

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Jan-2022)

E-mail address: 20110708@stu.uob.edu.bh, mhammad@uob.edu.bh, falblooshi@uob.edu.bh

 http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/110156

Software Security Validation through Regular Expressions

Omar Abahussain

1
, Mustafa Hammad

1
 and Fawzi Albalooshi

1

1 Department of Computer Science University of Bahrain, Sakhir, Bahrain

Received 10 April. 2020, Revised 22 June. 2020, Accepted 31 July. 2020, Published 31 Jan. 2022

Abstract: In modern society, software security has become an essential part of most software systems. As nowadays, new systems

roll out more than ever, cybercriminals and unethical hackers tend to target those new systems to abuse and exploit its vulnerability

to achieve a specific goal regardless of the consequences. Thus, validating software security is a challenging task and of crucial

importance. The paper aims to find an optimal logical approach to test and validate software security through static analysis using

regular expressions to optimize and secure the source code of the software.

Keywords: Software Security Testing, Static Analysis, Regular Expressions, Software Static Analysis Tool Prototype, Source Code

Optimization

1. INTRODUCTION

In the field of software engineering, there is a set of
analytical and technical steps to be followed. In general,
the steps are all requirement: gathering, analyzing,
designing, implementing, and lastly and not least testing
the implementation. Testing consists of validations and
verifications alongside the tests. Testing is significant as it
makes sure the developed systems are fully functional,
secure, and reliable as quality assurance. Finally, releasing
and maintaining the software in the deployed system.
These steps may be the main concerns of every developer
and engineer, but security testing is very troublesome.
Security is part of the software’s non-functional
requirements, a quality attribute, and a constraint in an
indirect way.[1]

Nowadays, the majority of businesses are moving
towards information systems as technology advances in
that sector. Information systems have become a key to
their business process. Thus, security has become of very
high and significant importance to protect data and
information from different types of security risks and
abuse related to Information Communication Technology
(ICT). Unfortunately, the security attribute in the Software
Development Life Cycle (SDLC) is not considered as of
any importance to the majority of the stakeholders.
Software engineers as well think security may seem to be
a waste of system resources depending on the type of
developed software.

According to Lars Backman [2], a study conducted to
assess where and how the issue persists within the
stakeholders themselves through factors such as
Insufficient knowledge, misplaced trust, and inadequate
testing policies. Another Study by Agata McCormac et al.
[3] was done to check the score of information security
based on age, gender, personality, and risk-taking factor.
The study yielded that age and gender have no impact, but
instead, it was the personality and risk-taking factor that
affected. Moreover, the importance of the software
security code is conducting a cybersecurity awareness
campaign study by Maria Bada et al. [4] that aims to
spread awareness and understand where the flaws are at
and fix it. Alongside them are Affan Yasin et al. [5],
which aimed to spread the awareness of software security
through a serious game that describes what would happen
if security is not taken into consideration seriously. Thus,
the security attribute is of very high importance as it
focuses on the system’s ability to secure and protect the
data from being tempered, stolen, or abused.

Validation, verification, and testing of software
security are incredibly challenging for software engineers.
There are many ways to do, but each does not cover all
the angles. Thus, engineers perform multiple batch
operations to validate, verify, and test software security.
Engineers should always keep the security of a system up-
to-date whenever possible through patches and updates to
keep the software secure. As it seems, Jiantao Pan [6] has
written about the importance of the validation,
verification, and testing of the software security phase in

696 Omar Abahussain, et.al: Software Security Validation through Regular Expressions

http://journals.uob.edu.bh

the SDLC despite being a trade-off between budget, time,
and quality. This phase defines the reliability of the
software and its quality according to the results of all the
tests.

This paper extends the work done in [7]. The paper

will start with a literature review to get an idea of what

has been done so far. Afterward, the paper will go through

method and approach as the paper reviews current

Validation, verification, and testing tools to obtain a

general idea of what is available and to propose a unique

approach. Next, the paper goes through a case study and

its analysis of the study results. At last, the limitations and

conclusion.

2. LITERATURE REVIEW

There are plenty of research papers and patents on the

topic of software testing, validation, and verification.

However, the papers about testing, verification, and

validation in software security are few and hard to be

found. In order to get such papers, the search should be

going further in-depth and more specific as in taking each

of the three words (testing, verification, validation)

alongside the keyword “software security”. The paper has

a collection of what should cover different angles of

Software Security Verification, Validation, and Testing

(VVT).

A. Patents

Worldwide Cisco Technology Inc [8] inventors Jason
Young et al. focused on the verification of the source
code, the concept of analyzing a specific declared secret
type variable, and find how that variable is configured and
how it will move along other variables. Such verification
and analysis will ensure sensitive data will not leak out
from the source code as the secret variable moves to other
variables without consideration of its value. It will create
an exception in the source code verification process as the
source code lacks secure handling of data inside the
source code.

As for the inventor Matthew Allan Newman from
Newman Infinite Inc [9], focused on different aspects of
securing of JavaScript and source code from systems,
related methods to other means. The configuration of
everything can be done on the client machine to determine
whether a debugging console is active or not and deny
access to the JavaScript and source code if it is active.
Additionally, the client device may request access to the
JavaScript and source code. Thus, the determination of the
request if it from a trusted referrer or not is of high
importance and denies access if the request is untrusted
and grant it when it is trusted. Moreover, Shape Security
Inc inventors Sergey Shekyan et al. [10] have also focused
on securing the source code of web applications by
attempting to conduct vulnerability tests and exploit it by
mixing different attacks against the web system content.

B. Papers

According to Brad Arkin et al. [11], security is
considered as a severe problem. Simply because of the
majority of the security defects and weaknesses are not
related to the security functionality, but rather an
intentional misuse of the software itself. Security testers
should dig deep into the software for any security risks to
understand how the system behaves when being attacked.
One of the methods to test software security is through a
penetration test where the stakeholder subjects his
software to penetration testing as part of the final
acceptance regimen. However, they stated the main major
limitation of this approach is that it almost always
represents very little and very late to involve security
implementation/enhancements at the end of the software
development cycle.

As for David Gilliam et al. [12], proposed a security
assessment tool that assesses the code and finds security
risks and vulnerabilities. The idea is to set up a database
that consists of these risks. The tool then when used to
assess another new software, it will start with what exists
in the database then go over new things. Once that is
done, the process of software security verification is
complete.

Moving on to Bruce Potter and Gary McGraw [13],
stating that software security is all about how to make the
software behave correctly if there is any malicious attack
on it. Regardless of the software random real-time
unexpected failures occur unintentional misuse. Ironically,
standard software testing is mainly concerned with what
happens upon software failure irrespective of the user’s
intent. Software safety and software security are different
in terms of the presence of an intelligent rival that wishes
to break the system. Software safety is how the system
behaves when misused, and software security is how the
software data is secure. Their method was using a risk-
based approach to help solve every security concern while
the software is still in production through software
security testing professionals.

An analytical research study was conducted by
Ganesan Deepa and Santhi Thilagam [14], which aims to
understand the approaches and challenges of securing web
applications from different security threats and attacks
from injections to logic vulnerabilities. Nowadays, we
move towards web applications to do our daily activities;
a single flaw would allow an attacker to gain access to
sensitive information or cause harm to others. The study
was conducted on an identified recently published articles
from different well-known digital libraries. A total of 86
studies are selected and were divided into three
classifications which are: 35 articles related to XSS, 34
articles related to logic flaws, and 17 articles related to
SQLI. However, the conclusion is that there is no single
solution to eliminate or reduce all the flaws and that more

 Int. J. Com. Dig. Sys. 11, No. 1 695-702 (Jan-2022) 697

http://journals.uob.edu.bh

research is required in the field of fixing an application’s
source code flaws.

Gu Tian-yang et al. [15] have researched different
aspects of software security testing. Going through
different types of software security tests with definitions
and what it would cover as a finding. The outcome of the
research was of a high significance in knowing what
methods and tools to use for proper testing to cover all
angles.

In [16], Peter Gilbert et al. proposed an application
inspector that analyze the software and generate reports of
possible security and privacy violations. The way how
application inspector work is by executing the software
and let the application inspector monitor and log how the
data flow alongside the type of data flowing. Although
their paper speaks of protecting mobile device users from
being abused by improper use of users’ data, the approach
can be used as well to expose software security flaws and
to be fixed to prevent any system abuse. That will validate
the software security and test for any flaws.

Durability perspective were the thoughts of Rajeev
Kumar et al. [17]. As long the system is durable, it is more
likely to be secure. Durability is an attribute of security.
Thus, testing durability from different angles would also
test the security of the system itself. Not to mention, if the
system is durable enough, security would be the second
line of defense that would be used only if durability
breaks. That shows the importance of system durability in
giving the system a second line of defense. The tests done
are basically on the durability of different aspects of
security, such as durability with integrity, confidentiality,
availability, etc.

Lastly, Zeineb Zhioua et al. [18] stated that it is a
difficult task to build secure software. Furthermore, it gets
more complicated if the stakeholders ask for security
requirements. In order to make sure things go in the
correct direction, static code analysis was suggested to
capture any security vulnerability. Static code analysis is a
manual trace of how data would be going and whether it
is secured or matches the stakeholders’ security
requirements. Thus, it covers validation and verification
alongside testing.

Software security VVT is of high importance that
should be considered to prevent any cybercriminal or
abusive user from abusing the system. From all of the
papers reviewed, static code analysis seems to be very
wide and well covering different angles of the software
security while ignoring other software factors. However,
mixing between different criteria of the reviewed papers
would yield excellent results. A system that is very stable,
error-handled, and durable is considered more secure than
an unstable unhandled unendurable system.

3. METHODS AND APPROACH

A. Current tools

 Nowadays, there are different tools available online
that do static code analysis alongside code quality
checking [19], rather than listing them all, key features are
used to eliminate redundancy. The key features alongside
their description will assist in understanding what the
tools can do in Table I.

TABLE I. SECURITY APPROACHES TO SECURE DATA

TRANSMISSION

Key features Description

Run-time and

logic errors:

the tool analyzes and assesses potential bugs

before program execution.

Mathematical and

logic verification

verifies the code and proves the absence of

overflow, divide-by-zero, out-of-bounds array
access, and specific other run-time errors.

Size and

complexity

measure the files and code size and complexity.

Quality
assessment tool

mainly for design assessment, supporting
detection of implementation and design smells,

computation of various code quality metrics, and

trend analysis.

Security code
analyzer

Analyze and Detects various security vulnerability
patterns: SQLi, XSS, CSRF, XXE, Open Redirect,

etc.

Real-time secure
scan

real-time secure code analysis for common
vulnerabilities.

Security Guard the main focus is on the identification of potential

vulnerabilities such as SQL injection, cross-site

scripting (XSS), CSRF, cryptography weaknesses,

hardcoded passwords, etc.

Dead code

detection

finds and locates the unused code and unnecessary

lines.

Wrong definition

scan

detects any misspelled words that cause an error.

Crypto-related checks for any incorrect uses of cryptographic

APIs.

Google

JavaScript Style

Guide

it is precisely for JavaScript language, ensures the

code is following the guidelines as well

automatically fixes common errors.

Code cleaner cleans code and maintains its consistency.

Dependency and

complexity

find all dependencies and generates complexity

reports.

Software Layers focuses on finding dependencies between layers

and enforces correct rules.

Bug detection finds and fixes any bugs.

Combined

security scan

a combination of Static Application Security

Testing (SAST), Dynamic Application Security

Testing (DAST), Interactive Application Security
Testing (IAST) security scans [20, 21].

As mentioned, there are many tools online that target
different languages rather than multiple, having a few key
features rather than many. Combining various key
features would yield better results as using multiple tools
may not be suitable as using one tool.

B. The method

 After examining the tools and their key features, it
seems the majority of the tools do not have quality metrics

698 Omar Abahussain, et.al: Software Security Validation through Regular Expressions

http://journals.uob.edu.bh

or code cleaning nor rules and guidelines. Instead, the tool
checks and assesses the software for security
vulnerabilities. The written code should have some
standards to be secure then checked for risks, as writing
the code properly should yield proper secure and risk-free
software. Writing a proper code falls under the category
of Quality Metrics (QM) [22]. QM helps in making more
stable software by eliminating/reducing bugs and
unwanted code, aside from reducing the number of lines.
The proposed tool has a QM analysis and applies changes
to improve the code.

The proposed tool aims to cover four criteria. The
tested system should be durable, safe, stable, and secure.
The proposed tool was developed using AngularJS,
AngularMaterial with HTML5; it is designed as a
prototype and is accessible online [23]. The tool currently
inspects JavaScript source code and can be expanded to
include other languages as future works, as the tool is very
light and flexible. It is good to have such a tool online that
requires no installation and aids in generating the desired
outcome.

The tool examines the source code for any logs and
eliminates them. Logging is mainly used for debugging
and maybe misused. It is terrible to leave any consoles
and loggers active as it may exploit and tell about the
system structure to be specific when the log is coming
from an ajax call, GET or POST method with a response
of success or error. Aside from that, the system might
break. As a console log may not be supported from a
browser to another [24,25].

The tool then makes sure any server submission would
be encrypted or hashed to maintain integrity and
confidentiality. The tool goes through the source code and
locates all submission parts (assuming code is JavaScript.
The tool finds all submit methods, which would be AJAX,
POST, and GET, then check the data whether it is passed
on directly or wrapped with an encryption method or if
the value since the definition has been changed).

At last, the tool generates a security quality report to
help in knowing whether the system resources are wasted
or well used. However, the report generating is considered
as Dynamic Application Security Testing rather than
Static Application Security Testing. Thus, it will be kept
as future works.

Code
inspection

tool

New improved source code

Source Code

Analyze source code for
keywords (var,

int,string,�

Analyze source code for
POST methods and ajax

calls

Analyze source code for
any comments, logs

and debugs

Produce
Results

Highlighted Document
For risks in the source code

Figure 1. The proposed method

By looking at Fig 1, the source code goes into the tool
to be analyzed and inspected. Once that is done, the
results will go through multiple steps of analyzes in order
to optimize the source code. In the next subheadings, Fig
1 will be broken down in detail as well as the method
explained more.

1) The Logic of the Tool as an Algorithm: The tool is

based on Regular Expressions (RE) [26]. RE is a sequence

of symbols and characters expressing a string or pattern to

be searched for within a longer piece of text. RE has

multiple flags, which are `/g`, `/I`, and `/m`, and the tool is

based on the combination of all as `/igm`. G stands for

global as in global search, I is case insensitive as the form

is multiline. Having igm means the search for the word

global case insensitive in all lines of the text, which is the

source code. The syntax assuming the language is

JavaScript (JS) would be “/The characters match/igm”.

Table II has further demonstration.

TABLE II. JS EXAMPLE WITH REGULAR EXPRESSION OUTCOME

JavaScript Sample Code Regular Repression Outcome

function simple() {
Var x;

vaR y;

}

/vAr/igm

2 Matches found

 Int. J. Com. Dig. Sys. 11, No. 1 695-702 (Jan-2022) 699

http://journals.uob.edu.bh

The tool would detect `var` according to the flags
returning two as results. If g was not there, then the tool
would have stopped after the first encounter with the
result as 1. As for i, caps are ignored; everything is treated
as small letters without it, the tool results would be zero.
At last, m as multiline, the tool would have returned zero
as the first line does not contain `var`.

2) Analyze code for comments, logs, and debugs: In

Fig 2, the code will be inspected for anything that can

explain the code or assist in reverse engineering it such as

comments, logs, and debuggers. These are every

developer’s essence in troubleshooting the software and a

guideline in understanding what is happening. At the

same time, in the wrong hands, they can be used to abuse

the software as in embedding harmful malware that

targets that specific software when the source code is fully

understood.

Add results to the
generated Table

report

Source Code

Analyze source code for
any comments, logs

and debugs

Results
Output

Prepare a regular expression
replacement with another

that is erased as optimal
solution

Regular
expression for:
console.log(�so

me log

Regular expression
for:

 /*some comment*/
And

// some text

Regular
expression for:

debugger

Figure 2. The logic behind code analysis for comments, logs and

debugs

As mentioned earlier, leaving console logs in
production systems is very dangerous as it may expose the
system structure in the hands of cybercriminals.

3) Analyze code for keywords: Fig 3 shows that the

code will be inspected for specific keywords, more

specifically variable definition keywords. It is in order to

ensure that the variable cannot be abused or altered while

the software is running, also ensuring if it is sensitive, it

should be secure and unreadable.

Add results to the
generated Table

report

Source Code

Analyze source code for
keywords (var, int,string,�

Results
Output

Prepare a regular
expression

replacement with a
random characters
to uglify the code

Regular expression for:
Keywords:

var, int, string, boolean, etc...

Figure 3. The logic behind code analysis for keywords

4) Analyze code for POST methods and ajax calls:

As for Fig 4, the code will be inspected for all methods of

sending data over the network in order to assess if the data

being sent is secure or not. After all, a man in the middle

attack can be performed to steal whatever data is being

transferred.

Add results to the
generated Table

report

Source Code

Analyze source
code for POST
methods and

ajax calls

Results
Output

Regular
expression for:

Keywords:
AJAX and POST

Figure 4. The logic behind code analysis for keywords

5) Produced Results: Two Outputs are generated.

First, it will have things highlighted for anything that is

considered a risk. Then it generates alongside what must

be removed and to be added. The second document will

have results of the new expected source code after the

cleaning process of the code is complete (removing

unnecessary codes).

700 Omar Abahussain, et.al: Software Security Validation through Regular Expressions

http://journals.uob.edu.bh

4. CASE STUDY

Figure 5. Source code inspection tool has inspected and produced the

results

The prototype tool in Fig 5, which can be accessed at
[23], has pointed out what should be looked at in the
source code. The logic of the tool is based on multiple
regular expressions. These regular expressions are meant
to capture every criterion that is mentioned in the source
code results table. The tool then optimizes the source code
by removing what it can remove, leaving behind a better,
shorter, and cleaner code that is less likely to be abused by
any unethical user. As mentioned before, the tool
inspections are based on a well written regular expression
where the search flags as mentioned earlier. Table III
shows that wherever the comment is, it is captured.

TABLE III. JS EXAMPLE WITH REGULAR EXPRESSION OUTCOME

Entered Code No. of Comments,

Logs, and Debugs

Expected

output

1 function UseCase1 () { 3 comments found.

@line2 // this is a

…
@line4 //same

line… and @line5

/*in the…*/

1 log found

@line3

console.log…

1 debug found

@line6 debugger;

function

UseCase1 ()

{

2 // this is a simple comment var x;

3 var x;

console.log(“logging”);

var y;

4 var y; //same line comment var z;

5 var /*in the middle

comment*/ z = x+y;

}

6 debugger;

7 }

Similarly, for definitions counter, and POST/ajax calls
the regular expressions with the same criterion of being
global, case insensitive, and multiline. The tool counts
wherever there is a match. The logic can be seen in Table
IV.

TABLE IV. JS EXAMPLE WITH REGULAR EXPRESSION OUTCOME

Entered Code No. of Definitions and

Callings

1 function UseCase2 () { 5 definitions found

@lines2,3,4,5

Keywords: var, int,
boolean…

2 calling methods found

2 var abc;

3 int x,y;

4 boolean flag;

5 var xhttp = new XMLHttpRequest();

6 $.ajax({url: "someDummyDemo.txt",

success: function(result){;}});

@lines5,6

Keywords:
XMLHttpRequest, ajax … 7 }

5. VALIDITY AND COMPARISON

The proposed method uses Regular Expressions (RE),
which has not been seen in any of the current tools. RE
can be used to target multiple languages by expanding the
keywords for each criterion that should be looked at in the
source code. The tool can be easily expanded to include
furthermore features.

However, the only drawback is that the tool, as it has
been developed using AngularJS, the possibility of
running dynamic tests are bounded to only web
applications. As for accuracies, the tool may require
plenty of tests to cover all different possible bugs and
errors.

6. LIMITATIONS

Time was the only factor to limit enhancements and
features added to the tool prototype, as the prototype
shows enhancements that makes the source code valid
more than validating as it bypasses the full report
generation related to validity and makes a valid code. The
tool, however, is capturing every criterion of software
security. Thus, the tool could have done further tests and
generate a detailed report of before and after showing the
percentage of verification and validity, such as finding the
final value of each variable and detecting errors and
wrong coding practices. Aside from that, the most crucial
point is that since the tool is still in a prototype phase, it
still needs to perform multiple test cases to be able to
eliminate every bug and error. The tool must handle and
cover all aspects of a human error situation; to prevent the
tool from miss-filtering the code. The prototype currently
expects the correct JavaScript code to be analyzed.

7. CONCLUSION

The tool has covered the source code statically all
aspects of VV, excluding T. Verification was through
ensuring the source code of the system is at least
vulnerable as it is supposed to be as an essential
requirement. Validation that the system meets any
security requirement from the stakeholder if requested and
minimal security requirement from the software engineer
side with no impact on the system performance. Testing
of the source code is done dynamically, and the proposed
tool works statically.

This study can be expanded by including Dynamic
Application Security Testing (DAST), allowing the
generation of quality reports of the consumed resources.
Also, covering other languages and verifying the code is
well written. Additionally, perform more in-depth
analyzes in SAST mode to do better optimization and
broader analysis to the source code. A document

 Int. J. Com. Dig. Sys. 11, No. 1 695-702 (Jan-2022) 701

http://journals.uob.edu.bh

highlighting for risks is another thing that the tool should
be producing as an output.

REFERENCES

[1] O. Abahussain and M. Hammad, “Securing Systems and
Software: Current State and Challenges,” 2019 8th International
Conference on Modeling Simulation and Applied Optimization
(ICMSAO), Apr. 2019 [Online]. Available:
https://doi.org/10.1109/ICMSAO.2019.8880396 [Accessed: 26-
Mar-2020]

[2] L. Backman, “Why is security still an issue? : A study comparing
developers’ software security awareness to existing vulnerabilities
in software applications,” Dissertation, 2018 [Online]. Available:
http://liu.diva-
portal.org/smash/record.jsf?pid=diva2%3A1271102&dswid=1822
[Accessed: 29-Mar-2020]

[3] A. McCormac, T. Zwaans, K. Parsons, D. Calic, M. Butavicius,
and M. Pattinson, “Individual differences and Information
Security Awareness,” Computers in Human Behavior, vol. 69, pp.
151–156, Apr. 2017 [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S074756321630
8147 [Accessed: 29-Mar-2020]

[4] M. Bada, A. Sasse, and J. Nurse, “Cyber Security Awareness
Campaigns: Why do they fail to change behaviour?,” 2015
[Online]. Available:
https://arxiv.org/ftp/arxiv/papers/1901/1901.02672.pdf
[Accessed: 29-Mar-2020]

[5] A. Yasin, L. Liu, T. Li, R. Fatima, and W. Jianmin, “Improving
software security awareness using a serious game,” IET Software,
vol. 13, no. 2, pp. 159–169, Apr. 2019 [Online]. Available:
https://doi.org/10.1049/iet-sen.2018.5095 [Accessed: 29-Mar-
2020]

[6] J. Pan, “Software testing,” Dependable Embedded Systems, 1999
[Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.712
1&rep=rep1&type=pdf [Accessed: 02-Mar-2019]

[7] O. Abahussain and M. Hammad, “Validating Software Security
using Regular Expressions,” 2019 International Conference on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT), Sep. 2019 [Online]. Available:
https://doi.org/10.1109/3ICT.2019.8910303 [Accessed: 10-Apr-
2020]

[8] J. Young, M. Zurko, J. Sobel, C. Bruggeman, and J. Taylor,
“Securing Web Application Code by Static Analysis and Runtime
Protection,” Google Patents, 2017 [Online]. Available:
https://patents.google.com/patent/US9841972B2/en [Accessed:
29-Mar-2020]

[9] M. Newman, “Apparatus and Method for Securing Web
Application Server Source Code,” Google Patents, 2019 [Online].
Available:
https://patents.google.com/patent/US20190303601A1/en
[Accessed: 30-Mar-2020]

[10] S. Shekyan, M. Coates, W. Hales, T. Peacock, and J. Call,
“Mitigating security vulnerabilities in web content,” Google
Patents, 2019 [Online]. Available:
https://patents.google.com/patent/US20190394223A1/en
[Accessed: 30-Mar-2020]

[11] B. Arkin, S. Stender, and G. McGraw, “Software penetration
testing,” IEEE Security and Privacy Magazine, vol. 3, no. 1, pp.
84–87, Jan. 2005 [Online]. Available:
https://doi.org/10.1109/msp.2005.23 [Accessed: 02-Mar-2019]

[12] D. P. Gilliam, J. C. Kelly, J. D. Powell, and M. Bishop,
“Development of a software security assessment instrument to
reduce software security risk,” Proceedings Tenth IEEE
International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises. WET ICE 2001 [Online]. Available:
https://doi.org/10.1109/enabl.2001.953404 [Accessed: 02-Mar-
2019]

[13] B. Potter and G. McGraw, “Software security testing,” IEEE
Security & Privacy Magazine, vol. 2, no. 5, pp. 81–85, Sep. 2004
[Online]. Available: https://doi.org/10.1109/msp.2004.84
[Accessed: 02-Mar-2019]

[14] G. Deepa and P. S. Thilagam, “Securing web applications from
injection and logic vulnerabilities: Approaches and challenges,”
Information and Software Technology, vol. 74, pp. 160–180, Jun.
2016 [Online]. Available:
https://doi.org/10.1016/j.infsof.2016.02.005 [Accessed: 31-Mar-
2020]

[15] G. Tian-yang, S. Yin-sheng, and F. You-yuan, “Research on
Software Security Testing,” Zenodo, vol. 4, no. 9, pp. 1446–1450,
Sep. 2010 [Online]. Available:
https://doi.org/10.5281/zenodo.1081389 [Accessed: 26-Mar-
2020]

[16] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision,”
Proceedings of the second international workshop on Mobile
cloud computing and services - MCS ’11, 2011 [Online].
Available: https://doi.org/10.1145/1999732.1999740 [Accessed:
02-Mar-2019]

[17] R. Kumar, S. A. Khan, and R. A. Khan, “Revisiting Software
Security: Durability Perspective,” International Journal of Hybrid
Information Technology, vol. 8, no. 2, pp. 311–322, Feb. 2015
[Online]. Available: http://dx.doi.org/10.14257/ijhit.2015.8.2.29
[Accessed: 15-Mar-2019]

[18] Z. Zhioua, S. Short, and Y. Roudier, “Static Code Analysis for
Software Security Verification: Problems and Approaches,” 2014
IEEE 38th International Computer Software and Applications
Conference Workshops, Jul. 2014 [Online]. Available:
https://doi.org/10.1109/compsacw.2014.22 [Accessed: 02-Mar-
2019]

[19] Matthias, “mre/awesome-static-analysis,” GitHub, 2019. [Online].
Available: https://github.com/mre/awesome-static-analysis
[Accessed: 30-Mar-2019]

[20] S. Koussa, Ed., “What do SAST, DAST, IAST and RASP mean to
developers?,” Softwaresecured.com, 02-Nov-2018. [Online].
Available: https://www.softwaresecured.com/what-do-sast-dast-
iast-and-rasp-mean-to-developers/ [Accessed: 26-Mar-2020]

[21] “PT Application Inspector,” Ptsecurity.com, 2020. [Online].
Available: https://www.ptsecurity.com/ww-en/products/ai/
[Accessed: 26-Mar-2020]

[22] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A.
Chatzigeorgiou, and D. Soudris, “Interrelations between Software
Quality Metrics, Performance and Energy Consumption in
Embedded Applications,” Proceedings of the 21st International
Workshop on Software and Compilers for Embedded Systems -
SCOPES ’18, 2018 [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3207719.3207736 [Accessed:
20-Jun-2020]

[23] O. Abahussain, “Source Code Inspection Prototype (SCIP),” Msc
Prototypes 20110708, 2019. [Online]. Available:
https://20110708.000webhostapp.com/#/SCI [Accessed: 28-May-
2019]

[24] “Javascript and the Dangers of Console.log,” Amido, 13-Mar-
2019. [Online]. Available: https://amido.com/blog/javascript-and-
the-dangers-of-console-log/ [Accessed: 06-Aug-2019]

[25] DEV Community, “Don’t leave console logs in production,” The
DEV Community, 29-Oct-2018. [Online]. Available:

https://doi.org/10.1109/ICMSAO.2019.8880396
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1271102&dswid=1822
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1271102&dswid=1822
https://www.sciencedirect.com/science/article/pii/S0747563216308147
https://www.sciencedirect.com/science/article/pii/S0747563216308147
https://arxiv.org/ftp/arxiv/papers/1901/1901.02672.pdf
https://doi.org/10.1049/iet-sen.2018.5095
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.7121&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.7121&rep=rep1&type=pdf
https://doi.org/10.1109/3ICT.2019.8910303
https://patents.google.com/patent/US9841972B2/en
https://patents.google.com/patent/US20190303601A1/en
https://patents.google.com/patent/US20190394223A1/en
https://doi.org/10.1109/msp.2005.23
https://doi.org/10.1109/enabl.2001.953404
https://doi.org/10.1109/msp.2004.84
https://doi.org/10.1016/j.infsof.2016.02.005
https://doi.org/10.5281/zenodo.1081389
https://doi.org/10.1145/1999732.1999740
http://dx.doi.org/10.14257/ijhit.2015.8.2.29
https://doi.org/10.1109/compsacw.2014.22
https://github.com/mre/awesome-static-analysis
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers/
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers/
https://www.ptsecurity.com/ww-en/products/ai/
https://dl.acm.org/doi/pdf/10.1145/3207719.3207736
https://20110708.000webhostapp.com/#/SCI
https://amido.com/blog/javascript-and-the-dangers-of-console-log/
https://amido.com/blog/javascript-and-the-dangers-of-console-log/

702 Omar Abahussain, et.al: Software Security Validation through Regular Expressions

http://journals.uob.edu.bh

https://dev.to/mornir/-dont-leave-console-logs-in-production-14na
[Accessed: 06-Aug-2019]

[26] J. Goyvaerts and S. Levithan, Regular Expressions Cookbook:
Detailed Solutions in Eight Programming Languages. “O’Reilly
Media, Inc.,” 2012 [Online]. Available:
https://books.google.com.bh/books?id=0Msuh5Vq-uYC
[Accessed: 02-Aug-2019]

Omar Abahussain received his

BSc. Degree in Computer Science

from University of Bahrain, Bahrain

2016 and is currently studying MSc.

In Software Engineering. Has

published few conference papers

and his interests fall in the field of

software engineering, software

security, and designing the software

source code in a secure way to be

safe and secure against abusers and

hackers…

Mustafa Hammad received his

MSc. Degree in Computer Science

from Al-Balqa Applied University,

Jordan in 2005. He completed his

PhD in Computer Science at New

Mexico State University in 2010.

His research interests include

wireless sensor networks, software

engineering with focus on software

analysis and evolution…

Fawzi Albalooshi is a faculty

member in the department of

computer science at the college of

IT in the University of Bahrain. Dr.

Fawzi Has earned his Ph.D. from

the University of Wales in the field

of Software Engineering. He has

published many research articles in

international journals and

conferences. He has authored and

edited books in the field of IT.

https://dev.to/mornir/-dont-leave-console-logs-in-production-14na
https://books.google.com.bh/books?id=0Msuh5Vq-uYC

