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Abstract: Understanding network traffic pattern and its impact on the Internet provides valuable insights in designing new network 

protocols, particularly in designing one for applications with a tendency to generate bursty traffic of data, such as Voice over IP 

(VoIP).  To capture the behavior, network traffic can be illustrated on many scales using the notation of self-similarity because 

network traffic is statistically self-similar. In this paper, we propose a study on analyzing the length of a traffic interval by self-

similarity based on the difference between arrival times of packets. We examine the dependency between fast and slow interval as 

well as a study on the data transition between both intervals.  
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1. INTRODUCTION  

Computer networks can provide better quality of 

service (QoS) when upcoming network traffic patterns 

are known.  Many of today’s real time applications, such 

as teleconferencing, Video on Demand (VOD), Voice 

over IP (VOIP), and others similar rely heavily on the 

quality of the network connection. Such real-time 

applications will certainly benefit from knowing the 

traffic condition ahead of time. For example, a system 

can be better prepared to anticipate upcoming traffic by 

adjusting the playout mechanism in VOIP or by seeking a 

new alternative path to support the minimum required 

bandwidth.  

Many studies have been done to measure and predict 

traffic patterns on the Internet that show the presence of 

fractal or self-similar properties. [1,2,3,4] Network traffic 

can be illustrated on many scales using the notation of 

self-similarity. Self-similarity means that the statistical 

patterns may appear similar at different time scales, 

which can vary by many orders of magnitude. In the 

other words, self-similarity is a fractal property of traffic 

patterns in which appearances are unchanged regardless 

of the scale at which they are viewed; this ranges from 

milliseconds to minutes or even hours. There are a 

number of models that are used to describe bursty data 

stream in the Internet such as the Pareto distribution 

model or Poisson distribution related-models (for 

example Poisson-batch, Markov-modulated Poisson, 

packet train models, Markovian Input model, or a fluid 

flow model).  

Based on a statistical description of traffic illustrated 

by Pareto and Poisson (Exponential) distribution models, 

we can compute the probability of bursty data stream 

occurring at the next interval of time T or when a 

particular packet burst will end. The idea is to evaluate 

whether the next arriving packet comes in a burst by 

analyzing the probability of the transition from burst to 

non-burst and non-burst to burst. However, predicting the 

arrival of future packets does not tell us whether packets 

come in large or small bursts.  

There are other researchers who take advantage of self-

similar traffic patterns. Self-similar traffic is also used to 

predict future events on the Internet and to improve 

network performance. In [6] the author proposed a new 

algorithm for predicting audio packet playout delay for 

VOIP conferencing applications. And the proposed 

algorithm uses hidden Markov model to predict the 

playout delay. Similarly, in [5], a study was done using a 

Markovian distribution model to predict queuing 

behavior with self-similar input.   

As stated previously, the objective of this study is to 

present a statistical method to predict when the next burst 

in network traffic occurs and when it ends based on the 

transition from burst to long silence, and vice versa. We 

also compare the outcome of self-similar input between 

Pareto and Poisson distributions. However, Poisson 

distribution may not represent the real Internet traffic 
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because the packet arrivals time are not exponentially 

distributed [7]. The models for network traffic essentially 

become uniform. Hence most experiments in this paper 

use Pareto distribution, and Poisson distribution is only 

used for as a comparison purpose. Through our simulation 

on Internet traffic pattern by using traffic models with a 

self-similar characteristic, we demonstrate that the 

probability of transition from between slow and fast 

intervals packet arrival is almost constant.   
 

2. SELF-SIMILARITY AND HEAVY TAIL 

In a self-similar time property [1,8], given a stationary 

time series  , we have   

 ( )  (            )  

with parameter H (0.5). Define m aggregated series  

   (  
           ) 

by adding all the series of   over non overlapping block 

of size    , such that  

  
  

 

 [                     ]
   

Then   is self-similar when   has the same 

autocorrelation function  ( ) , which is defined as 

follows. 

 ( )   [    ] (      ]  

as the series  X
(m)  

for all m. [7] In the Poisson 

distribution series models, the network traffic become 

uniform when aggregated by a factor of 1000.  

The distribution that is used in this paper has the 

property of being heavy-tailed. A distribution is a heavy 

tailed if  

 [   ]                    

Where X is a random variable and α is a shape parameter. 

The distribution has infinite variance when α is less than 

2. The simplest heavy-tailed distribution is Pareto 

distribution. The distribution is hyperbolic over its entire 

range. We write the density function as 

 ( )                         

and its cumulative distribution function is 

 ( )   [   ]    (
 

 
)
 

   

The parameter k represents the smallest value of the 

random variable. When α ≤ 2, then the distribution has 

infinite variance and if α ≤ 1 then distribution has infinite 

mean. Thus, as α value decreases, the probability density 

is present in the tail of the distribution.  The closer α 

parameter is to 1, the shorter the generated burst; closer α 

parameter to 2, then the larger the generated burst in the 

simulation. 

3. TRANSITION BETWEEN INTERVALS  

Initially packets arrive at different time. They may 
arrive in a burst or be delivered after a long silence 
between bursts. For example, n number of packets may 
arrive in x milliseconds or there is x milliseconds of 
silence between the arrival of two packets. This study 
shows that when packets come in bursts, it is very likely 
that the next packet to arrive will in also be as part of the 
burst. Also, the next packet that arrives after some number 
of packets that arrive with long silence in between is more 
likely come in a burst. 

Packets are clustered according to the time difference 

of their arrival time and a constant Γ (Tau) where Γ is 

range from 1 to 100 milliseconds. If the time difference is 

less than or equal to Γ then the cluster is called fast 

interval and when the time difference is greater than Γ 

then the cluster is revered as slow interval as it is shown 

in figure 1. For instance, packet one arrives at time 0, 

packet two arrives at time 1, packet three arrives at time 

5, and Γ is 2. If the arrival time difference between 

packet one and packet two is exactly 1 and it is less than 

the Γ value, than packet one and two are clustered in the 

fast intervals category. On the other hand, if the arrival 

time difference between packet two and three is larger 

then Γ, hence packet three is considered to be a slow 

interval. Moreover, think of Γ as a constant timeout value 

or a restriction that packet has to arrive at a certain time 

after the last arriving packet. For example, Γ = 4 and the 

last packet arrives at time 3, then the next packet hast to 

arrive before or at time 7. 

 

Figure. 1. A Graph of arrival packets at time tn , n = {1, 2, 3,…..n}. 

The starting point of computing whether the next 

arrival packet is bursty or non-bursty is to gather data 

about the packets’ arrival time. Network traffic input is 

obtained through Pareto Distribution with the restriction 

1 < α < 2 in order to obtain the long-range dependence. Γ 

is used to control the size of fast interval and slow 

interval. To compute the total number of packets in the 

interval (whether fast or slow), calculate the probability 

of the possible type of the next incoming packet whether 

it belongs to fast of slow interval. Given that           , 
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the probability of   [ ]      and  [ ]     are defined as 

followed. 

 [ ]     
 

  ∑                 
  

and 

 [ ]            
 

  ∑                 
   

Then, the probability of average packet with slow and fast 

arrival is defined as follows. 

                   ∑ [ ]             
 

   

                   ∑ [ ]            
 

   

where    {         } and  [ ] is the probability that the 

next packet arrival time is greater or less than   and  TP 

is the total number of packets that are in the interval. 

Next, we summarize the probability of the transition of 

the entire transaction up to time t by computing the 

average of the probability. 

 

4. ANALYST AND SIMULATION 

Our study shows that the average probabilities of the 

transition from slow interval to fast intervals form a 

hyperbolic curve. Similarly, the probability of the 

transition from fast intervals to slow intervals form a 

parabolic curve regardless the value of α parameter. As 

they are shown in the figure 2 (a, b, and c), where Γ = {1, 

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 

81, 86, 91, 96, 101}. 

  

 

 

       

 

Figure. 2. Probabilities of fast and slow interval. 

 

According to the graphs above, there is approximately 

a 35 percent chance that the next arrival packet will 

transition from slow to fast interval (packet arrives after 

  is expired or the transition from fast to slow interval) 

for most   values. On the other hand, the probability of a 

packet arrives before Γ (the transition from slow to fast 

interval) strictly depends on the value of  . 

With smaller value of Γ, it is more likely that the 

probability of the transition from fast interval to slow 

interval will fall between 30 to 40 percent because of the 

small number of packet in fast interval. However, as Γ 

value grows, the probability becomes smaller regardless 

the value of α.  On the other hand, the probability of the 

transition from slow interval to fast interval will be closer 

to 40 percent when the value of Γ is higher.  

In a number of the experimental scenarios regardless of 

the value of      the number of packets in fast intervals 

is always larger than the number of packets in slow 

intervals. It shows that the Pareto distribution generates 

more packets with small intervals between packets’ 

arrivals time. For example, two experiment scenarios 

with two different   values, two different distinct average 

of interval between packets’ arrival time, and different α 

values, but the probability of the transition from slow to 

fast interval is almost constant, about 30 to 35 percent. In 

contrast, the probability of the transition from fast to slow 

interval gradually drops to less than 10 percent because 

the higher value of   . That means every increase of   

value that there will be more packets in fast intervals and 

less number of slow intervals. The reason of the stable 

value of the probability for the transition from slow to 

fast intervals is that Pareto generates a cluster of two or 

three packets with long interval in between, and the 

clusters are well distributed in the distribution. In 

addition to that, the silence can be very lengthy hence 

there is always slow interval in the distribution even 

though the   value is significantly greater than the 

average interval time between arrival packets. 
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In addition to Pareto experiment, we also experimented 

with Poisson distributions. The outcome was that the 

probability of transition from fast to slow interval and 

from slow to fast intervals are almost the same, as long as  

  

 
       

where    is the average difference of the packet arrival 

time.  

5. CONCLUSION 

In this study, we have demonstrated that Pareto model 

has the tendency to generate more packets with a small 

interval of packet arrival time. Additionally, we also 

show that higher   value leads to a higher number of 

packets in fast interval than slow interval. This study 

provides us with a better understanding on what should 

be the acceptable packet rate in order to provide a better 

prediction or a define more precise  . Currently, the   

value, which is used for experiment, is variable and is 

likely to exceed the actual   for some value of   .  The 

experiment shows that the probability of transition from 

slow to fast interval is almost constant because Pareto 

distribution often generates a cluster of two or three 

packet with long silence in between. The question is 

whether this circumstance also occurs at the actual the 

Internet traffic, which would be featured in our future 

work.  

Furthermore, in our future study, we would also 

consider the case where there are more than one   value 

to separate packets that arrive on time, in burst, or late 

(due to the network traffic), and analyze the probability 

of the next packet arrival in any of those categories. 

Furthermore, we would like to include self-similarity 

study with other “real world” problem such as peer to 

peer, online-gaming problem, multicasting, multimedia 

network, etc. Also, we would like to analyze that our 

studies is applicable to the “real world” networking 

problem. 

Understanding traffic patterns and being able to predict 

the future of the traffic will patterns help systems provide 

better quality of service or make better decision selecting 

connection path.  
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Graphic Transition Chart from Fast Interval to Slow Interval. 
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Graphic transition chart from slow interval to fast interval. 
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Graphic Number of Packet in slow interval. 

 

 

 

Graphic Number of Packet in fast interval. 
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