

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.6 (Nov-2020)

E-mail: Ajasim@uob.edu.bh, mhammad@uob.edu.bh

 http://journals.uob.edu.bh

Spot Hopping: Increasing Reliability and Reducing Cost

Ali Jassim Hasan1 and Mustafa Hammad 1

1College of IT, University of Bahrain

Received 13 Apr. 2020, Revised 1 Aug. 2020, Accepted 24 Aug. 2020, Published 1 Nov. 2020

Abstract: Cost reduction is one of the attractive features offered by the cloud. Spot leasing is one way to reduce the cost even more.

Spot leasing is done by leasing the unused excess instances with low price. Spot instances are facing risks that minimize their

availability and reliability. Risks including instances reclaiming and dynamic price changing. Minimizing the risks associated with

the spot leasing is going to help in increasing the utilization of the spot instances, which in turn is going to attract more users. In this

paper, a framework has been proposed to mitigate the instances reclaiming risk while reducing the leasing cost as possible. This is

done by monitoring many markets and hopping between instances. The proposed framework has been evaluated through simulating

using actual data for EC2 spot price history collected from Amazon web services. The proposed framework has scored 74% and 64%

of cost reduction compared with on-demand and spot leasing schemes accordingly.

Keywords: Cloud, Spot Instances, Cost Reduction, Migration, Hopping.

1. INTRODUCTION

Cloud computing has become one of the major IT
industries today. With its sophisticated paradigm, cloud
computing allows us to have several benefits such as on-
demand leasing, reduced the total cost of ownership,
globalization and more. Such benefits attract the
customers to use the cloud instead of using the traditional
deployment models. Cloud computing was designed on
the bases of leasing the required IT services from an
external service provider instead of purchasing and
maintaining the hole IT infrastructure. This business
model helps the customers focusing on their business
activities by dealing with IT as services without
considering the physical implementation and maintaining
issues. The IT services are offered by companies called a
cloud service provider CSP. Cloud service provider
company is responsible for hosting and maintaining the IT
gears and hardware equipment while making them
available to the customers whenever needed. The cloud
service provider can be a data centre that hosts physical IT
equipment, or IT can be as multiple datacenters spread
globally and connected to form availability zones and
regions.

Hosting and maintain the physical resources need to
have high management level. Enabling essential cloud
characteristics such as multi-tendency, elasticity and on-
demand leasing require to keep extra resources in the
datacenters. Keeping such extra resources costs the cloud
provider. Many cloud providers such as AWS allow

renting these extra recourses with reduced price to cover
their running expenses. Those resources have many
different names depending on the cloud provider. Amazon
calls these spot instances, while Google and Microsoft call
theories as preemptable virtual machines. Spot leasing
considered as the lowest leasing schemes compared with
the reserved and on-demand leasing schemes. With the
spot leasing, the customers sacrifice the service
availability by trading it with lower leasing prices. Since
such leasing scheme has a high number of customers, the
prices of the resources keep changing dynamically
according to the supply and demand fluctuations. Such
leasing scheme became possible with certain conditions.
The First condition allows the cloud provider to reclaim
the resources at any moment to rent it to the other
customers and maintain the promised on-demand and
elasticity features. Such a condition creates a risk for the
customers who plan to use the spot leasing to run an
uninterrupted process. When the cloud provider needs to
reclaim the leased resources, it will give a short notice
period for the customers to back up their running
processes before it proceeds with reclaiming by force.
Another condition that the spot leasing has subjected to
price changing based on the availability of the unused
resources along with the number of leasing requests or
what is called market supply and demand.

Although Spot leasing considered good for resources
utilization and cost reduction for both the cloud provider
and for the customers, it comes paired with the price
changing and interruption issues. Creating a process that

http://dx.doi.org/10.12785/ijcds/0906021

mailto:Ajasim@uob.edu.bh

1238 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

can monitor the cloud environment and adapt accordingly
will help in avoiding those issues. Having such a cloud
monitoring process can be used to increase the spot
resources reliability and therefor increases the spot
resources utilization percentage. Moreover, it can reduce
the risk of application interruptions and revocation.
Furthermore, combining features such as low leasing cost
from spot scheme with high availability feature from the
on-demand scheme can help in attracting more customers
toward using the cloud. Harvesting the features of both
leasing schemes can be done by hopping between them.
The hopping ability can be used to increase the leasing
costs and to mitigate the reclaiming risks.

2. LITERATURE REVIEW

Cloud computing is considered a promising
technology Increasing the Utilization of excess resources
is considered as a challenge that needs to be solved.
Zhang et al. [1] present a dynamic allocation mechanism
for AWS spot resources based on choosing the best
suitable hardware that matches the application
requirement, which can help to reduce the total cost of
leasing including the power combustion. Work in [2]
presents a cost-aware provisioning system that works on
reserving the best suitable instance that matches the
application needs. The proposed system shows promising
results. The results were including a total cost reduction
by 24%, reducing in the transmission time between
instance, and showing the opportunities where the cost
can be traded to minimize the execution time. Menache et
al. [3] present an algorithm that can be used to
dynamically allocation proper resources for batch jobs.
The algorithm is taking the price of the on-demand and
spot market resources as input factors before deciding to
go with which option. Xin et al [4]. Proposes a cloud
scheduler that can reduce the total cost of resources
leasing. Moreover, the proposed scheduler has
successfully maintained a web server up and running with
no interruption using the spot instance. Work in [5]
presents another mechanism to monitor the history of spot
market prices and help in choosing the cheapest.

There have been several attempts to migrate between
different cloud resources. Works in [4], [6], [7] show the
results of studying the effects of VM migration between
multiple instances and proposed solutions to minimizes
those effects. On the other hand, Work in [8] studies the
instance migration based on minimizing exchanges traffic
and increase network performance. In [9], a proposed
solution to monitor the network traffic exchanged
between the leased services was introduced. The proposed
mechanize tries to minimize the network latency between
the services. The proposed system works on migrating
those services that need to communicate with each other
into close locations. The proposed system has been
simulated, and results show that inter could traffic has
been reduced by 25% to 60%. Shastri and Irwin in [10],
[11] present a prototype resource container that keeps
monitoring the market price. that container can hop

between instances based on the price changing. Moreover,
the proposed prototype has been implemented. The
implementation shows that the prototype can reduce the
cost of provisioning. Another novel cloud federation
system has been proposed in [12]. That system monitors
the market price changing and when a new service is
needed, the proposed system is going to select the
cheapest option provided. Moreover, with any price-
changing detected, the system dynamically rearranges the
location of the services based on the lowest price
available. The proposed system has been simulated and
the results show that the system can reduce the
provisioning price using multiple cloud providers. Lee
and Son in [13] present DeepSpotCloud, a framework that
was designed to use the Graphical processing unit (GPU)
power for deep learning while trying to minimize the cost.
The proposed framework was implemented in AWS spot
instances. The framework monitors the market price for
any changes, then tries to minimize the cost by hopping to
the cheapest instances even if it were found in another
region. Another framework called spotweb has been
proposed by Ali-Eldin et al in [14]. The proposed
framework was designed to run a sensitive web server on
spot instances while trying to maintain the quality of
service. Moreover, the work presents a transient algorithm
that predicts spot cost and use the predicted results to
determine the needed migrations that could offer high
service quality with low latency.

Spot leasing cost can be affected by the location of the
leased resources. The price of a certain instance might be
different from one zone to another, and between a region
to another. Ekwe and Barker in [15] conducted an analysis
to show the effects of the location over the deployment
cost. the study includes several spot instances types from
every zone in all AWS regions. The work shows that
resource location plays a major role in calculating the
final leasing cost. furthermore, the work presents that the
spot resources can be used to achieve low cost and to
reduce the termination risk.

Comparing the proposed framework with others The
prototype presented in [10] affected by any cost chancing
and instance resource utilization, even if that change was
for a short period. That is going to increase the number of
hops taken by the virtual machine. If compared to our
proposed framework, the migration is happening on an
hourly basis. This is going to filter any spikes that might
affect the leasing costs. if the cost changing has lasted for
more than one hour, then the proposed framework is
going to consider it and going to do the hopping if needed.
Moreover, the proposed framework simulation was
showing the effects of hopping to multiple regions which
were not shown the other work. Another point was that
the results from the work in [10] were from hopping
between multiple zones in one region, while our
simulation includes two regions to show the difference of
cross-region hopping. The work proposed in [12] presents
a federation framework. that framework was designed to
serve a cluster of instances. one of the instances represents

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1239

http://journals.uob.edu.bh

the main node that has the framework implemented on,
while the others were being controlled by the main node.
The main node was following the market changings and
based on that it controls the other nodes. Comparing that
work to the proposed framework in this paper, our
proposed framework was designed to be running on a
single instance which make it independent, that gives the
instance the ability to perform the migration based on its
migration policy, without waiting for the controlling
commands for another instance. Having this feature
(independent) can minimize the risk of having a single
point of failure that might exist when using a single unit to
control others. The work presented in [13] was focusing
on utilizing the instances that were equipped with GPU,
while for our framework the focus was on the CPU and
RAM.

The proposed work in this paper has three variable
parameters compare to the others. Those parameters can
be used to adjust the framework decisions. The
parameters including the hopping range, the instance
types, the upper and lower utilization limits. The proposed
work is considered as an extension over previously
presented works in [16], [17].

3. BACKGROUND

Cloud computing has many definitions. according to
NIST [18], Cloud computing can be defined as an on-
demand pool of IT resources than can be accessed from
anywhere using the internet, while having the minimum
management efforts required. The could technology offers
many IT resources, Such as computing servers,
networking devices, storages, and applications.

Cloud computing technology has introduced a new
paradigm that changes the way of dealing with IT. That
paradigm came with five many characteristics including
an on-demand acquiring. This characteristic allows the
cloud user to provision and releases cloud resources based
on his needs, whenever needed, with minimum human
intervention required. Another characteristic is the ability
to access the resources using the internet from anywhere
using any internet client platform. A third characteristic is
the pool of resources. With many different pools around
the world, the user can acquire the resources from the pool
that is located near to him or his targeted customers.
Having a pool of resources with multitenancy feature
allows the users to reuse the resources after being released
by the current user. A fourth characteristic is the elasticity.
Such characteristic helps in reducing the cost and
management efforts that are needed to be done by the
user. The elasticity allows to expand and shrink the
resources automatically to match the application demands.
The Last characteristic is the ability to monitor and
measure cloud resources consumption, which plays a
major role in the accounting and billing process.
Combining those characteristics has created the cloud
technology paradigm.

There are many advantages for using cloud
computing. Advantages including cost-saving, quick

implementation, high availability, Fault tolerance, on-
demand self-service and many more. All those advantages
are considered as strong motivators for the organizations
and users toward using the cloud. That, in turn, helps to
create new business models. Instead of purchasing the IT
resources and pays for it as an upfront payment -which
might require a big capital- changed into leasing the
resources based on the needs of the organizations and pay
only for what was used. According to Gartner in [19], The
cloud market share in 2018 was around 182.4 billion
dollars, and grows to by 17.5% to reach 214.3 billion
dollars by 2019, and expected to reach 331 billion dollars
by 2022. On the other hand, using the cloud comes
associated with some disadvantages, such as the requiring
of having high-speed internet, security, privacy, requiring
for skilled cloud users, vendor lock-in and more.

The cloud providers offer many services. Those
services come in different models such as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), Software
as a Service (SaaS) and many more. Each service model
defines the resources management level and actions that
must be done by both the cloud service provider and the
cloud user. In [IaaS], the cloud provider responsible only
for delivering the underlying infrastructure, while the user
is responsible for configuring the operating system, the
environment and other service applications. In [PaaS]
service model, the cloud provider handles more
responsibility, which is managing the underlying
infrastructure, the virtual machine, and the operating
system. The user receives the ready virtual machine that
got the OS installed, along with any required access
credentials. Then the customer accesses the operating
system and build-up the environment that matches his
service needs. Finally, using [SaaS] service model, most
of the managing operation will be under the cloud service
provider responsibility, leaving the customer with the
minimum configurations required for the service layer.

The cloud business plan encourages toward leasing
services based on customer needs. On the other hand,
traditional IT infrastructure users must invest a large
capital at an early phase before proceeding in their
production plan. This includes purchasing extra resources
to support business growth. If the customer selects to go
with the cloud leasing scheme, then the customer will pay
only for what has been used, and when there is a demand
for extra resources, it can be leased instantly. Cloud
service providers offer different schemes for leasing cloud
resources. Each cloud provider had a different naming for
the offered schemes. AWS had the reserved, on-demand
and spot leasing schemes. The following subsections
explain each leasing scheme in more details.

A. Reserved leasing scheme
The reserved leasing scheme was designed for those

customers who plan to lease the resources over a long
period, or for applications that need to be running for
many continuous hours. That is because reserve leasing
requires to sign a contract that could last for one or three
years. AWS attracts its customers to lease based on the

1240 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

reserve scheme by giving them a discount rate on the
leasing price that could reach up to 75% [20]. It is not
recommended to lease using the reserved scheme for the
customers who were having applications with variable
resources requirements. in such case, AWS recommends
using the on-demand or spot leasing schemes. Reserved
leasing scheme guarantees that the user receives his
reserved resources whenever needed. AWS gives priority
for the reserved scheme users over other schemes users.
AWS also prefers on-demand users over spot users.

B. On-demand leasing scheme
On-demand leasing plan was created to be suitable for

the applications that need to be running for unpredictable,
uninterrupted periods. The on-demand scheme is flexible.
Based on the user needs, the resources can be leased when
needed, and release them after finishing. No commitment
or contract needed to be signed by the user. Furthermore,
no discount offered for the on-demand scheme, which
makes it the most expensive compared with the others.

C. Spot leasing scheme
Spot leasing was designed to offer excess and unused

resources for leasing with reduced cost. The main benefit
of the spot leasing was in its cheap leasing costs. Spot
leasing cost has a high discount rate that could reach up to
90% over the on-demand cost for the same resources. This
has been done to cover the operational expenses of those
resources Instead of losing by keeping them running
without any benefit. The spot leasing scheme could be
used for the applications that are only feasible at low
computing price and could handle being interrupted. The
spot leasing costs were subjected to changing due to
market supply and demand. Higher demand increases the
spot leasing rate. The following subsections explain more
about spot leasing associated risks.

D. Spot leasing associated risks
The cloud service providers keep extra resources in

their data centers intentionally. Such resources were
required to offer some characteristics such as the
elasticity, scalability, and on-demand resources. When all
the resources in the CSP datacenter got occupied, and a
new request got received from an on-demand user, the
CSP reclaims the resources from the spot users and
reassign those resources to the on-demand users, as the
resources were meant to serve them from the first place.
The spot scheme was only introduced to increase the
utilization of the cloud providers excess resources and to
minimize the operational costs of the CSP. That is why
the on-demand users are always having higher priority
over the spot users when it came to competing over the
same resources. Based on that, the spot instances were
subjected to get interrupted, reclaim and reassign at any
moment.

1) The risk of interruption and reclaiming
The CSP recommends using spot leasing scheme for

the processes that can handle being interrupted. The spot
users were given three options represents process

interruption behaviors. The three interruption behaviors
were hibernating, stopping, or terminating the spot
instance [21]. The hibernating option will suspend the
process activities and will save everything on an image,
including the data located within the RAM. The second
interruption behavior was “stopping”, where the
interrupted instance will be forced to shut down and the
data stored in the disk (elastic block store) will be
reserved, the main difference between the stop and the
hibernate was that the data located in the RAM will be
erased in the spot interruption behavior, while it won’t be
erased in the hibernate. Comparing the hibernate and stop
interruption behavior options with the terminate option,
both hibernate and stop options can be started again once
the required resources got available, while the terminate
option won’t allow starting any process again [22].

2) Dynamic spot price changing
The leasing prices are dynamically changing based on

supply and demand. If there is a high demand for a certain
instance type, the spot price for that instance type will be
increased. Figure 1 shows the spot leasing rate fluctuation
compared with the stability of the on-demand rate. Both
the spot and on-demand leasing rates were belonging to
R4.14xlarge instance type. The figure shows how the spot
leasing rate was changing in the period between 1st of
April and 31st of May 2018. R4.16xlarge was in zone A
inside region CA-Central-1 region. The data were taken
from a dataset that was published in 2018 [23]. The figure
reflected how the spot instance rate started at 3$/hour,
then got increased gradually until it reached to the on-
demand leasing rate around 4.6$/hour on the 8th of April.
On 12 of April, the spot leasing rate started to reduce
gradually until it reached 1$/hour on the 26th of April.
This changing happed due to the continuous changing on
the demand for R4.16xlarge instance type. Such kind of
rate changings affects the spot users, who were using the
spot scheme to minimize their costs.

Figure 1. Spot leasing rate fluctuations

$0

$1

$2

$3

$4

$5
Type:R4.16xLarge Region: Ca-Central-1 Zone: A

Spot Price On-Demand Price

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1241

http://journals.uob.edu.bh

Figure 2. Spot rate increasing over on-demand rates

3) Increasing over the on-demand rate
The spot leasing rate can continue climbing up to

become higher than the reserved and on-demand rates.
Price rate changing can work reversibly against the users,
who were using the spot scheme to reduce the leasing
costs. Figure 2 shows the spot price over the on-demand
price for some instance types on the 11th of February
2020. The data was collected from availability zone A
from Eu-central region. The instance types were using
Suse Linux operating system. The figure shows some
cases were the spot prices became equivalent to the on-
demand prices, same as what happened with i2.4xlarge,
x1e.2xlarge and p2.8xlarge instance types. The figure also
shows three more cases where the spot prices became
higher than the on-demand prices, just like what happened
with m5ad.24xlarge, m5n.12xlarge and m5n.2xlarge.

Figure 3. Spot leasing rate became over on-demand leasing rate

Furthermore, the spot leasing rate could get increased
to become more than the on-demand leasing rate. Figure 3
shows the spot and on-demand leasing rates for
R5n.2xlarge on the period between 1st of December 2019
and the 31st of January 2020. the data was taken from
dataset no. 2, from zone A from Eu-central-1 region. The
figure presents a case where the spot leasing rate became
higher than the on-demand rate. As shown in the figure,

the spot leasing rate for R5n.2xlarge started with 30
cents/hour on the 1st of December 2019 and stayed
fluctuating until the 9th of January. On the 8th of January,
the spot rate started climbing up until it became 70
cents/hour, which was equivalent to the on-demand rate.
The spot rate counited climbing until it reached 85 cents/
hour. At such case, using the spot leasing scheme can be
considered as a bad choice, that because it lacks for the
required availability and has a higher price compared with
the on-demand that have both features.

4. PROPOSED FRAMEWORK

A framework has been proposed to mitigate the
associated risk of spot leasing. The framework was
designed to utilized spot leasing scheme to reduce the
total leasing cost, and at the same time to minimize the
spot leasing associated risks. The framework was planned
to be installed on a single instance trying to provide
multiple features including cloud monitoring, dynamic
selection and self-migrating.

The framework monitors instance resources (CPU and
RAM) utilization rates to determine the optimum
configuration needed to run the hosted application.
Simultaneously, the framework keeps monitoring the
cloud markets within the hopping range and migrates
(hop) to the cheapest available instance that has the
required application resources. In case any spot leasing
risks have been faced (such as increasing the leasing rate
of the currently leased instance or receiving a reclaiming
notification, or even a cheaper instance has been found)
then the framework will migrate to the cheaper instance.
The hopping ability allows the framework to migrate
between different instance types across different zones
and regions. Furthermore, the framework monitors the on-
demand leasing rates as (as the last resort) to be used if
the spot leasing became more expensive or not available
due to the high demand.

The hopping operation is basically to migrate the
running application from the currently used instance to the
new instance. To achieve such migrating operation, a life
container migration technology can be used. Moving a
container is considered faster than charring the whole
virtual machine which contains an OS that might take
some time due to its large size. The hopping operation is
used to mitigate the risks associated with spot leasing
scheme. moreover, the hopping operation is used to
reduce the total leasing cost. The following section
describes more about the hopping operations types.

A. Hopping Types

There are different types of hopping operations that
can be achieved by the framework. the hopping types
including cross-schemes hopping, cross-zones hopping,
cross-regions hopping, cross-instance-types and resource
minimization hopping types. The following subsection
describes each hopping type:

100% 100% 100%
101%

108%

101%

96%

98%

100%

102%

104%

106%

108%

110%

Spot/On-demand price on 11-2-2020, Eu-Central-1

$0.2

$0.4

$0.6

$0.8

$1.0

Type:R5n.2xLarge, Region:EU-Central, Zone:A
Dec 2019-Jan 2020

Spot Price On-Demand Price

1242 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

1) Cross-schemes hopping
Cross-scheme hopping allows the framework to hop

across different leasing schemes, such as hopping from an
instance leased were leased based on spot scheme to an
identical instance but using different leasing scheme
(cross-schemes hopping). This type of hopping is
considered important to the framework especially when
dealing with the spot leasing scheme, where such hopping
type allows the frame to mitigate the spot leasing risks
generated by CSP reclaiming and dynamic price
increasing.

2) Cross-zones hopping
Cross-zones hopping is a hopping type that is used to

achieve short distance hopping to change the zone but to
stay within the same region. Such type of hopping can be
used to minimize the leasing cost while preserving the
quality of service for end-user experience. Since all the
zones were located inside the same region and they are
connected using high-speed links, then changing the zone
will not affect the network bandwidth or the network
latency. This will also be going to minimize the time
needed to achieve the hopping operation compared with
the long-distance hopping operation.

3) Cross-regions hopping
Cross-regions hopping is used to achieve long-

distance hopping operations, where the framework can
hop from one region to another. This hopping type can be
used to obtain a more reduced cost compared to the short-
distance (cross-zones). on the other hand, this hopping
type might affect the end uses service quality. If the
offered service by the VM hosted application was
considered sensitive and requires high network bandwidth
or low latency.

4) Instance-types hopping
This type of hopping can be used to allow the

framework to hop (vertical scaling) to different instance
type that might have the same (or more) resources as the
current instance, even if the new instance was from a
different family. As long as the new instance is having the
ability to maintain the service up and running, then it can
be considered as a hopping target. Such hopping type can
be used when a certain type of instances is facing high
demand, while the other types are not utilized. In that
case, the old instance price will be increased due to the
demand increasing, while the different instance types are
going to become cheaper even when it has more resources
compared with the old instance.

5) Resource minimization hopping
Resource minimization hopping allows the framework

to hop (vertical scaling) to different instance types based
on the current instance resources utilization percentages.
The difference between the resource minimization
hopping and the cross-instance-types is that in the
resource minimization hopping the framework can hop to
instances that have less resources compared with the

current. the new instance is going to be selected based on
the current resource utilization percentage. That type of
hopping enables the framework to hop smaller instance to
reduce the cost if the running application is not using the
resources available in the current instance. In contrast, if
the application needs to have more resources, then this
type of hopping will allow the framework to find a larger
instance that could fulfil the application needs to maintain
the performance level. The benefit of this leasing type that
it can dynamically hop to different instances to match the
application needs and ant the same time it helps in
reducing the leasing cost. the main drawback of this
hopping type is that the framework might need to hop
more frequently compared with other hopping types.

B. Framework hopping controllers
The proposed framework was designed to give server

administrators the ability to control framework decisions
to fits the hosted application. Several input controllers
were used to doing that, including the hopping range,
instance types, upper and lower resources utilization
percentages. The following subsection describes each
controller.

1) Hopping range
Hopping range is an input variable that is used to

allows the server administrator to control the hopping
distance that the framework can cover. This input variable
can affect the framework searching scope. The
administrator can decide the suitable markets to run he
hosted application and the limit the framework hopping
operations to be within that defined markets. The hopping
range can include zones and regions. more hopping range
can increase the chance of getting cheaper costs, while
shorter hopping range can use to deliver a better users
experience.

Adjusting the hopping range have many trade-offs. As
an example, Extending the hopping range can increase the
number of markets in the searching scope. Therefore, it
increases the chance of getting a cheaper instance, but it
might also affect the user experience (lower network
bandwidth and higher latency). Such a case might happen
when the cheapest instance found was located far from the
end-users.

On the other hand, shortening the hopping range can
be used to define fewer markets, and focuses on searching
for the cheapest option in the nearby markets only.
Therefore, preserving the better quality of services for
user experience (higher internet speed and lower latency),
but it would reduce the chances of having a cheaper cost
compared with the longer hopping range.

2) Instance types
This input variable can be used by the administrator to

select the types of instances which contain the required
resources that suites the hosted application. The
framework hopping operations will be limited to those
instances types that have been selected. In some cases, the
hosted application requires to have a certain amount of

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1243

http://journals.uob.edu.bh

resources to operate properly. Using the instance types
input variable gives the administrator the ability to select
what are the instance types that contain the required
resources which can fulfil the application needs. The
administrator can add many instances types including the
types that have more resources than what is needed,
knowing that the framework will search for the cheapest
instance among the listed. If the server administrator
defines only one instance type, then the framework will be
only searching to that type, while adding many types will
allow the framework to search for more options which
will increase the chances of getting a cheaper instance.

3) Upper and lower resource utilization limits
The upper and lower resource utilization limits allow

the sever administrate to define the threshold that can be
used to trigger the framework to hop (scale vertically). if
the upper threshold limit has been reached for a
predefined period (defined by the administrator), then the
framework will be triggered to hops to a larger instance
with more recourses. In contrast, reaching the lower limits
for and staying for some time will trigger the framework
to hop to a smaller instance with less resources. those
input limits are associated with resource-minimization
hopping type, which can be used to minimize the cost by
hopping to the optimum instance that got the required
resources.

Figure 4 shows how the framework chooses between
the different leasing schemes. Before taking any decision,
the framework is going to look for the cheapest available
instance, whether it was a spot or an on-demand instance.
In some cases, like when the of spot instance becomes not
available, the framework might issue a hop request to
switch from spot to on-demand and vice versa. Another
case of using an on-demand instance is that when the spot
price became more than the on-demand price, then the on-
demand will be considered as the cheapest option to
reduce the total cost. While using the on-demand instance,
the selector will keep looking for any alternative instance
for leasing. If any suitable instance has been found, then
the selector is going to migrate from the on-demand to the
spot instance. This is done dynamically according to price
changing, resources utilization and the availability of the
instances.

C. Migration/hopping triggers

The instance selector monitors many triggers. Triggers
including the platform reclaim notification. This
notification is sent if the cloud platform is going to
reclaim or revocation the instance. After receiving such
notification, the instance is given a limited time slot to act
before being interrupted. In this case, the instance must be
migrated immediately before the allowed interruption
time ended.

Another trigger that needs to be considered is the
resources utilization of the current instance. If the running
service on the instance is utilizing a high percentage of the
currently available resources, then the service must be
migrated to another instance that has more resources

compared with the currently hosted instance. Doing this
will maintain a certain level of service performance and
will prevent the instance from reaching its maximum
capacity. Vice versa, if the resources utilization
percentage is low, then a new instance with lower
specifications can be used to run the service while
reducing the leasing costs. Hopping dynamically based on
the utilization percentage is providing better performance
while maintaining the price as low as possible.

Figure 4. Hopping between Spot and on-demand leasing schemes

One more trigger that is considered important is the
current instance price (Spot, on-Demand). Since the Spot
price is dynamically changing due to the supply and
demand, there is a chance that it would become high,
more than the on-Demand price. If the currently leased
instance price got increased, then the framework needs to
find an alternative instance that is offering the needed
recourses at a cheaper price.

Table 1 shows the triggers that can start the migration
process with the actions that need to be taken by the
proposed framework. As an example, when a reclaim
notification generated by the cloud platform got received
by the proposed framework, then the framework is going
to do an immediate migration to the cheapest suitable
instance from the updated price list. Such action is needed
to be done because of the short period that is given by the
cloud platform. If that period is finished and the instance
is still running, the cloud platform is going to reclaim the
instance by force. On the other hand, if the instance is
starving for more resources, then the selector process is
going to issue a hop request to migrate the instance to
another instance that contains more recourses that suits
the needs. The last trigger is the leasing cost. Depending
on the cost changing, the selector process is going to
decide ether to stay or to migrate. If migrate is option is
chosen, then the destination target is needed as well.

1244 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

TABLE I. HOPPING OPERATION TRIGGERS FOR THE PROPOSED

FRAMEWORK

Trigger Action Details

Cloud Platform Reclaim
notification

Immediate
Migration to the

cheapest

available
instance (spot,

on-demand).

And start the
time counter

Reclaim will be
done within a fixed

time slot

determined by the
cloud provider. If

spot instance is

available then it
will be selected,

otherwise, an on-

demand will be
selected.

Resource

utilization

percentage

CPU Or RAM

utilization>=

upper

threshold limit

for the defined
period

[24]

Find an

instance that

has resources

more than the

current
instance, then

start the

migration.

If the current

resource

percentage has

reached the upper

limit and stayed for
a period, then the

application must be

migrated to another
instance with

higher resources.

-allows providing
better performance

CPU and

RAM

utilization<=
lower

threshold limit

for the defined
period

[24]

Find an

instance that

has resources
lower than the

current

instance, then
start the

migration.

If the current

resource

percentage has
reached a lower

threshold limit and

stayed for a period,
then the service

can be migrated to

another cheaper
instance with lower

resources to reduce

the cost.

Instance

leasing

price

If a cheaper

instance with

the required
resources has

been found

if a cheaper

option has

found. Options
obtained from

both including

spot and on-
demand leasing

schemes.

Find the cheapest

instance that has

the needed
resources. Search

in both leasing

schemes. Migrate
to the cheapest

instance to

minimize the total
leasing cost

D. Proposed Framework structure

Figure 5 presents the proposed framework
architecture. The framework monitors three variables
simultaneously which might trigger the hopping process.
Firstly, the framework monitors the currently leased
instance resources. if the resources utilization levels
became high and stayed for some time, then the
framework will migrate the application container to
another instance type with more resources to sustain the
application performance. Verse versa, if the resource
utilization levels were low, then the framework is going to
migrate the container to another instance that has lower
resources to minimize the total cost. Secondly, the
framework monitors the cloud market and prepare a list of
all available instances that might be applicable as hopping
targets. if a cheaper price got detected, then the

framework will consider the cheapest instance for the next
hop. Doing this allows the framework to maintain the
cheapest price and to save time whenever an immediate
hopping is required. Thirdly, the framework monitors the
notification sent by the cloud platform to the currently
running instance. If the instance has received a
release/reclaim notification, then it will use the pre-
prepared list to choose a new instance as a migration
target.

Figure 5. Proposed Framework Block Diagram

To find the target instance, the framework starts
looking for candidates that can be leased with the
minimum cost fees, while having the resources required to
keep the service running. It starts by looking for a spot
instance since it might be found cheaper. If the framework
could not succeed to acquire any spot instance, then the
framework will go to the second option which is leasing
an on-demand instance. Concurrently with the searching
operation, the framework starts backing-up the data from
the running instance and migrate to the newly selected
target.

The framework contains three stages including pre-
selecting stage, instance selection stage and the post-
selection stage. The following subsections describe the
process in more details.

1) Preselection stage
The spot instances are exposed to be reclaimed by

could platform at any moment. If the cloud provider
requests to take over a certain spot instance, then a
notification will be sent to that instance to back up the
data and stop any running processes. The instance will be

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1245

http://journals.uob.edu.bh

given a time slot to complete its running tasks. Each CSP
has a different reclaim period. In the case of Amazon
AWS, the reclaim notification period is 120 second [25]
[26]. After finishing the time slot, the cloud provider will
interrupt the instance and will take over its resources. The
cloud service provider allows the user to choose the
suitable interruption behaviour from the three available
options which are hibernating, stop and terminate. The
pre-selection stage contains three processes, including the
cloud notification filter, the resources monitor and the
market follower. The following subsection describes each
process in more details.

a) Cloud Notification Filter

The cloud notification filter process is responsible for
continuously monitoring the notification sent by the CSP.
The process looks for any release/reclaim request among
the received notifications. If any reclaim notification has
been received, Then the filter is going to generate a trigger
to start the instance selection stage processes.

b) Resource Monitor

The second process is the Resource Monitor, which is
used to monitor the current instance resources utilization
percentages. Including the CPU and RAM utilization
percentages compared to their maximum capacity.
Monitoring the utilization percentages can be useful in
triggering the instance to perform vertical hopping, which
means to hop to another instance type that is either bigger
or smaller than the current. Bigger instance type refers to
an instance that has more resources, while smaller
instance type refers to an instance that has fewer
resources.

c) Market follower

The third Process in the pre-selection stage is the
market follower. The function of this process it to monitor
the price in several cloud markets that were located within
the framework hopping range. The framework hopping
range can be configured to control the searching scope.

The process is going the check the prices of several
instance types that are found in its hopping range. Then, it
is going to generate a list of candidate instances. at the
same time, it is going to generate a trigger to the instance-
selector stage informing to notify about a cheaper price
has been detected. The Candidates list contains both spot
and on-demand instances. That list is going to be used if
any migration is required. The cloud monitor process
keeps updating the candidates list if there is any cost
change happened. Updating the list will reduce the time
needed while looking for an alternative instance.

2) Instance selector stage
Instance selector process is responsible for choosing

an instance that is going to be used as a migration target.
Choosing the best instance is based on several factors,
such as the cheapest price, leasing scheme, required
resources and the location. The selector takes the outcome
of the pre-selector stage as an input. at the begging, the

selector waits for any trigger generated by pre-selection
processes. If any trigger has been received, then the
selector is going to start a countdown timer. Moreover, it
is going to run a sequence of checking conditions that will
end with nominating several instances as hopping targets.
Those targets mainly contain spot instances and might
contain on-demand instances as a backup. After that, the
selector is going to send the best-nominated instance for
the post-selection stage to place a leasing request and
trying to acquire that instance.

The migration process is going to require a new
instance to be leased before starting the migration. There
are several factors to be considered before selecting a new
hopping target. The following sections describe the
instance selection factors.

a) The leasing cost

Such as the price of the currently leased instance
compared with other instances from the market. The
instance that needs to be selected preferred to have a
cheaper price than the current instance. In case that the
cheapest available spot instance price has become higher
than the cheapest on-demand, then leasing based on-
demand scheme is going to be considered as the best
option.

b) Hopping Range

A third factor that needs to be considered is the hopping

range, which determines the availability zones and

regions that will be scanned by the framework while

searching for the new instance. Longer range means more

markets and a higher chance to find a cheaper price.

c) Instance resource utilization

Another factor is the current instance resources

utilization parentage. This factor is going to assist in

determining suitable instances based on the application's

requirements. As an example, assuming that the current

instance is having 8 GB of RAM, and the current

utilization percentage has reached the upper threshold

limit (assume 80%), that is showing that the current

instance might reach its maximum capabilities and gives

an indicator that the application should be migrated to

another instance with more resources of its stayed there

for a while. Moreover, having the resources and the

utilization percentage can be used to indicate the size of

the RAM that must be available in the new instance.

Based on that, the new instance must have more than 8

GB of RAM to be considered as a valid migration target.

3) Post-selection Stage

The post-selection stage is responsible for achieving the

hopping operation. It includes three processes which are

the leasing process, back up process and the migration

process. The post-selection stage processes are going to

be activated by receiving a trigger from the instance

selector. Once a start trigger has been received, the

leasing and the backup processes will be started

immediately. The third process (migration process) is

1246 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

going to wait for the other two processes to get finished

their jobs before it can start. The following subsections

explain more details about each process.

a) leasing process

The function of the leasing process is to communicate

with the CSP to acquire the selected instance. The leasing

process receives details related to the target instance that

was nominated by the instance selector. The Selected

instance details include the instance type (family and

size), leasing scheme, region, and availability zone. The

leasing process starts by creating a leasing request for the

selected candidate and submit it to the CSP. Then, the

leasing process is going to wait for the CSP feedback

related to the submitted request. The CSP will respond to

the leasing request Based on the availability of the

selected instance. If the leasing request was rejected, then

the leasing process will remove the rejected instance

from the price list that was used by the instance selector,

and it will trigger the selector again to nominate another

instance. The processes will be repeated until receiving

an approve response and process with spot leasing [27],

or the countdown timer reached a critical point, which

will force the selector to nominate an on-demand

instance. Upon the completion of this process, a new

instance should be leased and ready to be used. The

details of using the new instance will be forwarded to the

migration process including the IP address, access

credentials.

b) Backup process

The backup process is responsible for backing up the
important data and store it in an external location just like
Elastic Block Store EBS or Amazon Simple storage
service S3. This data will be migrated to the new instance,
but it will be moved separately from the application
container.

The backup process will start concurrently with the
leasing process. While the leasing process is waiting for
the cloud platform to reply, the backup process keeps
backing up the data for the hopping operation. The
preparation includes taking a snapshot for the application
container, copying the data to cloud storage. Once the
backup process finished from data copying operation, it
will send the backup location to the migration process to
be launched in the new instance.

c) Migration process

The migration process is responsible of achieving the
hopping operation. The migration process will start after
the end of both leasing and backing up processes. To start
the hopping operation, the migration process requires
some details. First, it needs to receive the new instance
details, which has been recently leased by the leasing
process. Details such as the IP address, the access
credentials, accessing method, the region and availability
zone. Second, it needs to receive the details of the data
backup that has been created by the backup process.

Details include the location of the backup, accessing
credentials, decryption keys. Then, the migration process
is going to check the status of the new instance and install
any needed tools such as the virtualization tools and
containers manager. If the new instance is up and ready to
host the application container, then the migrator process is
going to live-migrate the application container to the new
instance. Upon the completion of the live migration, the
migration process needs to make sure that the application
is running correctly before proceeding with terminating
the old instance.

5. PROPOSED FRAMEWORK EVALUATION

Evaluating the proposed framework has been done
using a dataset that contains real data. the following
subsection describes the used dataset in more details.

A. Used dataset

The dataset that has been used in evaluating the
proposed framework was collected directly from Amazon.
The data was collected in the period between the 10th of
November 2019 and 8th of February 2020. The dataset
contains spot price history related to 16 out of 22 regions.
Some regions like ap-east-1, ap-northeast-3 and me-south-
1 were designed for local access only or require an
authorized AWS account to gain access. That is why those
regions were not included in the dataset. The account that
was used to access the AWS to collect the data was a
personal account. Creating a personal AWS account
requires using a valid credit card, even if that account was
created to access the free tier. API requests were
generated using the AWS CLI tool [28]. Each request is
related to a certain instance type. The requests got
reported to cover all instance types in all zones and
Regions for a specific period. The API response from
AWS is containing the Spot instance prices for the period
that was defined in the request. On the other hand, only
concurrent spot instances prices were published on AWS
website, which is got refreshed every 5 minutes [29].
Collecting the spot price using CLI tool allows collecting
spot prices history that was published 90 days ago, which
is not available on the AWS website. The On-demand
prices were also needed to conduct the evaluation. Since
the on-demand prices are not changing dynamically, it can
be collected either by using the AWS website or the CLI.
Table 2 shows the dataset properties and their associated
ranges.

TABLE II. DATASET PROPERTIES AND RANGES

Attribute Ranges

Date From 10-11-2019 to 8-2-2020

No. of Regions 16

Availability Zones 50

Instance types 219

Operating system 4 (windows, Red hat, Suse and Linux/Unix)

Dataset size in MB 415

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1247

http://journals.uob.edu.bh

B. Data Pre-processing

pre-processing calculations were needed to be done on
the datasets to use their contents in the evaluation process.
AWS publishes spot prices based on multiple events, such
as having a price changing event or a regular periodic
price logging. Both datasets containing the data as it was
published by AWS without any changes. The period
between every two consecutive rows is not fixed and may
vary depending on the spot dynamic changings.
Moreover. The published spot leasing rates presenting
leasing cost per hour. Those issues have created a need to
do pre-processing calculations for the data before using it
in the simulation. The pre-processing was done by
calculating the number of hours between every two
consecutive rows, and then multiplying it by the leasing
rate to find out the leasing cost for that period. The pre-
processing has been done using a script that was
integrated with the target simulator (refer to the appendix
section for more details).

C. Data Samples

To evaluate the framework, one sample has been taken
from each dataset. each sample represents an instance
family that includes multiple instance types. The instance
families were taken from multiples availability zone
located within two AWS regions (EU-Central-1 and US-
East-1). From each family, a single spot instance type has
been selected. The selected instance types were suffering
from the spot leasing associated risks, which make them
good testing subjects to the proposed framework.

The sample has been taken from AWS EU-Central-1
and US-East-1. From those two regions, M5 instance
family has been selected. M5 is the fifth generation of
AWS general-purpose instance family [30]. Similar to M4
instance from Sample 1, M5 was designed to be used for
web servers, application servers, small and mid-size
database servers, clustering, gaming and more. M5 family
came in different options, such as supporting for a high-
speed network (M5n) or faster disk (M5d) that can be
chosen from many different sizes (between m5.large up to
m5.24xlarge). Table xx shows the M5n instance family
and types that are offered by AWS [31]. The table also
shows the resource configuration for each instance type
including the number of CPU cores and the size of RAM
allocated to each type. M5n.24xlarge EC2 instance type
has been selected as a sample. M5n.24xlarge came
equipped with 96 CPU cores, 384 Gigabyte of RAM. It
also has an internal solid-state hard disk drive and very
fast network interface card that can reach to 100 Gbps.
Those specifications make M5n.24xlarge as a highly
preferred option for many applications.

The evaluation process has been done for two months
period, started on December 1st, 2019 and ended on
January 31st 2020 with a total of 1488 hours. Table 3
shows AWS M5n.24xlarge EC2 sample parameters. The
table shows the regions that were the data has been taken
from. Moreover, it shows the Availability zones belong to
each region. Furthermore, the table shows the minimum,

the maximum, the average, the standard deviation, and the
variance that are related to spot leasing scheme. The table
also shows the on-demand leasing price rate per hour (in
bold). As shown in the table, M5n.24xlarge from zone A
located in Eu-Central-1 has a high variance comparing
with same instances from the other zones. Another issue
to be considered was M5n.24xlarge from zone C had high
spot price rate that reached the on-demand rate and
exceeded it in some points.

Figure 6 shows the spot and on-demand leasing rates
per hour for instance type M5n.24xlarge for the period
between the 1st of December 2019 and 31st of Jan 2020.
The mentioned instance type was in AWS Frankfort
region (EU-central-1) in availability zone A. The figure
shows that on the 1st of December the spot leasing
rate/hour was around 1.8$. On the 17th of December, the
spot rate started increasing, until it became equivalent to
the on-demand by around 7$/hour, and then remains until
the end of January. the shown instance was suffering from
one of the spot leasing risks which is the price increase
due to the demand changing.

Figure 6. Spot and on-demand leasing rate for the sample

D. Case studies

Six case studies have been conducted to measure the
effectiveness of using the proposed framework. The case
studies were designed to measure the effects of increasing
both the hopping range and the number of instance types.
Each case study has different configurations than the
others. Table 4 shows the hopping range and instance
types configurations for all the cases. The hopping range
defines the framework searching scope including the
regions and availably zones, while the instance type
column shows the types of instances that were used in
each study. Cases 1, 2, 3 were teasing the hopping range
without adding any extra instance type. case study 1 was
used to test the framework ability to switch between spot
and on-demand leasing schemes within a single zone.
Case 2 tests the framework adaptability after adding extra
zones to the hopping range. In case 3 the hoping range
was extended again by adding an extra region to the
hopping range. The added region contains 3 zones.

$1

$3

$5

$7

Type: M5n.24xlarge Region: EU-cenral-1 Zone: A

On-Demand Price Spot Price

1248 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

TABLE III. M5N.24XLARGE SAMPLE PARAMETERS

Instance Type regions AZ
On-Demand

price ($/Hour)

Spot Price ($/Hour)

Min Max Average
standard

deviation
Variance

M5n.24xLarge

EU-Central-1

A

6.87

1.77 6.92 4.46 2.12 4.45

B 1.77 1.82 1.77 0.01 0.001

C 6.87 6.92 6.87 0.01 0.001

US-East-1

A

5.81

1.73 1.73 1.73 0.001 0.001

B 1.73 1.74 1.73 0.001 0.001

C 1.73 1.73 1.73 0.001 0.001

On the other hand, case studies no.4, 5 and 6 were

used to test the framework responses after allowing it to
hop between M5n,24xlarge and the newly added instance
type (M5dn.24xlarge). Case 4 was used to measure the
changes after adding the new instance but with limited
hopping range to a single zone. Case 5 used the same
instance types as case 4 but with increasing the hopping
range to include several zones, while in case 6 the
hopping range became including two regions.

TABLE IV. CASE STUDIES CONFIGURATIONS

 Hopping range Instance types

Zones Regions

Case 1 C Eu-Central-1 M5n.24xlarge

Case 2 A, B, C Eu-Central-1 M5n.24xlarge

Case 3 A, B, C Eu-Centra-1, Us-East-1 M5n.24xlarge

Case 4 C Eu-Central-1
M5n.24xlarge,

M5dn.24xlarge

Case 5 A, B, C Eu-Central-1
M5n.24xlarge,

M5dn.24xlarge

Case 6 A, B, C Eu-Centra-1, Us-East-1
M5n.24xlarge,

M5dn.24xlarge

6. RESULTS

Table 5 shows the results of applying the proposed
framework for each case study. the table shows the period
for the data that were used in the simulation process,
which includes December 2019 and January 2020.

Leasing M5n.24xlarge EC2 instance for that period

using on-demand and spot leasing scheme costs 5621.76$
and 2504.41$ accordingly. The table also shows the
results that were obtained by using the framework for
each case. Moreover, the table shows the cost reduction
obtained by the framework over the on-demand and the
spot leasing schemes. All cost reduction percentages were
obtained from a single hopping operation.

The framework has been simulated to test the effects
of different type of hopping. Table 6 shows the result of
the 6 case studies that were applied to the proposed
framework. The table shows the effect of increasing the
hopping range horizontally (going from left side to right
side). While going vertically from (up to bottom) shows
the effect of enabling hopping between different instance
types. The table also shows that increasing the hopping
range had given positive effects on reducing the total
leasing cost. Comparing between the case studies results
horizontally such as (1 and 2), (2 and 3) shows that with
increasing the hopping range, more discount rates were
obtained. Furthermore, comparing the case study results
vertically from up to bottom such as case (1 and 4) shows
that increasing the instance types -that the framework
allowed to use- has a positive impact on reducing the total
leasing cost. moreover, complaining several hopping
types together improve the cost reduction even more. The
best results were obtained by enabling the framework to
use the longest hopping range with having multiple
instance types as shown in case No. 6.

TABLE V. FRAMEWORK RESULTS FOR THE USED CASE STUDIES

Leasing period December 2019 and January 2020

Cost using on-Demand Scheme ($) 10219.58

Cost using Spot scheme ($) 7275.2

Framework results Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Total leasing using the Framework ($) 7272.55 2637.9 2577.67 2638.5 2637.9 2577.66

Framework to on-demand cost reduction (%) 28.8% 74.19% 74.78% 74.18% 74.19% 74.77%

Framework to spot cost reduction (%) 0.04% 63.73% 64.57% 63.72% 63.73% 64.56%

Number of Hops 1 1 1 1 1 1

TABLE VI. THE EFFECT OF INCREASING THE HOPPING RANGE AND THE NUMBER OF INSTANCES TYPES

 Hopping range

Eu-central-1 (A)
Single zone

Eu-central-1 (A, B, C)
Multiple zones

Eu-central-1 (A, B, C) & Us-east-1 (A, B, C)
Multiple region

Instance

types

(hopping
targets)

Case

study

Reduction/

On-demand

Reduction/

spot

Case

study

Reduction/

On-demand

Reduction/

spot

Case study Reduction/

On-demand

Reduction/

spot

1 28.8% 0.04% 2 74.19% 63.73% 3 74.78% 64.57%

4 74.18% 63.72% 5 74.19% 63.73% 6 74.77% 64.56%

 Int. J. Com. Dig. Sys. 9, No.6, 1237-1250 (Nov-2020) 1249

http://journals.uob.edu.bh

7. LIMITATIONS

There are a few limitations that were encountered.
One of them was the difficulty in collecting the live spot
instances price. Even accessing to instances price history
was restricted to only those who are registered with
Amazon. Such data is published on the internet, but when
it comes to using an API to collect the data, it will require
having a valid username and password. Another limitation
was faced when trying to measure the impact of resource
utilization on the selection algorithm by using simulation.
This feature requires to have actual resources utilization
percentages from a running server, such an algorithm can
be tested using a real implementation for the proposed
system using a running server.

8. CONCLUSION AND FUTURE WORKS

The cloud service providers are managing data centers
that contain the physical infrastructure and equipment’s.
According to the supply and demand, there are instances
left without being used. The service providers are offering
those instances for leasing with low prices, with a chance
to be reclaimed at any moment. Utilizing such instances
can reduce the total leasing cost even more, but it will be
increasing the risk of losing the instances as well. To
utilize the extra instances while mitigating the risks, we
proposed an approach that is using instance hopping. The
proposed instance is monitoring the prices in different
regions and migrate the instance if a less price has been
found. Multiple case studies have been simulated to test
the feasibility of the proposed approach using actual data
obtained directly from AWS. We found that the proposed
approach has successfully reduced the cost of cloud
instance provisioning. furthermore, the proposed
algorithm gives better results along with increasing the
hopping range and the number of instance types.

This work can be improved even more if different
cloud providers were included. Such a thing can be done
by providing a mechanism to crossmatch different
instance models based on hardware resources, which in
turn is going to help to compare the difference in the
prices between the providers. That might open the door to
inter-cloud hopping when it came to cut the costs. On the
other hand, the proposed algorithm needs to be
implemented and tested on a real instance to evaluate its
impact on the cost and count the average migrations.
Moreover, if instance utilization percentage is known, it
will allow hopping between different instance types, and
that is going to reduce the cost even farther.

REFERENCES

[1] Zhang, Q., Zhu, Q., & Boutaba, R, "Dynamic resource allocation

for spot markets in cloud computing environments," in Fourth
IEEE International Conference on Utility and Cloud Computing,

2011.

[2] Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A, "A cost-aware
elasticity provisioning system for the cloud," in 31st International

Conference on Distributed Computing Systems, 2011, June.

[3] Menache, I., Shamir, O., & Jain, N, "On-demand, spot, or both:

Dynamic resource allocation for executing batch jobs in the

cloud," in 11th International Conference on Autonomic
Computing, 2014.

[4] He, X., Shenoy, P., Sitaraman, R., & Irwin, D, "Cutting the cost of

hosting online services using cloud spot markets," in 24th
International Symposium on High-Performance Parallel and

Distributed Computing, 2015, June.

[5] Yi, S., Kondo, D., & Andrzejak, A, "Reducing costs of spot
instances via checkpointing in the amazon elastic compute cloud,"

in IEEE 3rd International Conference on Cloud Computing, 2010,

July.

[6] J. Zheng, T. E. Ng, K. Sripanidkulchai, and Z. Liu, "Pacer: Taking

the guesswork out of live migrations in hybrid cloud computing,"
Rice University Technical Report, Jan 2013.

[7] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg, "Live

widearea migration of virtual machines including local persistent
state," in VEE, 2007.

[8] X. Meng, V. Pappas, and L. Zhang, "Improving the scalability of

data center networks with traffic-aware virtual machine
placement," in INFOCOM, USA, 2010.

[9] Lu, T., Stuart, M., Tang, K., & He, X, "Clique migration: Affinity

grouping of virtual machines for inter-cloud live migration," in 9th
IEEE International Conference on Networking, Architecture, and

Storage, 2014, August.

[10] Shastri, S., & Irwin, D, "HotSpot: automated server hopping in
cloud spot markets," in In Proceedings of the 2017 Symposium on

Cloud Computing, 2017, September.

[11] S. Shastri, "System Support for Managing Risk in Cloud
Computing Platforms.," 2018. [Online]. Available:

https://scholarworks.umass.edu/dissertations_2/1389/.

[12] Chi, Y., Cai, W., Hong, Z., Chan, H. C., & Leung, V. C., "A

privacy and price-aware inter-cloud system," in 7th International

Conference on Cloud Computing Technology and Science

(CloudCom), 2015, November.

[13] Lee, K., & Son, M., "Deepspotcloud: leveraging cross-region gpu

spot instances for deep learning.," in In 2017 IEEE 10th

International Conference on Cloud Computing, 2017, June.

[14] Ali-Eldin, A., Westin, J., Wang, B., Sharma, P., & Shenoy, P.,

"Spotweb: Running latency-sensitive distributed web services on

transient cloud servers," in In Proceedings of the 28th
International Symposium on High-Performance Parallel and

Distributed Computing (pp. 1-12), 2019, June.

[15] Ekwe-Ekwe, N., & Barker, A., "Location, location, location:
exploring Amazon EC2 spot instance pricing across geographical

regions.," in In 2018 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID) (pp. 370-373).
IEEE., 2018, May.

[16] Sanad, A. J., & Hammad, M., "Reducing Cloud provisioning Cost

Using Spot Instances hopping.," in In 2019 International
Conference on Innovation and Intelligence for Informatics,

Computing, and Technologies (3ICT),IEEE, (2019, September).

[17] Sanad, A. J., & Hammad, M, "An Approach to Reduce Cloud Spot
Instances Cost," International Journal of Computing and Digital

Systems (IJCDS), 2020-under process.

[18] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., &
Leaf, D, "NIST cloud computing reference architecture.," NIST

special publication, 2011.

[19] "Gatner," [Online]. Available:
 https://www.gartner.com/en/newsroom/press-releases/2019-04-

02-gartner-forecasts-worldwide-public-cloud-revenue-to-g.

[20] "AWS," [Online]. Available:
 https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/.

1250 Ali Jassim Hasan & Mustafa Hammad: Spot Hopping: Increasing Reliability and Reducing Cost

http://journals.uob.edu.bh

[21] "Spot Instance Interruptions," [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-

interruptions.html#interruption-behavior.

[22] AWS, "Instance Lifecycle," [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-

instance-lifecycle.html.

[23] S. Shastri, "Amazon EC2 spot price traces," 28 Aug 2018.

[Online]. Available:

https://umass.app.box.com/s/jfbuno6sgyvmul72ise99tc09lqnja5d.

[24] "How AWS Auto Scaling Works," [Online]. Available:

https://docs.aws.amazon.com/autoscaling/plans/userguide/how-it-

works.html.

[25] AWS, "Amazon EC2 Spot Two-Minute Warning," [Online].

Available: https://aws.amazon.com/about-aws/whats-
new/2018/01/amazon-ec2-spot-two-minute-warning-is-now-

available-via-amazon-cloudwatch-events/.

[26] "EC2 Spot Instance Termination Notices," [Online]. Available:
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-

termination-notices/.

[27] "Spot Instance Requests," [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-

requests.html.

[28] "AWS Command Line Interface," [Online]. Available:
https://aws.amazon.com/cli/.

[29] "Amazon EC2 Spot Instances Pricing," [Online]. Available:

https://aws.amazon.com/ec2/spot/pricing/.

[30] "Amazon EC2 M5 Instances," Amazon AWS, [Online]. Available:

https://aws.amazon.com/ec2/instance-types/m5/.

[31] "Amazon Ec2 Instance Types," Amazon Web Services, [Online].
Available: https://aws.amazon.com/ec2/instance-types/.

Ali Jasim is a Demonstrator in the Department
of Computer Engineering at the University of

Bahrain. He is an M.Sc. student in the college of

IT at The University of Bahrain. He holds a
BS.C degree in Computer Engineering from

University of Bahrain, 2009. His research

interest includes cloud computing, IoT and
machine learning

Mustafa Hammad is an Associate Professor in

the Department of Computer Science at the
University of Bahrain and Mutah University. He

received his Ph.D. in Computer Science from

New Mexico State University, USA in 2010. He
received his Masters degree in Computer

Science from Al-Balqa Applied University,

Jordan in 2005 and his B.Sc. in Computer
Science from The Hashemite University, Jordan

in 2002. His research interests include machine

learning, software engineering with focus on software analysis and
evolution.

