 

0.07928 sin (0.003845x+2.672) + 0.1219 sin 

(0.007594x+2.176) + 0.1094 sin (0.005662x-0.03721) (6) 
 

 Using No. of Sinusoidal Terms = 7 
 

The mathematical equation for this model is represented 

as: 
 

F(x) = 0.4415 sin (0.0006193x+0.5318) + 0.1868 sin 

(0.002505x+3.07) + 0.1429 sin (0.00928x-1.089) + 

0.05778 sin (0.00443x+1.207) + 0.126 sin 

(0.007762x+1.779) + 0.1196 sin (0.005715x-0.03376) 

+0.05054 sin (0.01135x-5.128)                         (7) 

 

 
Figure. 3-a SoS model with 

2 terms results 

 

Figure. 3-b SoS model with 4 
terms results 

 

Figure. 3-c SoS model with 6 

terms results 

 

Figure. 3-d SoS model with 7 
terms results 

 

Figure 4 illustrates the signal representation for 5000 

samples of DNA sequences using the EIIP method for 

actual data, Gaussian model, and SoS Model.  

 

 

 

 

 

 

 

 

Figure. 4 signal representation results 
 

7. PERFORMANCE EVALUATION METRICS  
 

This section defines the metrics used for measuring 

the performance of the proposed mathematical modelling 

approach. 
 

Root Mean Square Error (RMSE) 
 

The mean square error is one of the most important 

parameters used to examine and measure the 

performance of the mathematical data model. It is 

defined as the average error between the actual data and 

the mathematical model. 

If X is the actual data, and X̂ is the mathematical model, 

the MSE will be defined as: 
 

MSE = E [e (n) 2] = E [(X - X̂) 2] = E [(X̂ - X) 2]           (8) 
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If the value of the MSE tends to zero, there is a 

complete coincidence and matching between the actual 

data and the mathematical model. If the value of the MSE 

increases more than zero, the error between the actual 

data and the mathematical model also increases. Root 

Mean Square Error (RMSE) is the square root of the 

MSE. 
 

Correlation Coefficient (R) 
 

The correlation coefficient R is used to analyze how 

difference in one variable can be explained by a 

difference in a second variable. The correlation 

coefficient (R) measures the similarity between the actual 

data DNA sequence and the mathematical model. The 

variation range of R is 0 to 1 (i.e. 0% to 100%).  

Table 1 represents the performance evaluation 

metrics comparison study between different data 

modelling forms. From these obtained results, it is seen 

that as the order of sine terms increases, the RMSE 

decreases, and the correlation coefficient R increases. 

This tends to the best matching between the actual data 

and using the Gaussian model function (with the number 

of terms = 8) and the SoS modelling function (with the 

number of terms=7). All these selected models have 

minimum RMSE and large R values as compared to other 

models. 
TABLE 1. PERFORMANCE EVALUATION METRICS 

 

Actual data and mathematical 

model data (5028 points) 
RMSE 

Correlation 

Coefficient 

(R) 

Polynomial function (degree = 9) 0.1437 0.8126 

Exponential function (number of terms 

= 2) 
0.2113 0.5153 

Gaussian function (number of terms = 

6)  
0.08095 0.9447 

Gaussian function (number of terms = 

7)  
0.04592 0.9825 

Gaussian function (number of terms = 

8)  
0.04591 0.9826 

SoS function (number of terms = 2) 0.1557 0.7737 

SoS function (number of terms = 4) 0.1001 0.9139 

SoS function (number of terms = 6) 0.05724 0.9727 

SoS function (number of terms = 7) 0.04655 0.9821 

 

Statistical Analysis 

Figures 2, 3, and 4 illustrate the obtained results 

using a selected data modelling approach. The different 

mathematical models examined in this paper are 

polynomial function with order 9, the exponential model 

expressions, the general Gaussian function with 8 terms, 

and the SoS with different terms. The numbers of sine 

terms tested using this method are 2, 4, 6 and 7 terms. 

From the obtained results listed in Table 1, we conclude 

the following: 

A. The RMSE between the actual sequence and the 

mathematical form using the polynomial function and the 

exponential function is large, and R is small.  

B. The RMSE values using the Gaussian model with the 

number of terms 8 and the SoS with the number of terms 

7 are very small and minimum, while the correlation 

coefficient R increases to a value approximately = 1. 

C. Increasing the number of terms of the SoS model 

reduces the RMSE between the actual sequence and the 

mathematical form. Also, the correlation coefficient R 

increases, which realizes the matching.  

D. There is nearly complete, optimum coincidence and 

matching between the actual data and the proposed data 

modelling form using the two mathematical 

representation models (Gaussian model with number of 

terms = 8 & SoS with the number of terms = 7).    
 

8. NON-PARAMETRIC TECHNIQUES FOR 

POWER SPECTRUM ESTIMATION 
 

A simple way to estimate the power spectrum of the 

DNA sequence is to use non-parametric techniques, 

which are classical. These classical spectrum estimation 

techniques are based on the direct computation of the 

Fourier transform for the available data record, that is, 

the periodogram spectrum or its improved versions. The 

non-parametric power spectrum estimation techniques 

are Bartlett, Welch, and Blackman and Tukey. These 

techniques are called non-parametric because they do not 

depend on how the data were generated [17-21].  
 

A. Periodogram 
 

This technique for estimating the power spectrum of 

a process is to find the discrete-time Fourier transform of 

the samples of the process and take the magnitude 

squared of the result. The discrete Fourier transform of 

the real finite-length sequence x(n), 0<n<N-1 is X (f). The 

quantity 2

)( fX  represents the distribution of the signal 

energy as a function of frequency. It is called the power 

spectral density of the signal.  

The periodogram is defined as [17]: 

𝐼𝑁(𝑓) =
1

𝑁
|𝑋(𝑓)|2                                             (9) 

 

B. Bartlett Technique 
 

The Bartlett technique used for reducing the variance 

in the periodogram involves 3 steps [17]: 

For N points, they are divided into K segments with 

length M, i.e., N = KM. For each segment of the DNA 

sequence, a periodogram is estimated. This is followed 

by averaging the periodograms for K blocks B(f). Thus,  

𝑉𝑎𝑟[𝐵(𝑓)] =
1

𝑘
𝑉𝑎𝑟[𝐼𝑀(𝑓)]                            (10)

 
Therefore, the variance of the Bartlett power 

spectrum estimate has been reduced by the factor k. 
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C. Welch Technique

 
 

An improved estimator of the PSD is the one 

proposed by Welch [17]. This technique consists of 

dividing the time series data into possibly overlapping 

segments with 25% and 50% overlap between successive 

data segments. Then, windowing is applied to the data 

segments before computing the periodogram of each 

segment. Thus, averaging is performed on all segments to 

decrease the variance of the estimated spectrum. 
 

 D. Blackman and Tukey Technique 
 

The steps of Blackman and Tukey technique based 

on autocorrelation function are summarized as follows 

[17]: 

1. Estimate the sample auto-correlation sequence rxx(m). 

2. Window the sample auto-correlation rxx(m) with w(m). 

3. Compute the Fourier transform to yield the power 

spectrum as: 

Pxx(f) = ∑ 𝑟𝑋𝑋 (𝑚) 𝑀−1
−(𝑀−1)  w(m) e-j2πfn    (11) 

 

9. PREDICTION OF EXON REGION USING THE 

PROPOSED HYBRID APPROACH  
 

This section examines the application of the 

proposed approach for the analysis of the DNA 

sequences to identify and predict the protein-coding 

regions. The proposed approach reduces the background 

noise in the DNA sequences using the digital filter. 

Calculating the power spectrum allows us to determine 

the exon regions. 

A digital filter with inverse Chebyshev approximation 

has been chosen due to its high selectivity, which can be 

achieved using a low-order transfer function. Inverse 

Chebyshev filter does not exhibit ripples in its passband 

amplitude response, which is highly needed for the 

prediction of the exon region. The numerical DNA 

sequence is filtered using inverse Chebyshev bandpass 

filter with the following specifications: 

Filter order N = 3, the lower and upper passband edge 

frequencies are [0.663, 0.669], the lower and upper 

stopband edge frequencies are [0.66, 0.672], the 

maximum passband attenuation = 1 dB and the minimum 

stopband attenuation = 30 dB [6, 15-16]. 

In order to identify gene region in the whole DNA 

sequence using the proposed hybrid approach, the DNA 

sequence is passed through that digital filter with the 

above specifications. All non-parametric spectral 

estimation methods based on Discrete Fourier Transform 

exhibit sharp peaks at the cut-off frequency. Exons are 

isolated within the genes of eukaryotic cells by using the 

proposed approach.  

 

A. Exon Region Prediction Results Using the 

Periodogram Technique 
 

Figure 5a to 5c illustrates the exon region prediction 

results using the periodogram technique as the number of 

points N increases from 512 to 2048 for actual data, 

Gaussian model, and the SoS model. From these obtained 

results, it is seen that a sharp peak is detected at the 

normalized cut-off frequency (0.667) above -70 dB 

threshold level for both actual data and SoS model, while 

no peak can be detected for the Gaussian model. These 

results indicate that the resolution is improved as the 

number of points N increases.  
 

B. Exon Region Detection Results Using the Bartlett 

Technique 
 

Figure 6a to 6c illustrates the exon region detection 

results using the Bartlett technique for k =2, 4, and 8 for 

actual data, Gaussian model, and the SoS model. The 

obtained results indicate that a sharp peak is detected at 

the normalized cut-off frequency (0.667) for both actual 

data and the SoS model. In addition, no peak can be 

detected using the Gaussian model. Also, these results 

indicate that the frequency resolution is decreased as k is 

increased, and the variance is reduced. 

 

 
Figure. 5-a 

 
Figure. 6-a 

 

Figure. 5-b 

 

Figure. 6-b 

 

Figure. 5-c 

 

Figure. 6-c 

Figure. 5 Periodogram results                    Figure. 6 Bartlett results 
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C. Exon Region Prediction Results Using the Welch 

Technique 
 

Figure 7 gives the exon region prediction results 

using the Welch technique for different overlap ratios. 

For the case of (25%) overlap, the obtained results are 

shown in Fig. 7a, 7b, and 7c. For the case of an overlap 

ratio of (50%), the results are given in Fig. 7d, 7e, and 7f 

for actual data, Gaussian model, and the SoS model. 

From these obtained results, it is seen that above -70 dB 

threshold level, a sharp peak is detected at the normalized 

cut-off frequency (0.667) for actual data, and the SoS 

model, while no peak can be detected using the Gaussian 

model. These results indicate that the frequency 

resolution is decreased as the number of points is 

increased from 512 to 2048 points, and the variance is 

also reduced. The data segment overlapping improves the 

characteristics of the spectrum estimate as compared to 

the obtained spectrum using the Bartlett technique. 
 

 
Figure. 7-a 

 
Figure. 7-d 

 

Figure. 7-b 

 

Figure. 7-e 

 

Figure. 7-c 

 

Figure. 7-f 

Figure. 7 Welch results 
 

 
 

 

D. Exon Prediction Results Using the Blackman and 

Tukey Technique 
 

Figure 8a to 8c depicts the exon region prediction 

results using the Blackman and Tukey technique for 

actual data, Gaussian model, and the SoS model. From 

these obtained results, it is seen that a sharp peak is 

detected at the normalized cut-off frequency (0.667) 

above -70 dB threshold level for both actual data and the 

SoS model, while no peak can be detected with the 

Gaussian model. These results indicate that the resolution 

is improved as the number of points N increases from 512 

to 2048 points.  

 

 
Figure. 8-a 

 

Figure. 8-b 

 

Figure. 8-c 
 

Figure. 8 Blackman and Tukey results 
 

10. RESULT DISCUSSION AND COMPARISON 

STUDY 
 

The periodogram is computationally efficient when 

the FFT algorithm is employed. The variance of the 

periodogram decreases as N increases and does not 

approach zero as N tends to infinity. Thus, the spectrum 

is said to be consistent.  
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From these obtained results, we have concluded that: 

 The variance of the Bartlett spectrum estimate is 

reduced at the expense of increased bias and 

decreased spectrum resolution. 

 Welch and Blackman and Tukey power spectrum 

estimates are better than Bartlett estimate, but the 

difference in performance is relatively small. 

 The Welch method requires a little more 

computational power than do the other two methods. 

 When the DNA sequences are mapped to EIIP 

indicator sequences, and by applying the power 

spectrum techniques on these sequences reveals a 

sharp peak for the exon region, which provides good 

discrimination between exon areas and non-coding 

areas of several genomes. 

 A sharp peak is detected at the normalized cut-off 

frequency (0.667) for both actual data and the SoS 

model. In addition, no peak can be detected using the 

Gaussian model. 

 An efficient mechanism for the identification of exon 

region based on digital filtering and non-parametric 

spectral estimation techniques has been presented. 

The output of the digital filter gives a sharp peak at 

the normalized cut-off frequency (0.667). 

11. CONCLUSION 

In this paper, a proposed hybrid approach using non-

parametric spectral estimation techniques have been 

presented for the analysis of DNA sequences and exon 

region detection in DNA sequences. EIIP method has 

been used to convert the DNA symbolic sequence to 

numerical values. Also, different closed-form 

mathematical equations have been presented using a data 

modelling approach. The best mathematical expressions 

which represent the DNA sequences are the Gaussian 

model with the number of terms = 8 and the SoS model 

with the number of terms = 7. The statistical RMSE and 

correlation coefficient R metric parameters are optimum 

for the Gaussian model and the SoS model. Thus, each 

DNA sequence can be represented mathematically for 

each one, which can be used to discriminate between 

different DNA sequences. The proposed DNA 

mathematical modelling methods have been used to build 

dictionaries for the DNA of different persons. Such 

dictionaries can be used for further exploration of the 

characteristics of various diseases. Besides, this paper 

presented a useful track for doing various analyses of 

DNA sequences and exon region prediction. The 

proposed hybrid approach improves the detectability of 

the peak in the exon region that is used for finding genes.  

The results of gene prediction from DNA sequences in 

exon regions based on original and modelled DNA 

sequences coincide to a great extent, which ensures the 

success of the proposed SoS method for optimum 

modelling of DNA sequences, while the Gaussian model 

is not appropriate for this task. 
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