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ABSTRACT

In the present paper, literal analytical solutions in recurrent power series forms are developed
Jor the plane motion in an axisymmelric potential to study the applicability of the third integral
of motion. For the computational developments of these solutions, efficient method using
continued fraction theory together with the device of inferval division ave provided. Moreover
some numerical and graphical illustrations are also given. It was found that, the third integral of
motion exists for only a limited range of initial conditions. But it may exist whatever the time
interval may be, if it’s initial value £(0,0.12) .
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INTRODUCTION

The plane motion in an axisymmetric potential is vital to galactic dynamics, especially for
flattened galactic systems, upon such potential the forces and the stars orbits in these systems
could be determined (Binney and Tremain 1987). These latter results are extremely important in
galactic studies, one of their most explored aspects is the problem of correlation between the
parameters of the orbit of a star and its physical properties. Moreover, the motion of an
individual star is subject to physical laws of invariance or, to use mathematical name, integrals
of motion. Two of these conservation laws have been known for long time: conservation of
energy and of angular momentum. For long time these two were thought to be the only two.
However, certain aspects of individual orbits point at the existence of a third integral of the
mechanical properties of the galactic orbits.

The existence of the third integral of motion was usually investigated using numerical schemes.
A pioneer paper in this respect was published by He'non and Heiles in1964, (hereafter will be
referred to as Paper ), where they carried out the orbit determination numerically using Adams
and Runge- Kutta methods.

Undoubtedly, true that, the numerical integration methods can provide very accurate models. But
certainly, if full analytical formulae are utilized with nowadays existing symbols used for
manipulating digital computer programs, they definitely become invaluable for obtaining models
with desired accuracy. Morcover, these analytical formulae usually offer much deeper insight into the
nature of a model as compared to numerical integration.

Indeed, in the absence of closed analytical solution of a given differential system, the power
series solution (which of course assumed to be convergent) can serve as the analytical
representation of its solution. Moreover, it is worth noting that the power series is one of the
most powerful methods of mathematical analysis and is no less {(and some — times even more)
convenient than the elementary functions especially when the problems are to be studied on
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computers. In fact, most computers often use series in the calculations of the majority of the
elementary functions.

Due to the importance of the plane motion in an axisymmetric potential as mentioned briefly in
providing some basic material in studying the existence of the third integral of motion and, on
the other hand the importance role of the analytical solution to a problem, the present work is
devoted.

In the present paper, literal analytical solutions in recurrent power series forms are developed for
the plane motion in an axisymmetric potential to study the applicability of the third integral of
motion. For the computational developments of these solutions, efficient method using continued
fraction theory together with the device of interval division are provided. Moreover some
numerical and graphical illustrations are also given. It was found that, the third integral of
motion exists for only a limited range of initial conditions. But it may exist whatever the time
interval may be, if it's initial valueg(0,0.12).

BASIC EQUATIONS
The Equations of motion of a particle in the plane (x, y) in an arbitrary potential Ufx, y} are:

v UL I (1)
ox oy

where 'dot’ denotes the differentiation with respect to the time 7.
For the present study, the potential 7 given in Paper | will be used, where

| 2
H(x,y)=5(x2 +y° +2x2y—§y') (2)
because: (1) it is analytically simple; this makes the orbit determination of the trajectory easy; (2)
at the same time it is sufficiently complicated to give the trajectories which are far from trivial,
as already shown in Paper . It seems probable that the above potential is a typical representative

of the general case, and nothing would be fundamentally changed by addition of higher-order
terms.

The equations of motion in the potential H are therefore given as:
X=-x-2xy (3)

J=—y—xt )y’ (4)
Multiplying Equation (3) by x and Equation (4} by y and then adding, we obtain
;[x2+y2+i2+y2]+x2y;y3:h, (5)

where /£ 1s a constant, so the system of Equations (3) and (4) is a conservative system having the
integral of Equation (5)

Let
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W =5, Y, =X, ¥ =, Yi=Y
Then the system of Equations (3) and (4) and the integral (5) become
V=Y,

Vo ==V 20,

(6)
Vi =Y,
Vi ==V _y|2 +y32
where
l[ 2 2 2 2] 2 71 g 7
N ORPERR I Tl LD e (7
The system of Equations {6} is to be solved subject (say) to the initial conditions
at 1 =t,, y=a ¥, =b, Y3 =0 yy=d (8)

ANALYTICAL SOLUTION
As we mentioned above, in the absence of closed analytical solution of a given differential
system the power series solution can serve as the analytical representation of its solution.

The power series solution of the above system could be obtained by assuming the power series
for the variables as:

5= DA )" ©)
v, = iBn(f—IU)”‘ (10)
Vs = HKZ;C,I(t—tU)”1 (11)
Yy = gDn(ito)”" (12)

Substituting Equations (9), (10), (11) and (12) into Equations (6) then equating the coefficients
of equal powers of (¢ —#,) in both sides of the resulting equations we get the recursion equations

nAiHl :Bn (13)

fl BrH—] = _An - 2ZAJ"CW—_;‘+] (14)
I

aC. D, (15)
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D, =-C, ZAJ.AWH + Zc_,cu,ﬁ, (16)

From Equations (8), (9, (10), (11) and (12) we get

A =a, B, =bh, C, =c D, =d (17)

Equations (13), (14), (15) and (16) are applied V n=23,...,n,, where #n, is the number of terms

of the power series, It should also be noted that, if these equations are used in the same order as
they stand, then all the coetficients of the power series are completely determined in a full
recursive way.

Because of space limitations, only the first ten of A's,B's,C's and D's coefficients are listed in
Appendix A.

COMPUTATIONAL DEVELOPMENTS
In fact, continued fraction expansions are, generally far more efficient tools for evaluating the
classical functions than the more familiar infinite power series. Their convergence 1s typically
faster and more extensive than the series. Due to the importance of accurate evaluations and the
efficiency of continued fractions, T purpose to use them as the computational tools for evaluating
the components of the position and velocity vectors randr. To do so, two steps are to be
performed:

1. Transform the given power series into continued fraction,

2. Evaluating the resulting continued fraction.

EULER’S TRANSFORMATION
Generally an infinite series (a power series is special case of it) of functions could be converted
into a continued fraction according to Eulers transformation (Battin 1999) which is:

iU _ m, oon B, nyon
k=0 K:d]Jr 1, :d]+d2+d3+d4+
d, + e
d3+n_4
where

m=U,;n,=U;n=-U_xU_,Viz3

i=3°
d=1;d =U,,+U, Vi>2,

TOP-DOWN CONTINUED FRACTTON EVALUATION

There are several methods available for the evaluation of continued fraction. Traditionally, the
fraction was cither computed from the bottom up, or the numerator and denominator of the nth
convergent were accumulated separately with three-term recurrence formulae. The draw back of
the first method, obviously, has to decide far down the fraction to being in order to ensure
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convergence. The draw back to the second method is that the numerator and denominator rapidly
overflow numerically even though their ratio tends to a well defined limit. Thus, it is clear that
an algorithm that works from top down while avoiding numerical difficulties would be ideal
from a programming standpoint.

Gautschi, (1967) proposed very concise algorithm to evaluate continued fraction from the top
down and may be summarized as follows, It the continued fraction is written as:
n,on, n

B d+ d,+ d,+

q

then initialize the following parameters
a =1, b=n/d , g =n/d,

and iterate (k=1,2,...) according to
1

dp ) =

H
1+¢ak

dl‘cdkH
by = (a, — )b,

Gy =G + by
In the limit, the q sequence converges to the value of the continued fraction

UTILIZATIONS
When the time interval (£ —¢,) is sufficiently large, we may (as usually done for all initial valuc

problems) divide this intcrval into somc intervals cach of short length c.g. the interval [7—1¢,]
may be divided into ¢ intervals [# —¢,1.[¢#, —¢],...[t —¢,_ ], such that 1 —¢ , <¢—1¢,. Then
solve the initial value problem for the first interval to find the solution at the time ¢,. The

solution at #, could then be used as the initial conditions for the second interval and so on. By

this artifice one needs small numbers of the coefficients for the power series representation in
each interval. So that the number of coefficients listed in Appendix A are very sufficient to

predict the motion in the interval (r—z,).

NUMERICAL EXPERIMENTS
Since an integral of motion should be a constant during the motion, so we can adopt for the
existence of the third integral of motion # (Equation (5) or (7)) the criterion that:

Ah=lh—h,|<e (18)

where / is value of the integral at the time ¢ while %, its value at the time 7, and ¢ is a given
tolerance, so using Equation (8), we then get:

hn%(aﬂ+i)2+c"+a’2)+a2c—éc3 (19)
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By using for & the value 107 many experiments are performed of them are the following;
I. The third integral of motion cxists (in the sensc of the eriterion mentioned above) for
some initial values, of these are those listed in Table 1.

Table 1. Some acceptable mnitial values for the existence of the third integral
of motion and the values of ¢,, ¢, Al

a b C fr b t AR

0.5 0.9 07 0.9 0 5 510703 10"
0.2 19 07 0.6 ] 1 1 61648%10"
0.4 0.7 0.3 06 2 5 2.44299: 10"
07 ! 05 -09 1] 2 3.33622=10°
10 1.1 10 11 0 2 1 AERTE 10"

2. Some times the third integral exist for subinterval of [z —1,] and does not exist for the
remaining of the interval, for example:a =0.6,6=0.3,c=0.6,d =0.4,¢{, =0,t =15,
the intcgral cxist up to /= 9.35 with Ak = (10™), then Ak incrcascs very rapidly to the
value of 0.325184 at ~=10.8 and then continually increase to = o,

3. The most important results are that, the third integral of motion may exist for all values of
0 < h, <0.12 whatever the interval of time may be. Typical example of this case is:

a=0.06,6=0.03, ¢=006,d=0.04, 1, =0,1=70 with/,=0.004994. Graphical
representation of this case is shown in Figure 1 (the time axis is #x20).

U 0 A

Ul
{

il
w
I
Figurel. Typical behavior for the case in whichO <h, <0.12

i

4. The graphical representations for the solutions y;j=12,3,4, for the first case of Table
1 are illustrated in Figure 2.



Sharaf. M. A., Journal of the Association of Avab Universities for Basic and Applied Sciences, Vol 3, 2007, 1-15

Figure 2. The solutions y ;7 =1,2,3,4 for the first case of Table 1

5. The polar plot for a typical case of 0 <h, <0.12 are given in Figures 3-6.
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Figure 3. Polar plot of y, (= x) for a typical case in which0 <h, < 0.12
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Figure 4. Polar plot of y, (= X) for a typical case in which0O <h, <0.12
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Figure 5. Polar plot of y,(= y) for a typical case in which( <h, <0.12
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Figure 6: Polar plot of y,(= v) for a typical case in which0 <h, <0.12

CONCLUSIONS

The components of both the position and the velocity vectors rand ¢ are obtained as recurrent
power series in time. Consequently, we can predict their values and hence their behavior at any
time ¢ (say) very simply and efficiently by using the continued fraction theory together with the
device of interval division as mentioned above. On the other hand, the solution of the differential
Equations (3) and (4) (or the system of Equation (6)) by numerical integration give us the
components of both the position and the velocity vectors at definite values of ¢, according to the
step size Af, so if we need any of the components of randfat ¢ =7+ Ar we must apply an
interpolation formula. A process which needs more execution time. Moreover, which is the
critical, the loss of accuracy that may arises due to the usage of the interpolation.

The analytical power series formulae for the determination of randr are invariant under
many operations, because addition, multiplication, exponentiation, rising to power,
differentiation, integration, etc. of a power series is also a power series. A fact which provides
excellent flexibility in dealing with the analytical as well as the computational developments of
problems rtelated to the behavior of dynamical systems. On the other hand the numerical
integration methods can not, by any way, provide such flexibility. Moreover, analytical solution
of a problem usually offers much deeper insight into its nature.

The number of terms in the power series representations of the components of both the position
and the velocity vectors randr can usually made small by means of the process of interval
division as mentioned above.
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Finally it was found that, the third integral of motion exists for only a limited range of initial
conditions. But it may exist whatever the time interval may be, 1f'1t's initial value £(0,0.12) .
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Appendix A: Symbolic expressions of some of the A’s,B’s,C’s and D’s coefficients

1
A3=[-— (a (2:-1-1)}]
2
1
A, = E (—Ecb—b—.‘Zad)]

1
As=(—-— (2a*+2c?a+6ca+a-4bd)
24

1

Aﬁz[— (b(10a2-2c2+10c+1}+2a(ec+5}d)]
120

By =

[i (-4 (8c+5) a’+ (16c®-20c?-22¢c+20b%+12d°-1) a+4b (2c+5)d
720

1
= 20b° -
Be = Soa0 |

(-24c®+8c?+42¢c-20d°+8a% (23c+15) +1)b-14a (4a2-4c’+8c+3)

1
40320 ( )
392bda’+ (8c?-176c*+162c? + 712d° c+ B6c-132d

_4b? (122c+75) +1) a+84b (2c°-2¢c-1) d)

Ry = 56a”+2 (128 c” +296 ¢ +81) a° -

1
362880
(-4 (122 c +75) b -1272adb” + (672a" + 6 (360 c? + 752 c +195) a%? + 176 c*
_512c®+246c? -300d2+34c (124°+5)+1) b+
2ad (-80c*-384c’+462c+36d° +48a° (12c+13) +85))

Bjg =
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Appendix A(Continued)

Bi=b

Bz=(-(a(l+2¢)))

b
Bis = [*? -bec-ad

1
B,;:[_ (a+2a3+6ac+2ac2-4bd)]
6

1
[.— (b(1+10a2+10c-2c2)+2a(5+6c)d}]
24
1
Beg= | ——
¢ [120
(-4a° {S-o-Ec)+4b(5+2c)d+a{-1+20b2—22c—20c2+16c3+12d2))
1 3 2 2
BT:{-— (20b*-14a (3+4a“+8c-4ec7)d-
720
b(l+d42c+8c?-24c®+8a’ (15+23¢c) -204d7%))
1

5040
a(l+86c+162c%-176c +8ct - 4b? (75 +122¢c) -132d° + 712 e &%) )

(56a°+2a’ (81 +296c+128¢c%) -392a’bd+84b (-1-2c+2¢c%) d+

Bg =

1
By = (-4b3 (75+122c) - 1272ab®d +
40320

2ad (85+462c-384c2-80c+48a” (13+12c) +364d%) +
b (1+672a%+246c?-512c>+176c" +
6a? (195+ 752 c + 360 c?) -300d% +34 ¢ (5+12d%)))

Big = ; (-192a° (10 +13¢c) +24a’b (475+502¢c) d+
362880

4bd (85 - 440b” + 504 c - 930 c? + 340 ¢® + 120 4d°) +

4a® (-3354+990b? - 2256 ¢ - 2580 c? - 752 ¢® + 234 d%) +

a (-1+1712¢% +240c" -512c® + 24 b® (135 + 565 c +249 e®) +
1224d° - 20 ¢? (67 +544d%) - 6 ¢ (57 +2604d%)))
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Appendix A(Continued)

Cz=d

Cs= [i (-a%+ (-1 +¢c) c)]
2

C, = [% (-2ab+ (-1+2c) d)]

1
C5={— (—2b2+c—3cﬁ+2c3+ap’ (3+2¢) +2d2)]
24

ct—,:[—l— (2ab(5+sc}—2a2d+(1-10c+10c2)d)]
120

C1=[L (2a"-c+11c2-20c3+10::4+
720

2b% (5+6¢c) -a2 (11 +20c+36¢c%) +Babd-10d2+20cd2}]
1

5040
8a? (d+16cd) +d (-1+20b% + 42¢c - 120 c? + 80 c® +204%))

(-14ab(3+9c+ac2) -

Ca=

Cg =

(c—43c2+16203-200c4+80c=5+8a‘ (1+16¢c) -
40320

2b? (21+66c+46c”) -56ab (3+10c)d+42d°-300cd”+
300 c? @2 + a° {43-20b2+162c+575c2+16c3-1sad2})

Cio (48a3b(5+24c)+504a4d+632 (41+504c+3202}d

" 362880 )
-2ab (—85+20b2—4620-1128c2+30c3+468d ) +
d (1-170e+1170c? - 2000 ¢’ + 1000 c'-12b% (25+62¢) -3004% + 600cd
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Appendix A(Continued)

D, =d

Dj = (—az + (71 +G) C}

1
Dy = [—{ab} + [__é_ +G] d]

3‘-{ 2b2+c-3c?+2c’+a® {3+2r.:)+2d2)]
6

24
-1—(2a—c+11c -20c®+10c?*+2b% (5+6¢) -

[-1— (Zab(5+6¢c) -2a’d+ (1-10c+10c%) d}]
[120

a? (11 + 20 ¢ + 36 &) +Babd-10d2+200d2)]

1
n.i:[_ (-14ab (3+8c+8c?) -Ba® (d+16cd) +
720

d(—1+20h2+42c—120c2+30c3+20d2))]

Dg =

(074302+162c3—200c4+30c5’+3a4 (L+160) -
5040

2b? (21 + 66 ¢ + 46 c?) _56ab (3+10c)d+42d?-300cd®+
30002 a? +a? (43 -20b%+162c+576c” + 16 c® - 188d7))

(48a’b (5+24c) +504a’ d+6a” (41 +504c+32c%) d-

Da =
°~ “a0320

2ab (-85+20b%- 462 c - 1128 c® + 80 c” + 4684d%) +
d
(1-170c +1170 ¢® - 2000 c* + 1000 ¢ - 12 b? (25 + 62 c) - 300 d? + 600 cd?)

Do = _ (-504 a® - 40b" - c + 171 c” - 1340 ” + 3170 <! ~ 3000 &® + 1000 c® -
362880

6a’ (31+850c+332c}+5n40a 3pd+1008ab (2+15¢c+¢%) d
_ 170 d? + 3240 c @ - 8700 c* a2 + 5800 ¢* d? + 600d* -
2b2( 85 - 612 ¢ - 1350 ¢® + 452 ¢ + 840 d%) +
a? (-171 - 1340 ¢ - 8052 c” +
480 &® - 488 ¢ + 60b? (19 + 74 c) + 4860 d? + 456 cd”) )
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