

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.9, No.5 (Sep-2020)

E-mail: ali.almajed@gmail.com, fred_lacy@subr.edu, yasser_ismail@subr.edu

 http://journals.uob.edu.bh

Smart Detection Under Different Weather Conditions

Ali Al Majed1, Fred Lacy1 and Yasser Ismail1

1Electrical Engineering Department, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge,

LA, USA

Received 6 Jun.2020, Revised 17 Jul. 2020, Accepted 29 Jul. 2020, Published 1 Sep. 2020

Abstract: Object detection is one of the most essential and challenging tasks in computer vision and deep learning. The

main goal of object detection is to determine whether the image has an object from predefined categories and then to

return the class and spatial location of that object. Researchers achieved a significant improvement in object detection in

both speed and accuracy due to the ability to learn from raw pixels. There are three main stages in object detection: region

proposal, feature extraction, and classification. The current state-of-art object detection algorithms are divided into two

categories: two-stage and one-stage. The two-stage algorithms perform the first two stages separately, while the one-stage

algorithms perform these two stages together. A two-stage algorithm like faster R-CNN is known for its superb accuracy,

while the one-stage algorithms like YOLO and SSD are much faster than two-stage algorithms. Still, they lack accuracy,

especially with a small object. This work targeted the accuracy, so the two-stage detection algorithms, faster R-CNN,

were adopted as the basic structure for the detection network, evaluated under different weather conditions. The study

implemented and tested the faster R-CNN with VGG16 as a feature extractor with images under differing weather

conditions. First, the study trained the network under different training parameters to obtain the best detector. Then, the

study tested and evaluated the two best detectors under different weather conditions. The results show that the accuracy

of the detector is affected differently under different conditions, and more complex environments result in greater

inaccuracy.

Keywords: Object detection, YOLO Algorithm, Faster R-CNN

1. INTRODUCTION

Object detection, as a subdivision of computer vision,

is considered to be one of the difficult computer visions

tasks. It deals with detecting instances of predefined

categories in images. Object detection constitutes an

essential and significant task in a wide range of

applications like robot vision, pedestrian and face

detection, security, digitalizing texts, intelligent video

surveillance, automotive safety, and advanced driving

assistant systems (ADAS). The objective of object

detection is to determine the existence of any instances of

an object from predefined categories (e.g., person, cat, car)

in an image and return the class and spatial location (via

bounding box) of that object.

Object detection is a challenging task, mainly due to

the complexity of the background. The detector attempts

to detect objects in the foreground and eliminate the

background. The complexity of the background most

affects the accuracy, and weather conditions tend to

increase the complexity of the background. The weather

conditions may also affect the lighting and the clarity of

the image; therefore, these affect the detection accuracy.

Recently, object detection gained significant

improvement by employing deep learning technologies.

Deep Learning, as a powerful methodology for learning

feature representation artificially in the image, led to

notable development in object detection. The accuracy of

the object detection algorithm provides a significant

reason to choose which algorithm to use. Faster R-CNN

[1] is known for its accuracy, but further evaluation must

be applied to test its accuracy under different conditions.

The purpose of this work is to evaluate the accuracy of

faster R-CNN under different weather conditions.

Researchers focused on a hand-crafted method to

extract a low-level feature to detect pedestrians by

designing a manual algorithm. Recently, the researchers

initially combined the hand-crafted method with a deep

convolutional network to take advantage of the

development of deep learning. Development in the feature

extraction stage for the detection of the human has been in

place since Dalal presented the Histogram of Oriented

http://dx.doi.org/10.12785/ijcds/090501

768 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

Gradients (HOG) to detect pedestrian [2]. To improve

HOG, which computes multi-resolution image features

explicitly, Pitor approximated these features via

extrapolation and called this method aggregated channel

features (ACF) [3]. ACF used boost decision trees with

orthogonal (single feature) splits, while Locally

Decorrelated Channel Features (LDCF) used decision

trees with oblique (multi-feature) splits, which were more

effective given the highly correlated data; Nam proposed

this approach [4].

The paper is organized as follows, in section 2, a

literature review is elaborated. Object detection algorithms

are elaborated in section 3. Methodology and Implemented

Algorithm is discussed in detail in section 4. The training

procedure is described in section 5. Simulation and

implementation are discussed in section 6. A conclusion

will be drawn in section 7.

2. LITERATURE REVIEW

Recently, Sermant employed the convolutional neural

network (ConvNet) in pedestrian detection, showing that

ConvNet ‒ with a few twists ‒ yields competitive results.

[5]. To further benefit from deep learning for pedestrian

detection, Tome et al. [6] proposed a new architecture by

analyzing and optimizing each step of the detection

pipeline and called the pipeline (DeepPed). Object

detection presents three main stages: region proposals,

feature extraction, and classification, as seen in Figure 1.

Figure 1. A common pipeline for object detection.

A. Region Proposals

The sliding window (Figure 2) is a traditional region

proposals technique. The technique works by running a

window from right to left and top to bottom to thoroughly

search for a RoI, by the use of a different size of the

window to detect an object at a different viewing location.

However, the sliding window tends to generate a huge

number of region proposals.

Figure 2. Sliding Window [7].

The other method used in the region proposals is

Selective search [8]. This alternate method combines the

strength of both the exhaustive search and segmentation

methods to generate a region of proposals. The method

applies the segmentation as a selective search that returns

a small set of objects location as compared to the sliding

window. Figure 3 shows the outputs of the selective search

method. There exist three goals of the selective search

algorithm: accounts for all object scales holds a diverse set

of techniques to deal with all cases and displays a

reasonably fast speed. Forming the basis of the selective

search takes a hierarchical and bottom-up grouping

algorithm. Then, the selective search algorithm uses four

complementary similarity criteria to deal with all cases:

color, texture, size, and fill.

Figure 3. The image in the left is the input image, while the image in the
right is the output of the selective search method [9].

The algorithm performed in two steps: first, it added

all bounding boxes that corresponded with the segmented

parts to the list of proposed regions. Second, the algorithm

applies a bottom-up grouping of the adjacent segments

based on similarity. All these measures are within the

range [0, 1], which serves to facilitate the combinations of

these measures. The last complementary is the sum of all

of the four measures (Equation 7). The First

complementary measure which measures color similarity

is 𝑠𝑐𝑜𝑙𝑜𝑢𝑟(𝑟𝑖 , 𝑟𝑗) (Equation 1), which uses one-

dimensional color histograms for each color channel using

25 pins. This leads to a color histogram 𝑐𝑖 = {𝑐𝑖
1, … , 𝑐𝑖

𝑛}

for each region 𝑟𝑖 with dimensionality n = 75, when the

three color channels are used. The color histograms are

normalized using the 𝐿1 norm. The similarity is measured

using the histogram intersection:

scolour(ri, rj) = ∑ min(ci
k, cj

k)n
k=1 (1)

 The color histograms can be efficiently propagated

through the hierarchy by:

𝐶𝑡 =
𝑠𝑖𝑧𝑒(ri)× 𝐶𝑖+𝑠𝑖𝑧𝑒(rj)× 𝐶𝑗

𝑠𝑖𝑧𝑒(ri)+ 𝑠𝑖𝑧𝑒(rj)
 (2)

The size of a resulting region is simply the sum of its

constituents:

𝑠𝑖𝑧𝑒(rt) = 𝑠𝑖𝑧𝑒(ri) + 𝑠𝑖𝑧𝑒(rj) (3)

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 769

http://journals.uob.edu.bh

The second complementary measure which measures

texture similarity is 𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑟𝑖 , 𝑟𝑗) (Equation 4). The

histogram is extracted using a bin of size 10 for each

orientation for each color channel. This led to a texture

histogram Ti = {ti
1,··· ,ti

n} for each region ri with

dimensionality n = 240, using three color channels. The

study used the L1 norm to normalize the texture

histograms. The histogram intersection measured the

similarity:

𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑟𝑖 , 𝑟𝑗) = ∑ 𝑚𝑖𝑛 (𝑡𝑖
𝑘 , 𝑡𝑗

𝑘)𝑛
𝑘=1 (4)

The research applied an efficient propagation of the

texture histograms through the hierarchy in the same

manner as the color histograms.

The third complementary measure, encouraging small

regions to merge early is 𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗)(Equation 5). This

measure forced regions in S to be of similar sizes

throughout the algorithm ‒ 𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗) ‒ defined as the

fraction of the image that 𝑟𝑖 and 𝑟𝑗 jointly occupy:

𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗) = 1 −
𝑠𝑖𝑧𝑒(𝑟𝑖)+𝑠𝑖𝑧𝑒(𝑟𝑗)

𝑠𝑖𝑧𝑒(𝑖𝑚)
 (5)

Size (im) denotes the size of the image in pixels

The fourth complementary measure measured how

well the region 𝑟𝑖 and 𝑟𝑗 fit into each other, is 𝑠𝑓𝑖𝑙𝑙(𝑟𝑖 , 𝑟𝑗)

(Equation 6). The notion intent is to fill gaps to avoid any

holes. Only the regions’ size and the containing boxes

were used to keep the measure fast. Specifically, BBij is

defined to be the tight bounding box around 𝑟𝑖 and 𝑟𝑗. Now

sfill(ri, rj) = becomes the fraction of the image contained

in BBij which is not covered by the regions of 𝑟𝑖 and 𝑟𝑗:

sfill(ri, rj) = 1 −
size(BBij)−size(ri)−size(rj)

size(im)
 (6)

The final similarity measure is a combination of the above

four:

s(ri, rj) = a1scolor(ri, rj) + a2stexture(ri, rj) +

a3ssize(ri, rj) + a4sfill(ri, rj) (7)

where ai ∈ {0,1} denoted whether the similarity measure

is used or not. As we aim to diversify our strategies, we do

not consider any weighted similarities.

B. Feature Extraction

The second stage in object detection is feature

extraction. The first breakthrough in the object detection

was in 2005 when Dalal et al. [2] proposed the Histogram

of oriented gradients (HOG). Dalal, accompanied by his

team, detected a pedestrian with reasonable accuracy at

that time. The HOG descriptor will read an image as an

array of size n. Then, HOG used the distribution of the

direction of gradients as features to determine whether

there is a pedestrian. By approximation of multi-resolution

features via extrapolation from nearby scales, Pitor et al.

[3] improved HOG by combining the descriptor with

channel features. This method is called the aggregated

channel feature (ACF). By utilizing the high correlation,

the study proposed an efficient feature transform to

remove correlation in local neighborhoods; this approach

was called the local decorrelated channel feature (LDCF)

[4]. LDCF uses decision trees with oblique splits because

the feature can be more productive with correlated

features, such as when the topology of the resulting

classifier matches the natural topology of the data.

2012 was the first year for the Convolutional Neural

Network (CNN) to induce attention in object detection,

once Kirzhevsky [10] used the CNN to win the ImageNet

Large Scale Visual Recognition (ILSVR) 2012

competition. Using CNN, Kirzhevsky dropped the

classification error from 26% to 15%. CNN takes as an

input an image with a fixed size and then processes that

image through different layers to extract a feature map. By

employing a differentiable function, every layer carries the

ability to perform a transformation from one volume to

another.

Simo et al. [11] attempted to improve the content by

increasing the depth of the network through the use of an

architecture that employed very small convolutional filters

with the size of (3 × 3), astride 1, the same padding, and

by max-pooling a layer of 2 × 2 filters of stride 2. As a

result, Visual Geometry Group-16 (VGG16) did not

incorporate a large number of hyperparameters. The

researchers used this architecture (Figure 4) to win the

(ILSVR) competition in 2014 in the localization and

classification tracks, respectively. As shown in Figure 4,

VGG16 follows the same arrangement of convolutional

and max-pooling layers consistently throughout the

architecture. The last 3 layers construct 2 Fully Connected

(FC) layers, followed by softmax function for output.

VGG16 has 16 layers with weights, and is considered to

be an outstanding model architecture, composed of a large

network with around 138 million parameters.

770 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

Figure 4. VGG16 Architecture.

3. DETECTION ALGORITHMS
The detection algorithms divide into two categories:

two-stage detectors and one-stage detectors [11]. Two-

stage detectors perform the detection task in two stages.

First, this category generates regions of interest (RoI) that

may have an object and then extracts a feature map form

those RoI’s. The most popular approach in the two-stage

detection algorithm is a faster R-CNN. On the other hand,

the one-stage detection algorithm performs both steps

together. The most popular one-stage detection algorithms

are YOLO and single-shut-detector (SSD). YOLO and

SSD eliminate the region proposals stage and perform the

region proposals and feature extraction in one step.

One of the most popular two-stage detection

algorithms is Faster R-CNN. Girshick et al. proposed a

region-based convolutional neural network (R-CNN) [12]

as an inspiration, due to the breakthrough in object

detection using CNN. R-CNN combines the region-based

method with a convolutional network which applies a

high-capacity CNN to bottom-up region proposals, using

selective search as an external region proposal method to

extract about 2000 RoI. Regions are resized and then fed

to the CNN network for feature extraction. The last step is

to feed the patches to the linear Support Vector Machine

(SVM) to predict the category of each patch. R-CNN does

not share computation; instead, it performs a deep

ConvNet forward pass for every RoI. It obtains a superb

accuracy; however, it is very slow and computationally

costly.

Figure 5 shows the system overview of R-CNN: (1)

The network takes an input image with a fixed size, (2)

uses the selective search method to generate around 2000

proposals, (3) uses the CNN to extract features for each

proposal, and (4) uses linear SVM for classification [12].

Figure 5. Object Detection System Overview [12].

Girshick proposed fast R-CNN [7] as an improvement

of R-CNN, after recognizing the drawbacks. R-CNN

detection is slower because it extracts the feature for every

proposal. Moreover, the training is done in a multi-stage

pipeline and is expensive in both space and time,

extracting the feature of the entire input image using CNN.

Also, it uses the selective search as an external feature

extractor to generate a RoI, which when combined with

the corresponding feature map, forms patches for object

detection. Figure 6 shows the architecture of Faster R-

CNN; first, it uses selective search to generate RoI, and

CNN to extract the feature map from the input image.

Then, the model utilizes an RoI pooling layer to combine

RoI and feature maps. Finally, the model applies softmax

and abounding boxes regressor to output the class and

bounding box offset.

Faster R-CNN extracts the feature map from the input

image, rather than extracting the feature from each RoI,

similar to R-CNN ‒ thus exhibiting why it is much faster

than R-CNN.

Figure 6. The Architecture of Fast R-CNN [7].

Fast R-CNN uses ROI pooling to wrap the patches to

a fixed size, then feeds the patches to a fully connected

layer for classification and localization. ROI pooling

reduces the feature maps into an identical size by splitting

the input feature map into a fixed number (k) of roughly

equal regions, and then by applying max pooling on every

region. Therefore, the output of ROI pooling is always a

fixed number (k), regardless of the size of the input. Lastly,

fast R-CNN employs the softmax function for

classification and probability bounding box regressor for

localization. One of the essential capabilities of fast R-

CNN is that it trains all network weights with back-

propagation. [7]

Faster R-CNN [1] replaces the selective search

method, the slowest part of the fast R-CNN, by Region

Proposal Network (RPN) to generate RoI. RPN shows a

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 771

http://journals.uob.edu.bh

much less computational cost when compared to selective

search (external), and also shares most of the computation

with an object detection network. Besides, RPN ranks

region boxes (called anchors) and then proposes the ones

most likely containing objects (Figure 7). Anchor boxes

handle the variations in aspects of ratio and scale of objects.

The RPN may be trained end-to-end by stochastic gradient

descent (SGD) and back-propagation.

Figure 7. Region Proposal Network (RPN) [1].

Figure 8 shows high-level diagrams of the two-stage

detection algorithm frameworks. The diagrams indicate

the main differences between the region-based detection

algorithms. R-CNN extracts the features from each RoI

generated by the selective search method, which causes

the process to become very slow. Fast R-CNN, on the

other hand, extracts the feature map directly from the input

image to speed up the process. Then it uses the RoI pooling

layer to combine ROIs with feature maps. Since the

selective search method is the slowest part of fast R-CNN,

faster R-CNN replaces it with a Region Proposal Network

(RPN).

The second category of the detection algorithm is a

one-stage detection algorithm. One of the most popular

algorithms in this category is YOLO [13]. YOLO deals

with object detection as a regression problem to predict

bounding boxes and class probabilities at once from the

full image. Figure 9 shows how YOLO works; it divides

every image into an SXS grid, and every grid cell predicts

B bounding boxes and confidence scores for those boxes.

The accuracy of the bounding boxes is reflected by the

confidence score, as well as whether there is an object or

not. The confidence score reflects how likely the box has

an object, and how accurately it thinks the box is a

boundary box. If no other object-located confidence score

is zero, the finding is equal to the intersection over union

(IOU) between the predicted box and the ground truth box.

Each prediction box has five elements: x,y,w,h, and a

confidence score. Figure 10 shows the architecture of

YOLO: The network has 24 convolutional layers followed

by two fully connected layers. and uses a reduction layer

of size 1 × 1 to reduce the feature space from preceding

layers [13].

Figure 8. High-level diagrams of the two-stage detection algorithms

frameworks.

Figure 9.YOLO divides the image into SXS for each grid, and each grid

cell predicts B bounding boxes, confidence for those boxes, and C class
probabilities [13].

Liu proposed that YOLOv2 [14] remains focused on

improving the recall and localization of YOLO while

maintaining the classification accuracy. The researcher

simplifies the network and then makes the representation

simpler to learn. YOLOv2 uses a high-resolution

classification network that enhances accuracy by replacing

the fully connected layer with an anchor box to predict

772 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

bounding boxes, which increase the predicted boxes per

image. These replace the classification model VGG-16

with a new proposed model, Darknet-19, that displays 19

convolutional layers and five max-pooling layers.

Figure 10. YOLO Architecture [13].

The other most popular one-stage algorithm is a single

shot detector (SSD) [15]. SSD is a technique that uses a

single, deep, neural network for detecting objects in

images. SSD eliminates region proposals and a subsequent

pixel or feature resampling stages, thus encapsulating all

computation into a single network. This approach makes it

simple, relative to other techniques that require region

proposals. By employing small convolutional filters

applied to feature maps, SSD predicts box offsets and

category scores for a set of default bounding boxes. To

achieve high detection accuracy, SSD produces

predictions of different scales from feature maps and

explicitly separates predictions by an aspect ratio. Figure

11 shows the architecture of SSD, which uses VGG-16 as

a base network, then adds several feature layers. These

layers predict the offset of different aspect ratios and

scales and their associated confidences to the default box.

Figure 11. SSD Architecture [15].

Figure 12 shows the high-level diagrams of both

YOLO and SSD. YOLO predicts detection, directly using

a small set of candidate regions, employing fully

connected layers at the top of the network for

classification. On the other hand, SSD uses multiple scales

at the top of the network to perform detection by operating

on multiple convolutional feature maps; each predicts

category scores and box offsets for bounding boxes of

appropriate size.

Two-stage detectors use RPN to generate nearly 300

proposals to glean the best performance. The overall speed

decreases because each region must pass through

convolutional layers and fully connected layers for

classification to fine-tune the bounding boxes. The ideas

based on this approach gives one of the best performances

in Common Objects in Context (COCO) detection

challenge, even though these do not suit the real-time

application [1].

Generally, one-stage detectors are not as accurate as

two-stage detectors, even though the one-stage detectors

are faster [17]. YOLO is extremely fast, but it is not as

accurate as of the two-stage detectors. Moreover, YOLO

struggles with small objects, because it only predicts one

type of object in one grid [13]. Another disadvantage of

The YOLO algorithm is that it uses a feature map solely

on a single scale. SSD, on the other hand, considers

prediction from various feature maps, instead of one, thus

improving the accuracy over YOLO. Yet SSD still

presents a lower performance, as compared to two-stage

detectors [18].

The two-stage methods reached supremacy over the

best performing object detection of deep, convolutional,

neural networks [18].

Figure 12. High-level Diagrams of the one-stage detection algorithm

frameworks [16].

4. METHODOLOGY AND IMPLEMENTED ALGORITHM

To obtain the best result from the detection algorithm

that is used in this work, the research applied the following

methodology. First, the study preprocessed the training

and testing data by labeling the class and bounding boxes

in each image. Second, the study determined the optimal

size of the training data set by training and then tested the

model with four different dataset sizes and with three

different number of anchor boxes (3,6,9) (Please see Table

1).

Then, the study used the optimal size of the dataset to

further tune the training parameters, training the base

model with a different number of anchors from 3 to 9.

Finally, the study evaluated the best models showing the

best accuracy results under different weather conditions.

The weather conditions were showers, rain, snow,

nighttime, high pedestrian traffic, and heavy background.

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 773

http://journals.uob.edu.bh

TABLE 1. THE SIZES OF THE DATASETS USED TO DETERMINE
THE OPTIMAL SIZE OF THE TRAINING DATA, EACH DATASET

WAS TRAINED WITH FOUR DIFFERENT ANCHOR BOXES.

Set Number I II

Set Size (images) 40 60

Number of Epochs 20 20

Number of

Anchors
3 6 9 12 3 6 9 12

Model Name

I-
2

0
-3

I-
2

0
-6

I-
2

0
-9

I-
2

0
-1

2

I-
2

0
-3

I-
2

0
-6

I-
2

0
-9

I-
2

0
-1

2

Set Number III IV

Set Size (images) 80 100

Number of Epochs 20 20

Number of
Anchors

3 6 9 12 3 6 9 12

Model Name

I-
2

0
-3

I-
2

0
-6

I-
2

0
-9

I-
2

0
-1

2

I-
2

0
-3

I-
2

0
-6

I-
2

0
-9

I-
2

0
-1

2

A. Implemented Algorithm

The algorithm divided into four steps: loading the

dataset, creating a faster R-CNN detection network,

training, and evaluation. The first step was loading the

dataset. This step involved loading the ground truth data

for training and testing. The ground truth data presented

image information together with the classes and the spatial

location of bounding boxes. The study then created

datastores for loading the image, as well as label data for

training and evaluation.

The second step was Creating faster R-CNN Detection

Network. This step involved preprocessing the training

data, which included image resizing, data augmentation,

and choosing the network parameters. The preprocessing

of the training data included image resizing and

augmentation. The resizing of the image was required

since the input layer expected the input image to be the

same size. The study used the data augmentation to

increase the number of training images artificially, as well

as to also reduce overfitting.

The faster R-CNN parameters included a selection of

the feature extraction CNN, feature layer, number of

anchor boxes, and number of classes to be detected. The

third step was to choose the training options that contribute

more to the accuracy of training network that involved

maximum epochs, min-Batch sizes, and learning rates.

The last step after training the network was evaluating

the resulted trained detector. In this step, the trained

detector using the trained data by comparing the prediction

with the ground truth data. The output showed the average

precision (AP) of the comparison.

B. Data Preprocessing

Dataset

The research obtained images used in this work from

Penn-Fudan Database [20]. The process took images from

campus and urban streets, and during the daytime as well,

with the pedestrian shown in a straight-up position. The

images divided into five sets of different sizes. The

training sets numbered four: the first set consisted of 40

images. The second set showed 40 images from the first

set, plus an additional 20 images. Each set would

encompass all the images from the previous set, plus 20

additional images. The last set was the testing set, which

displayed uniquely 20 images for testing.

Ground Truth Labeling

The study labeled all the sets of images with the class and

bounding boxes, manually using an Image labeler

application from MATLAB. The research applied the

ground truth data of the labeled images, together with

other images, for the training and testing of the model.

This work labeled the images with a class identified as

"pedestrian."

Evaluating Metrics

The accuracy of the prediction of both the class and

bounding boxes is evaluated using average precision (AP).

Over the last years, AP was the most commonly used

evaluation metrics in object detection [19]. AP may be

defined as the average precision under different recalls.

AP = ∫ 𝑝(𝑟)
1

0
 𝑑𝑟 (8)

The precision is the total true positive over the total of

true positive and false positive, or the ratio of true object

detections to the total number of objects that the classifier

predicted.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (9)

Recall is the true positive over the total of a true

positive and false negative or the ratio of true object

detections to the total number of objects in the data set.

Recall =
True Positive

True Positive+False Negative
 (10)

Intersection over Union (IoU) threshold is used to

measure the object localization accuracy. IoU is the

overlap of a predicted versus ground truth bounding box

for an object.

IoU =
Area of Intersection

Area of Union
 (11)

774 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

Determining the optimal training samples

To determine the optimal number of images for the

training dataset, the network trained with four sets of

images (40, 60, 80, and 100) and a different number of

anchor boxes (3,6, 9 and 12). All the models (See Table1)

trained with the SGD as with a momentum of 0.9, a

learning rate of 0.001, a mini-batch size of 2, and 20

epochs. Then, the study tested and evaluated all the

resulted detectors with the same testing dataset that

showed 20 images and evaluated with a mean AP.

Tuning Training Parameters

The study used the training set with 100 images as a

dataset to train the models with many anchor boxes

between 3 and 9 and maintained the same training

parameters.

The research increased the number of epochs gradually

by 10 with each number of anchors. All the trained

networks with less than 80% average precision were

eliminated. Finally, all the remaining networks were

trained with more epochs until the precision decreased.

Evaluation of the best model under different weather

Conditions

The study tested and evaluated the best-obtained models

under different weather conditions. The conditions were

showers, rain, snow, nighttime, high pedestrian traffic, and

a heavy background. The research added the effects of

showers, rain, snow, and nighttime to the images

artificially. To consider an image under high pedestrian

traffic, it should have at least three pedestrians. The Heavy

Background category has images showing many objects in

the background. Figure 13 shows examples of different

weather conditions that are used in this paper.

Showers Rain Snow

Nighttime High Pedestrian Traffic Heavy Background

Figure 13. Examples of image categories used for evaluation. The original images were obtained from [20].

5. TRAINING

A. CNN Layers

To understand how to train a CNN, we should first

understand the main layers used to build a CNN. The main

layers used to build the CNN architecture are the

Convolutional layer (conv), the Rectified Linear Unit

(ReLU) layer, the Pool layer, and the Fully connected

layer (FC) (Please refer to Figure 14).

Figure 14. CNN Architecture Layers.[21]

The convolutional layer was the first layer in the

Convolutional Neural Network (CNN). This layer required
an image with size [W × H × D], where W, H, and D are

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 775

http://journals.uob.edu.bh

width, height, and depth respectively, and then run a filter
(kernel) with size [k × k × D], where k is filter size, to do a
product multiplication with the receptive field ‒ starting
from the right corner and moving one pixel at a time (when
stride=1). The output of the conv layer exhibited a feature
map with size [(W - k+1) × (H+1-k) × D].

The Rectified Linear Unit (ReLU) represented the
activation function. The ReLU increased the nonlinear
properties of the model and also the overall network,
applying an elementwise activation function f(x) =
max(x,0) (Figure 15). The size of the feature map was not
changed.

Figure 15. The rectifier Linear Function is used to increase the
nonlinearity of the network [21].

The Pooling Layer was a down-sampling layer, which
applied a filter (normally 2 × 2, and stride =2) to the input
volume and outputted the maximum (max pooling), or
average (average pooling). The output spatial dimension
reduced to half with 2 × 2 filters (Figure 16).

The Fully connected Layer (FC) drew the input volume
from the preceding layer and determined which feature
correlated to a particular class. The output was an N-
dimensional vector containing an N number of classes from
which the program will choose.

Figure 16. Average and Max Pooling [22].

B. What is Training?

The goal of the training was to optimize the weights
within the model by solving the optimization problem. This
goal may be achieved by employing an optimizer to
minimize the loss function to be as close to zero as possible.
There were three well-known optimizers: Stochastic
Gradient Descent (SGD), Root Mean Square Propagation
(RMSP), and Adam. The study used the SGD with a
momentum optimizer in this work because SGD is the most
known optimizer in the deep learning tasks. An SGD
algorithm updated the weight of the network, with every
iteration using the back-propagation algorithm.

C. Training Process
The training incorporated four steps: forward pass,

loss function, backward pass, and weight update. The first
step was to pass an image array of numbers throughout the
entire network. The image array would then pass from the
input layer through all the hidden layers until reaching the
output layer.

The loss function (12) calculated the error by
comparing the prediction and the true label of the image.
The input to the loss function was the output of the forward
pass and ground truth data. The overall loss was the
classification loss and regression loss.

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
 ∑ 𝐿𝑐𝑙𝑠 (𝑖 𝑝𝑖 , 𝑝𝑖

∗) +

 𝜆
1

𝑁𝑟𝑒𝑔
 ∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔 (𝑖 𝑡𝑖 , 𝑡𝑖
∗) (12)

𝑡𝑥 = (𝑥 − 𝑥𝑎)/ 𝑤𝑎 , 𝑡𝑦 = (𝑦 − 𝑦𝑎)/ ℎ𝑎 ,

𝑡𝑤 = log (
𝑤

𝑤𝑎

) , 𝑡ℎ = log (
ℎ

ℎ𝑎

) ,

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎)/ 𝑤𝑎 , 𝑡𝑦

∗ = (𝑦∗ − 𝑦𝑎)/ ℎ , (13)

𝑡𝑤
∗ = log (

𝑤∗

𝑤𝑎

) , 𝑡ℎ
∗ = log (

ℎ∗

ℎ𝑎

) ,

 𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
 (𝑡𝑖

𝑢 − 𝑣𝑖),𝑖∈{𝑥,𝑦,𝑤,ℎ} (14)

in Which 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
 (𝑥) = {

0.5𝑥2 𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In equation 12, i is the index of an anchor in a mini-
batch, the number of training samples present in a single
batch, and pi is the predicted probability of anchor i being
an object. The ground-truth label pi is 0 if the anchor is
negative and is 1 if the anchor is positive; ti is a vector
representing the 4 parameterized coordinates (Equation 13)
of the predicted bounding box; ti is also that of the ground-
truth box associated with a positive anchor. The
classification loss Lcls represents log loss over two classes
(object vs. not object). For the regression loss, we used Lreg
(𝑡𝑖 , 𝑡𝑖

∗) = R(𝑡𝑖 − 𝑡𝑖
∗), where R is the robust loss function

(smooth L1) in Equation 14. The term 𝑝𝑖
∗𝐿𝑟𝑒𝑔 means the

regression loss is activated only for positive anchors (𝑝𝑖
∗=

776 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

1) and is disabled otherwise (𝑝𝑖
∗= 0). The outputs of the cls

and reg layers consist of {pi} and {ti}, respectively. Ncls and
Nreg are normalized and weighted by a balancing parameter
λs. The cls term in Equation 12 is normalized by the mini-
batch size, and the reg term is normalized by the number of
anchor locations.

After that, the backward pass determined which weight
contributed more to the loss to reduce it through utilizing
optimization. Put another way, the backward pass is the
process of counting changes in weights.

The last step is updating the weight. First, a set of
arbitrary weights used to initialize the network. After each
epoch, a single pass of the data through the model, the
weights updated by computing the gradient (dL/dW) of the
loss function with respect to each of the weights that were
set. Then, the new weight (W) is the current weight (Wi),

subtracted by the gradient 𝑊 = 𝑊𝑖 −
𝑑𝐿

𝑑𝑊
.

6. SIMULATION AND IMPLEMENTATION

A. Determining the optimal training samples
Table 2 presents the result of training the base

network, with a different set of training images and a
different number of anchor boxes. This table reflects the
result of evaluating all the models trained and tested with

different training images size (40, 60, 80, and 100), and
also with a different number of anchor boxes (3, 6, 9, 12).
The result listed in the table includes the mean Intersection
over Union (IoU) and Average Precision (AP) as an
evaluation metric of the model accuracy.

Figure 17 shows the result of each training set; the
result indicates the AP (y-axis) as an evaluation measure of
the accuracy and the number of anchors (x-axis). Figure 17-
A evidences the result of evaluating 40 images of training
dataset models, with 3,6,9 and 12 anchors. The best
accuracy result with 40 images training set models obtained
0.75 when trained with 6 anchors. Figure 17-B shows the
result of evaluating 60 images training dataset models
when trained with the same number of anchors. The best
accuracy result was obtained 0.83 when trained with 9
anchors. Figure 17-C shows the result of evaluating 80
images training dataset models when trained with the same
number of anchors. The best accuracy result was obtained
0.83 when trained with 6 anchors. Figure 17-D shows the
result of evaluating 100 images training dataset models
when trained with the same number of anchors. The best
accuracy result was obtained 0.83 when trained with 3, 6,
and 12 anchors.

 The models trained with 100 images dataset show the
best overall AP results; therefore, these were chosen for
further tuning with training parameters.

TABLE 2. THE RESULT OF TRAINING THE BASE NETWORK WITH A SET OF 40,60,80 AND 100 IMAGES AND ALSO THE NUMBER
OF ANCHORS WAS CHANGED FROM 3,6,9,12. THIS TABLE HAS THE RESULTED AVERAGE PRECISION (AP), AND ALSO THE MEAN

INTERSECTION OVER THE UNION.

Sr. Model
Training
Images

Anchor
Boxes

mean
IoU

AP Sr. Model
Training
Images

Anchor
Boxes

mean
IoU

AP

1 I-20-3

40

3 0.71 0.60 9 III-20-3

80

3 0.66 0.77

2 I-20-6 6 0.80 0.75 10 III-20-6 6 0.79 0.83

3 I-20-9 9 0.85 0.65 11 III-20-9 9 0.84 0.70

4 I-20-12 12 0.88 0.74 12 III-20-12 12 0.86 0.81

5 II-20-3

60

3 0.70 0.81 13 IV-20-3

100

3 0.70 0.83

6 II-20-6 6 0.81 0.78 14 IV-20-6 6 0.80 0.83

7 II-20-9 9 0.84 0.83 15 IV-20-9 9 0.77 0.82

8
II-20-

12
12 0.86 0.82 16 IV-20-12 12 0.86 0.83

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 777

http://journals.uob.edu.bh

(A) (B)

(C) (D)
Figure 17. The result of training the base network with a different number of images, the plot of the accuracy versus the number of

anchors with each set.

B. Tuning Training Parameters

The study trained and evaluated models with 100
images training datasets with more of a range in the number
of anchor boxes from 3 to 9 to determine the optimal
number of anchors, but kept the other training parameters
fixed. This step helped to tune the base network to get the
best model.

The number of epochs increased gradually with each
number of anchors. The research eliminated all the trained
networks with less than 80% average precision. Then all
the remaining networks were trained with more epochs
until there was no improvement in the accuracy.

Table 3 presents the result of training and the model
with 100 images dataset, showing many anchors from 3 to
9. The model (IV-20-4), trained with 20 epochs and 4
anchors, obtained an AP result of 0.81. Since AP is more
than 0.8, the model, trained with 30 epochs, gave a result
of 0.83. Therefore, we trained the model further with 40
epochs, yet attained the same result of 0.83. So

this study can identify that the best result from the model
with 4 anchors showed when the model trained with 30
epochs. The research applied the same method with all

numbers of anchors. The comparison between all numbers
of anchors and the AP result is shown in Figure 18. This
figure shows not only the AP result but also the number of
epochs used to reach this result for all number of anchors.
The best results obtained were 0.86 when model IV-30-7
and IV-30-8 trained with 7 and 8 anchors and 30 epochs.

C. Testing and evaluating
The tuning of the training parameters provides the best

accuracy result, which is 86% with two models trained with
7 and 8 anchors: Models IV-30-7 and IV-30-8, where both
were trained with 30 epochs (Table 3). Generally, the result
obtained from Model IV-30-7 is better than the second
model IV-30-8 when tested under different conditions.

The resulting detectors from these two models tested
under different weather conditions: showers, heavy rain,
snow, nighttime, and heavy background. Generally, Model
IV-30-7 performs better than the other model except when
evaluated with showers and high traffic, showing only a 1%
difference. Figure 19 shows the result of testing both
models under different conditions.

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12

A
P

Number of Anchor Boxes

40 Training Images

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12

A
P

Number of Anchor Boxes

60 Training Images

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12

A
P

Number of Anchor Boxes

80 Training Images

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12

A
P

Number of Anchor Boxes

100 Training Images

778 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

Table 4 shows drops of the average precision (AP) for
both Models IV-30-7 and IV-30-8 when tested under
different weather conditions. The accuracy dropped with
3% and 4% when tested under showers and heavy rain, but
dropped by 8% under snow weather since snow affects the
background more than rain. The nighttime had a slight drop
(1%) to the accuracy, but both the high traffic and the heavy
background were the most dropped in terms of accuracy.

The conclusion is that the more complex the
background, the more the loss in the accuracy. The snow
affects the complexity of the background more than the
rain, which is why the drop in the accuracy increases with
the snow. Since nighttime only changes the brightness of
the image and does not change the background, there was
only a slight drop in accuracy. When evaluating a model
with a complex background, such as high traffic and heavy
background, the accuracy drops considerably.

TABLE 3. THE RESULT OF THE TRAINED NETWORK WITH 100 IMAGES AND DIFFERENT NUMBER OF ANCHOR BOXES AND
EPOCHS, THE BEST ACCURACY RESULT OF 0.86 WAS OBTAINED WITH MODEL IV-30-7/8

Model
Anchor
Boxes

epochs AP Model
Anchor
Boxes

epochs AP

IV-20-3

3

20 0.83 IV-20-7

7

20 0.85

IV-30-3 30 0.81 IV-30-7 30 0.86

IV-40-3 40 0.76 IV-40-7 40 0.85

IV-20-4

4

20 0.81 IV-20-8

8

20 0.83

IV-30-4 30 0.83 IV-30-8 30 0.86

IV-40-4 40 0.83 IV-40-8 40 0.81

IV-20-5 5 20 0.77 IV-20-9

9

20 0.82

IV-20-6 6 20 0.78 IV-20-9 30 0.83

 IV-40-9 40 0.83

Figure 18. The accuracy of the network with a different number of
anchor boxes. This graph shows the plot of average precision versus each

number of boxes

D. Implementation Details

The base network was implemented in a CPU with a
processor of 3.1 GHz Dual-Core Intel Core i5 and 8 GB
2133 MHZ LPDDR memory. The software used is
MATLAB R2019b (student license#40861480) with both
image processing and computer vision toolbox, as well as
machine learning and a deep learning toolbox. The faster
R-CNN [1] structure was implemented with a pretrained
VGG16 [11] for feature extraction.

Figure 20 shows some of the examples of output images
from the detector. Each image has a rectangular box around
each pedestrian. Also, each box will have a confidence
score associated with each box. Figure 22-A shows some
examples of the output image when the original images
tested with the detector, accompanied by 7 anchor boxes.
Furthermore, Figure 22-B/C/D/E/F shows examples of the
output images from all other categories used in this work.
It is worth mentioning that the number associated with the
bounding box, in Figure 22, indicates the confidence of the
detector regarding the accuracy of the detection. The close
the number to “1”, the more confidence that the object
shows as “Pedestrian.”

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

20 30 40

A
P

The performance of the network with different
number of Anchor Boxes

3 4 7 8 9

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 779

http://journals.uob.edu.bh

Figure 19. Network Performance of Model IV-30-7 and IV-30-8 when they tested and evaluated under showers, rain, snow, high pedestrian traffic, and
heavy background Conditions.

TABLE 4. THIS TABLE SHOWS THE DROP IN THE ACCURACY AFTER TESTING THE MODEL WITH DIFFERENT WEATHER
CONDITIONS.

Model Showers Heavy Rain Snow High Traffic Nighttime Heavy Background

IV-30-7
AP (%) 83 82 78 67 85 73

Drop 3 4 8 19 1 13

IV-30-8
AP (%) 84 75 73 68 62 65

Drop 2 11 13 18 24 21

(A) Original (no affect)

(B) Shower

Base Showers Rain Snow
High

Pedestrian
Traffic

Nighttime
Heavy

Background

 IV-30-7 86 83 82 78 67 85 73

IV-30-8 86 84 75 73 68 62 64

86
83 82

78

67

85

73

86 84

75 73
68

62 64

50
55
60
65
70
75
80
85
90
95

100

A
P

 (
%

)
Network Performance under Different Conditions

 IV-30-7 IV-30-8

780 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

(C) Rain

(D) Snow

(E) Nighttime

(F) Heavy Background

 Int. J. Com. Dig. Sys. 9 No5, 767-782 (Sep-2020) 781

http://journals.uob.edu.bh

(G) High Pedestrian Traffic

Figure 20. Examples of detector output images, the number at the top of the rectangle is the probability that this rectangle has an object.

7. CONCLUSION AND FUTURE WORK

In this paper, the study evaluates the accuracy of the
state-of-art smart object detection algorithm, faster R-
CNN, under different weather conditions. The research
implemented faster R-CNN with vgg16, tuning and
evaluating the parameters for the best result. In the first
chapter, the study explored the object detection methods
employed with CNN to automatically detect and classify
object detection. The study explained the methods used for
generating RoI, then considered the convolutional neural
networks that are vgg16. Finally, the study explored the
state-of-art object detection algorithms in both two-stage
and one-stage algorithms. Determining the optimal number
of images for the training dataset was the first step in this
work. Then the study tuned the training parameters tuned
to obtain the best setup for the base model that in turn led
to a more accurate detector. The research implemented a
two-stage detection algorithm, faster R-CNN with VGG16,
as a base model. Finally, the best two results in detectors
were used to evaluate the performance of the model under
different conditions. The final results after testing the two
models with the different sets showed each model
representing one weather condition. The accuracy was not
decreased when the model tested for rain and snow weather
conditions. Yet the accuracy decreased as the background
became more complex, i.e., the study tested the model with
sets of high traffic and heavy background images. In
general, the results obtained showed good accuracy, even
when subjected to different weather conditions. The more
the weather affected the background, the more the accuracy
decreased.

ACKNOWLEDGMENT

The authors would like to thank Electrical Engineering
Department at Southern University and A&M College,
Baton Rouge, USA for the great support provided in full to
finalize this work.

REFERENCES

[1] R. Shaoqing, K. He, R. Girshick and J. Sun, "Faster r-cnn:
Towards real-time object detection with region proposal

networks," in Advances in neural information processing

systems, 2015.

[2] N. Dalal and B. Triggs, "Histograms of oriented gradients for

human detection," in In 2005 IEEE computer society conference

on computer vision and pattern recognition (CVPR'05), 2005.

[3] P. Dollár, R. Appel, S. Belongie and P. Perona, "Fast feature

pyramids for object detection," IEEE transactions on pattern

analysis and machine intelligence, vol. 36, no. 8, pp. 1532-1545,
2014.

[4] W. Nam, P. Dollár and J. H. Han, "Local decorrelation for

improved pedestrian detection," in Advances in neural

information processing systems, 2014.

[5] P. Sermanet, K. Kavukcuoglu, S. Chintala and Y. LeCun,

"Pedestrian detection with unsupervised multi-stage feature
learning," in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2013.

[6] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi and

S. Tubaro, "Deep convolutional neural networks for pedestrian

detection.," Signal processing: image communication, no. 47,
pp. 482-489, 2016.

[7] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE

international conference on computer vision, 2015.

[8] J. R. Uijlings, K. E. V. De Sande, T. Gevers and A. W.

Smeulders, "Selective search for object recognition,"

International journal of computer vision, vol. 104, no. 2, pp. 154-
171, 2013.

[9] V. S. Chandel, "Learn Open CV," [Online]. Available:

https://www.learnopencv.com/selective-search-for-object-

detection-cpp-python/. [Accessed 17 March 2020].

[10] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet

classification with deep convolutional neural networks," 2012.

[11] K. Simonyan and A. Zisserman, "Very deep convolutional

networks for large-scale image recognition.," in arXiv preprint

arXiv:1409.1556, 2014.

[12] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature

hierarchies for accurate object detection and semantic

segmentation," Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580-587, 2014.

782 Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions

http://journals.uob.edu.bh

[13] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only

look once: Unified, real-time object detection," in Proceedings

of the IEEE conference on computer vision and pattern
recognition, 2016.

[14] J. Redmon and A. Farhadi, "YOLO9000: better, faster,

stronger," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szeged, S. Reed, C.-Y. Fu

and A. C. Berg, "Ssd: Single shot multibox detector," in
European conference on computer vision, Springer, Cham, 2016.

[16] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu and M.

Pietikäinen, "Deep learning for generic object detection: A
survey.," International journal of computer vision, vol. 128, no.

2, pp. 261-318, 2018.

[17] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi

and I. Fischer, "Speed/accuracy trade-offs for modern

convolutional object detectors.," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[18] S. Agarwal, J. O. Du Terrail and F. Jurie, "Recent advances in

object detection in the age of deep convolutional neural
networks.," arXiv preprint arXiv, no. 1809.03193, 2018.

[19] Z. Zou, Z. Shi, Y. Guo and J. Ye, "Object detection in 20 years:

A survey.," arXiv preprint arXiv:1905.05055, 2019.

[20] "Penn-Fudan Database for Pedestrian Detection and

Segmentation," [Online]. Available:

https://www.cis.upenn.edu/~jshi/ped_html/. [Accessed 1 March
2020].

[21] [Online]. Available: https://towardsdatascience.com/deep-

learning-2-f81ebe632d5c. [Accessed 18 March 2020].

[22] [Online]. Available:

https://medium.com/@Aj.Cheng/convolutional-neural-

network-d9f69e473feb. [Accessed 2 March 2020].

Mr. Ali Al Majed is an instrumentation

and control engineer (I&C). He received

his B.Sc. degree in Systems Engineering

from King Fahd University of Petroleum

and Minerals – Saudi Arabia, in 2004. He

received his MEng in Electrical

Engineering from Southern University

and A&M College at Baton Rouge –

USA, in 2020. In August 2004. He joined

Honeywell Turki Arabia Ltd – Saudi

Arabia as an assistant Engineer. In May

2005, he joined Dar Al-Riyadh – Saudi Arabia as a Jr.

Instrumentation Engineer. In June 2007, he joined Snamprogetti

SA Ltd – Saudi Arabia as Switch-over Instrumentation and

Automation Supervisor. In Feb 2009, he joined Sami Saif

Industrial – Saudi Arabia Services as a Warranty Control

Engineer. In Feb 2010, he joined KBR-AMCDE– Saudi Arabia

as Instrumentation and Control Engineer. In May 2013, he joined

SNC-Lavalin Fayez Engineering as Instrumentation and Control

Engineer. He has the opportunity to gain experience from

working with international companies such as Snamprogetti,

KBR, and SNC-LAVALIN. He has experience in the design of

instrumentation and control systems (such as DCS, ESD, VMS,

and TMS). His experience ranges in all levels of FEED design,

detail engineering, FAT, SAT, construction, pre-commissioning,

commissioning, and implementation of the control systems.

Dr. Fred Lacy received the B.S.E.E.

degree and Ph.D. degree in electrical

engineering from Howard University,

Washington, DC, in 1987 and 1993,

respectively, and the M.S.E. degree

from Johns Hopkins University,

Baltimore, MD, in 1989. He was a

Postdoctoral Fellow in the

Bioengineering Department, University

of California, San Diego, for four years,

where he performed research in the area

of biosensors. He was with the US Food and Drug

Administration, where he performed medical device reviews. In

2002, he joined the Electrical Engineering Department, Southern

University and A&M College, Baton Rouge, LA, where he is

engaged in research and teaches courses in solid-state

electronics, electrical and electronic circuits, and electronics-

based sensors.

 Dr. Yasser Ismail received his BS.

degree in Electronics &

Communications Engineering from

Mansoura University - Egypt, in 1999.

He received his MS in Electrical

Communications from Mansoura

University - Egypt, in 2002. Dr. Ismail

received his MSc and PhD degrees in

Computer Engineering from University

of Louisiana at Lafayette - USA in 2007

and 2010 and subsequently joined Umm

Al-Qura University - Kingdom of Saudi Arabia as an assistant

professor. In Fall 2012, he joined University of Bahrain -

Kingdom of Bahrain as a Computer Engineering Assistant

Professor. In Fall 2016, Dr. Ismail Joined both Electronics &

Communications Engineering Department - Mansoura

University - Egypt and Zewail City of Science and Technology -

University of Science and Technology - Zewail City - Egypt as

an assistant professor. Dr. Ismail is currently working as an

assistant professor in the Electrical Engineering Department,

Southern University and A&M College - Baton Rouge -

Louisiana - USA. His area of expertise is Digital Video

Processing Algorithms/Architectures levels, Internet of Things

(IoT), VLSI and FPGA Design (Low-Power and High-Speed

Performance Embedded Systems), automotive transportation,

Robotics, RFID, and Wireless and Digital Communication

Systems. He has published two books, two book chapters, and

more than 35 articles in related journals and conferences. Dr.

Ismail served as a reviewer for several conferences and journals,

including IEEE ICIP, IEEE GCCCE, IEEE ICECS, IEEE

MWSCAS, IEEE ISCAS, IEEE SIPS, IJCDS, Springer, Elsevier,

IEEE Transactions on VLSI, IEEE Transaction on Circuit and

System for Video Technology (TCSVT), and IEEE Transactions

on Image Processing. He severed in the technical committees of

IEEE ISCAS 2007, IEEE ICECS 2013, MobiApps 2016, IEEE

Virtual World Forum on Internet of Things (WF-IoT 2020), and

IEEE MWSCAS 2018, 2019, and 2020 conferences. He was

invited to serve as a lead guest editor for a special issue in mobile

information systems – Hindawi publishing corporation

September 2016. Dr. Ismail served as a PI and Co-PI for several

funded grants from NSF and other international fund agencies.

Additionally, Dr. Ismail served as a member of many Editorial

Boards 2018-present.

