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Abstract: The static and dynamic complexity of an industrial engineered system are integrated in a complexity space modelling 

approach, where information complexity boundaries expand over time and serve as an indicator for system instability in a static 

complexity space. In a first step, model-based static and dynamic conceptions of complexity are introduced and described. The 

necessary capabilities are theoretically demonstrated, alongside a set of assumptions concerning the behavior of industrial system 

complexity and its functions as a core foundation for the proposed complexity space model. In a second step, the successful application 

of the proposed modelling approach on a real-world industrial system is presented. Case study results are briefly presented and 

discussed as a first proof of concept for the general applicability of the proposed modelling approach for current and future industrial 

systems. In a final step a short research outlook is provided. 
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1. INTRODUCTION 

The internet of things (IoT) is a vast interdisciplinary 
field with many areas of contributing technologies. The 
application of IoT involves different factors like hardware, 
software, and humans acting under resource limitations 
(cost, complexity, energy sources and memory space 
available). IoT can be defined as a network of devices that 
interacts with the physical surroundings and which 
communicates over wireless networks in the contexts of 
value creation.[1] This means that the internet is expanded 
beyond traditional devices like smartphones, computers, or 
tablets. This leads to a situation where millions of devices 
are interconnected and generate and interchange data in 
unprecedented scale under the conception of Big Data. 
[2,3] The resulting IoT ecosystems are therefore highly 
information based and complex, with thousands or even 
millions of interconnected devices that generate, transfer, 
and transform high dimensional data sets between various 
system elements, ranging like sensors, advanced server 
architectures or cyber-physical production systems. This 
leads to systems being more interconnected, non-linear and 
as a result more complex for the linearly thinking human 

mind to comprehend and to predict and therefore at the 
same time cause and effect for its central characteristic of 
increasing system complexity.[4,5,6] The idea of the 
central importance of managing increasingly technologized 
and complex systems can be regarded as essential for 
handling the design and transformation process of modern 
complex engineered systems of organizational value 
creation. The integration of IoT to manufacturing systems, 
through the combination of operational technology with 
information technology, fits this definition, where IoT is 
expected to improve human life quality and economic 
productivity. IoT is giving rise to the industrial IoT (IIoT) 
concepts, advanced and complex machine-machine 
communication in the form of cyber-physical system 
architectures and Industry 4.0, with impactful application 
fields, like smart cities and smart factories or the 
agricultural, medical and logistics sector. [1,2,7,8,9]  

A. Motivation & Novelty

This paper contributes to the topic of complexity

modelling for industrial engineered systems by exploring 

the possibility to conceptually model the complexity of a 

system in a three-dimensional Euclidean space with the 
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means of a set of theoretical axiomatic assumptions 

concerning the definitions of static and dynamic 

complexity. The core motivation of the paper is to answer 

to the key-challenge of developing conceptual complexity 

models which can fulfill uncertainty-reducing, 

communicative or strategic purposes in the decision-

making process between different stakeholders (for 

example system engineer and manager) and which can 

serve as a first baseline to be developed to more 

determinate and executable simulation models in the 

future, for example through in-depth and specialized 

mathematical formalisms or coded computational methods 

like computer algorithms. [10,11] To achieve this, the 

paper theoretically and practically explores and proposes a 

novel conceptual approach to model and quantify the 

complexity of modern and future industrial systems in a 

way that supports the visualization and potentially 

simulation of the complexity of both the physical and the 

virtual system layers and their respective information flow 

in a generally applicable three-dimensional model. The 

proposed model is to be regarded as an early-stage artifact 

that integrates two different complexity dimensions, 

provides axiomatic requirements for more specialized, 

formal and mathematically operable models and which 

allows exploratory analysis (EA) of complex engineered 

systems. EA is focused on describing ranges of possible 

system development trajectories and extreme behavior 

patterns or drastic changes in the system while focusing on 

endogenous and system internal complexity dynamics. 

[10,12] To adhere to the concept of EA, the aim of this 

paper to introduce a perspective on complexity modelling 

that represents industrial system complexity through 

conceptions of static and dynamic complexity dimensions 

via an integrated, compounded state in a conceptual model, 

the concept of complexity space. The proposed model now 

aims to have the following functions: 

• Characterize the basic constituents and/or 

governing dynamics of industrial system 

complexity in a coherent framework via the 

introduction of complexity space. 

• Provide a coherent understanding of the 

dimensions and factors that unify the complexity 

of engineered systems. 

• Serve as an early-stage artifact component or 

starting point for more advanced modelling and 

simulation approaches for complex engineered 

systems. 

• Enable early-stage exploratory analysis (EA) for 

industrial system analysis.  

• Supporting the decision-making process between 

different system stakeholders through reducing 

uncertainty about the systems properties, for 

example in the strategic system management or 

design process of the system. 

      The proposed model and its assigned values and 

functions must also be understood as the intention to further 

improve and expand on the work on complexity space 

modelling, strategic complexity management and 

complexity theory for industrial engineered systems by 

Freund, Al-Majeed & Millard. [6,13,14] The paper now 

follows the following core steps: (i) introduction of the 

applied conception of complexity, (ii) description of the 

three-dimensional modelling approach, (iii) presentation 

and short discussion of a real-world case application, (iv) 

discussion and outlook on future research. 

2. APPLIED CONCPETION OF COMPLEXITY  

Complexity has many metrics, dimensions and 

definitions and has been defined as the measure of 

uncertainty or difficulty in achieving the functional 

requirements of a system within the ranges of its design. 

[11,13,14,15,16] Two conceptions of complexity shall be 

applied for the proposed modelling approach:  

 

• Static / structural complexity  

• Dynamic complexity  

 

Static or structural complexity shall be defined as how 

the industrial system is structured (e.g. number of 

processors/machines, machine connections and 

interconnections). Dynamic complexity is defined as a 

measure of the unpredictability in the behavior of the 

system over a time-period based on information entropy. 

A common example of dynamic complexity is any type of 

unwanted system behavior, like a machine breakdown. 

[14,15,16,17] Dynamic complexity is thus the core 

obstacle to achieving the systems target function. 

[13,14,15,16,17] Both types of complexity shall serve as 

the two foundational dimensions of the applied complexity 

Modelling approach. Both dimensions represent reliable 

measurement dimensions for complexity, for example 

Defense Advanced Research Projects Agency (DARPA) 

of the US Government expects complexity of next 

generation products to reach 1.0E+08, measured in parts 

and lines of code. [15] The notions of static and dynamic 

complexity make also visible that the presented model 

focuses on system intra-dependency, the internal 

complexity of the layout of the manufacturing system. For 

simplicity, the model does not regard stand-alone 

equipment complexity, environmental system complexity 

or any external factors that may impact system 

complexity. In the next section the applied definition of 

static industrial system complexity is now described.  

A. Static industrial system complexity  

    The concept of static industrial system complexity (SC) 
shall be defined by the static, time-independent 
architectural layout of a manufacturing process represented 
by machines /operations (m), their connections via links (l), 
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and their interconnectedness via gates (g) as shown by 
equation (1).  

SC={m,l,g}   (1) 

    This definition offers a more nuanced definition than just 
the often-used number of system parts as a starting point 
for system complexity Modelling. It must be mentioned at 
this point that the number of parts, connection and gates do 
represent a multi-dimensional quantity, as for example a 
machine may contain several subsystems. It is thus 
necessary to apply pre-defined levels of abstraction to 
allow system representation in the form of pre-set system 
boundaries and pre-defined system entities. 
[14,15,16,17,18,19,20]  

     These pre-set and pre-defined boundaries and entities 
shall be utilized as abstractions, to allow a formalized 
modelling of industrial manufacturing systems to narrow 
down on the issue on system complexity via a clearly 
defined set of parameters.[18,19,20] Any manufacturing 
system itself shall be regarded as a flux of material (input) 
going through a transformation process (adding 
information), consisting out of machines, links and gates, 
which then results in a flux of output materials (products) 
with a higher complexity.[18,19,20] This is illustrated by 
Figure 1. 

 

Figure 1: Manufacturing system  

In the context of industrial system complexity, the 
term machine (m) shall be defined as a physical processor 
of information in the transformation process of a 
manufacturing system, an active element or artifact, that 
performs actions in the form of processing information via 
transformation of energy, material and information. An 
action is defined as a change in the state of the model, e.g. 
any action contained in the transformation process. 
Different processors can execute in parallel, and they 
proceed with the performance of actions independently or 
dependent of each other. This means that different 
processors can be active at the same time or can function in 
a sequential manner. A machine shall also be capable to 
function as an expanded processor. This means that a 
machine encompasses a given set of sub-processors in the 
form of operations. For example, a manufacturing machine 
could contain two sub-operations in the form of a 
packaging machine and a manual operator. [18,19] The 
term links (l) shall refer to interaction pathways between 
machines in the transformation process where information 
is passed from one machine to the other, for example in the 
form of materials over conveyor belts, intermediate 
products, or wireless data flows. It is thus modelled that 

material or immaterial objects can flow from one processor 
only if processors are connected via links. The term gate 
(g) shall refer to connection points where links connect 
machines within the system.  Gates specify interaction and 
decision-points between processors and thus define the 
modus operandi of how different processors interact with 
each other in a system, for example through digital 
interfaces, machine interfaces, manual quality tests, 
sensors, or others. [19,20] Consequently a gate transforms 
the information that is send by one processor to another via 
links, so that the receiving processor unit can process and 
transform the received information in a correct fashion.  

The conception of static complexity leads to the 
conclusion that the static and time-independent complexity 
(SC) of an industrial production system shall be reduced to, 
captured, and quantified by three dimensions:  

• Structural complexity (Cs): machine layout 

• Connectivity complexity (Cc): link layout 

• Interconnectivity complexity (Ci): gate layout 

Figure 2 illustrates the three dimensions by 
showcasing the block chart of a hypothetical production 
system (S1) based on the complexity dimensions machines, 
links and gates. 

 

Figure 2: Example manufacturing system  

Figure 2 shows, that S1 consists out of a machine 

layout with two machines, with m(1) and m(2), which are 

connected by a link layout with three links, with l(1)-l(3), 

and which interconnect with a gate layout of three gates, 

with g(1)-g(3).  

B. Complexity Space  

The modelling of the static complexity of a 

manufacturing system shall now be expressed by the 

theoretical three-dimensional compound state volume that 

results from the three dimensions combined, which shall 

be named complexity space of a system and is illustrated 

by Figure 3 and with the volume (VCspace) as illustrated in 

equation (2). 
VCspace = Cs x Cc x Ci  (2)                                   
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Figure 3: Complexity space 

     The theory of complexity space can now be applied as a 
foundational basis for system complexity Modelling and 
visualization of static industrial system complexity (SC) of 
a manufacturing system. Equation (3) reflects this.  

VCspace = SC  (3) 

    Equation (3) shows, that (VCspace) can now be utilized to 
represent the compound state of (SC) for this paper. In the 
next chapter, the three dimensions of (VCspace) are now 
described in detail.  

3. COMPLEXITY SPACE   

    The three dimensions (Cs, Cc, Ci) of complexity space 
(VCspace) are assumed to comprise the variables of the 
compound state of the complexity of the static structure of 
a modeled manufacturing system. The basic arrangements 
and relations between the individual system parts in the 
form of machines, gates and links and are now further 
described. The logarithm to the base of 2 is utilized to 
decrease the impact of higher numbers in the different 
dimensions and to allow a quantification in units of bits. 
[14,19,21] 

A. Structural Complexity 

(Cs) shall be defined by a systems structural, static 
layout of machineries (m). Consequently, (Cs) of an 
industrial production system is expected to be maximized 
if (m) is maximized, as shown in equation (4).  

Log2(m)=Csmax                     (4) 

Where m=number of machines and Cs=structural 
complexity of the system. 

B. Connectivity Complexity  

(Cc) shall be defined by a systems structural, static 
layout containing transfer links (l) between the system 
machinery layouts. Consequently, (Cc) of an industrial 
production system is expected to be maximized if (l) is 
maximized a shown in equation (5). 

Log2(l)=Ccmax    (5) 

Where l=number of links and Cc=connectivity complexity 
of the system.  

C. Interconnectivity Complexity  

(Ci) shall be defined by a systems structural, static 
layout of number of gates (g) connecting different transfer 
links to the system static structural machinery layout and 
types of gates, for example data or material gates. 
Consequently, (Ci) of a manufacturing system is expected 
to be maximized if (g) is maximized as shown in equation 
(6).  

Log2(g)=Cimax   (6) 

    Where g=number of gates and Ci=interconnectivity 
complexity of the system. 

    The definition of the complexity dimensions shows that 
the total volume of the complexity space (VCspace) of an 
industrial system can be maximized by maximizing each 
complexity dimension and is calculated in units of bits via 
the use of a base-2 logarithm to encode all static system 
states in information and to reduce the overall impact of 
larger dimension sizes on the overall complexity space 
volume. 

    (VCspace) can now be calculated based on Equation (2), 
(4), (5), (6) as a space of information in units of bits as 
shown in equation (7). 

VCspace = Log2(m) x Log2(l) x Log2(g) (7) 

    Where VCspace = complexity space volume of the system 
and Log2(m) = Cs, Log2(l)=Cc and Log2(g)=Ci. 

After introducing the concept of complexity space and 
complexity space volume as the metric for static system 
complexity in detail, the next section now describes the 
method of complexity space profiles. 

D. Complexity Space Profiles 

To illustrate and compare the extend of each 
complexity space dimension, the method of complexity 
space profile (CSP) shall be utilized. A CSP shall serve as 
a two-dimensional overview, a profile, of complexity space 
that allows to display and compare all relevant complexity 
space properties of a system. Figure 4 now provides an 
example CSP for a hypothetical system (S2) with the 
properties described in Equation (8).  

SC= {m=10, l=10, g=10}, with VCspace = 36,6   (8) 

Figure 5 provides an example CSP for a hypothetical 
system (S3) with the system properties shown in Equation 
(9). 

SC= {m=10, l=10, g=100}, with VCspace =73,3  (9) 

    Figure 4 now shows the CSP of S2. 
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Figure 4: CSP of S2  

 Figure 5 now shows the CSP of S3. 

 

Figure 5: CSP of S3 

Figure 8 and Figure 9 underline the functionality of 
complexity space and the resulting complexity space 
profiles, since the provided CSP of S2 and S3 allow the 
analysis of the distribution of SC and overall extent of 
complexity space volume in a manufacturing system and 
the comparison of SC between different systems. In the 
provided examples, the CSP make clearly visible that S2 
has an equal distribution of complexity space, while in S3 
the complexity dimension (Ci) is significantly larger than 
(Cs) and (Cc) leading to up the concept of complexity space 
bias (CSB). 

E. Complexity Space Bias 

    Complexity space profiles (CSP) allow to determine 

complexity space bias (CSB). In general, three types of 

CSB are theoretically possible.  

 

• Unbiased (O-CSB): All dimensions of a CSP are 

of equal size. 

• One-dimensional CSB (1D-CSB): One 

complexity dimension in a CSP is significantly 

enlarged.  

• Two-dimensional CBS (2D-CSB): Two 

complexity dimensions in a CSP are 

significantly enlarged. 

 

For example, the CSP displayed in Figure 4 can now be 
classified as 0-CSB, while Figure 5 displays CSP with a 
1D-CSB. 

After introducing and describing the method of CSP 
and the concept of CSB the next section now shows how 
different sub-systems of a system can be modelled via 
complexity space. 

F. Multiple System Levels in Complexity Space 

Figure 6 illustrate a multi-system-layer complexity 
space model by introducing a hypothetical layer of 
complexity spaces of a hypothetical automotive factory 
system (S1 contains S2, S2 contains S3) positioned in 
complexity space.) 

 

Figure 6: Example levels of a manufacturing system in complexity 

space 

    Based on the provided example it can be shown that 

multiple system levels of a manufacturing system can be 

captured and visualized in complexity space model at 

once, allowing the representation of different system 

layers in the model through the utilization of complexity 

space and CSP. Based on this notion it is now possible to 

introduce and integrate a dynamic complexity component 

to the model in the form of a definition of dynamic 

complexity. 

4. DYNAMIC COMPLEXITY  

A common dominator of dynamic complexity shall be 
introduced through the notion of system information 
entropy. The entropy of a system is in this context regarded 
as a measure of disorder in the system and fits the applied 
conception of Deshmukh, Talavage and Barash.[16] Based 
on this notion, a dynamic element of industrial system 
complexity in the form of information complexity and 
serves as an indicator for system instability when integrated 
in the complexity space model of a manufacturing system.  
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A. Properties of Dynamic Complexity  

Dynamic system complexity is associated with three 
main properties:  

• large quantity of information (Qi) 

• variety of information (Vi) 

• information content (Hi) 

These properties correspond dynamically and time-
dependent to the transformation efforts in a manufacturing 
system to achieve the high output complexity in 
correspondence to a given production goal within a given 
industrial system. [17,18,19] Consequently the dynamic 
system complexity in the form of information complexity 
(CN) is proposed to represent the quantity, variety and 
information content of information contained in a system 
at a given point in time. Equation (9) illustrates this.  

CN ={Qi,Vi,Hi}   (9) 

Where CN = Information complexity, Oi= information 
quantity, Vi= information variety and Hi= information 
content. 

B. Information Complexity as Machine Memory Space  

To allow practical application of the model, a given 
machine (m) in a manufacturing system shall be expected 
to utilize a given amount of information (N) to contribute 
to the transformation process of the system. To allow a 
more nuanced and practical definition of the term 
information it is possible to introduce the concept of 
machine memory space (mms).[21,22,23] As Figure 1 
already indicates, a machine (m) in an manufacturing  
system and the system itself shall be regarded as 
algorithms, a sequence of well-ordered instructions (input), 
that serve to solve a well-formulated problem (output) to 
obtain the overall goal of the system.[23] (mmssystem) now 
describes the total amount of memory space units and 
therefore the extent of the encoded information content 
(Hi), quantity (Qi) and variety (Vi) needed by the static 
layout of a system to produce the expected solution as an 
output in relation to its input instructions. Equation (10) 
illustrates this.  

mmssystem ={Qi,Vi,Hi}  (10) 

Where mmssystem= amount of system memory space, 
Oi= information quantity, Vi= information variety and Hi= 
information content. 

 For example, in the case of a linear programming 
problem this process shall be defined as the problem of 
either minimizing or maximizing a linear function subject 
to a finite set of linear constraints, for example with a 
simplex algorithm. [23,24,25] The total information 
complexity contained in a system (CN(T)) can now be 
calculated as shown in equation (10). 

Log2(mmssystem)= CN(T)  (10) 

Where mmssystem= amount of system memory space and 
CN(T)= total information complexity contained in a system. 

It can now be stated that a system must be regarded as 
non-complex if no or only minimal information is flowing, 
irrespective of the size of complexity space volume. It can 
now be stated that a system must be regarded as non-
complex if no or only minimal information is flowing, 
irrespective of the size of complexity space volume. 

C. Information Complexity within Complexity Space  

The introduced definition of information complexity 
can now be integrated in the concept of three-dimensional 
complexity space and shall be assumed to take the form of 
an information complexity sphere with a volume (VSphere) 
situated in (VCspace), with (VCspace)>(VSphere), ((VSphere), 
(VCspace))>0. To achieve this a hypothetical information 
complexity inception point (I(S)) is assumed to exist at the 
center of complexity space. From I(S) the total information 
complexity (CN(T)) is expected to expand in all directions 
into complexity space over time as the static layout of the 
system circulates, stores and generates information via 
machines, gates and links. For simplification, the volume 
of the information complexity shall be defined by the 
conception of information complexity as a spherical body 
that occupies complexity space, where (CN(T)) is regarded 
as the radius (r) of the information complexity sphere 
situated in the complexity space, as shown in equations 
(11) and (12) and illustrated in Figure 7. 

VSphere = 4/3 x π x CN(T)3   (11) 

VSphere = 4/3 x π x Log2(mmssystem
 )3  (12) 

 

Figure 7: Information complexity in complexity space 

D. Time-dependent Information Complexity Expansion 

    Based on the conception of industrial systems as 
algorithms it shall furthermore be assumed that the 
informational complexity of an industrial system increases 
over a timespan t0-tn when the input / output instructions 
of the system change over time and no mitigating or 
inhibiting regulations of the system are in place. 
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Figure 8: Expansion of information complexity in complexity space 

over time 

    Consequently, a manufacturing system that is expected 
to function under varying input / output instructions as an 
algorithm to meet changing system transformations can be 
expected to maximize the volume of its information 
complexity sphere over time. This is shown by Lehman´s 
Law of increasing complexity, which states that a systems 
complexity must increase over time if the system is not 
artificially regulated and by the laws of entropy in a system, 
exemplified in the second law of thermodynamics. 
[15,21,26,27] Information complexity thus suggests the 
expenditure until the boundary of the systems complexity 
space is reached over time. The application of Ashby´s Law 
of requisite variety, which states that a decrease of 
disturbance and outcome variety must always be 
accompanied by a proportional increase in regulation 
variety, allows to draw conclusions concerning an increase 
of regulation effort or hidden cost of the system over time 
in proportion to informational complexity. [28,29]   

E. System Distortion 

    The volume of the complexity space of a manufacturing 
system resulting from the dimensions (Cs), (Ci) and (Cc) 
predefines the theoretical limits for the expansion of (CN) 
and the maximum volume of the information complexity 
sphere. If expansion of (CN) is not inhibited, the radius of 
the information complexity sphere (rn) must reach the 
boundaries of one or more dimensions of the complexity 
space in a time (tn) and creates the distortion point D(S) in 
the given dimension, according to the CSB of the system. 
When D(S) is reached the system shall be in a distorted 
state, leading up maximum deviation of the system target 
function in the distorted dimension and information 
complexity is unable to expand further in this dimension. 
Distortion in a system shall thus be defined as the upper 
limit of useful system operational ability where the system 
behaviour becomes non-linear and potentially chaotic. 
Figure 9 illustrates this.  

    If complexity space bias is 0-CSB, as illustrated by the 
provided examples in Chapter 3, all dimensions of the 

complexity space are distorted at the same time and the 
same radius of (CN), leading up to simultaneous full system 
distortion in every dimension. If the complexity space is 
differently shaped, for examples box shaped in a 1D or 2D-
CSB case, thus when complexity space dimensions are of 
unequal size, a biased system distortion occurs. A system 
shall be defined as one-dimensionally distorted if D(S) is 
expected to be reached in one given dimension first. A 
system shall be defined as two-dimensionally distorted if 
D(S) is reached in two of three dimensions of the 
complexity space at the same time. A system shall be 
defined as unbiased if all dimensions are reached at the 
same time.  

 

Figure 9: System distortion point 

    Figure 10 now illustrates the expansion of information 
complexity in complexity space via a logistic growth 
function based on Equation (13).  

CN(T)(t) = CN0 x exp(kt) / (1+d/k x CN0 (exp(kt)-1)) (13)
  

    Where CN(T)(t) = amount of information complexity at 
a given point in time t, CN0 = amount of information 
complexity at t0, k=growth factor, d= degression factor.  

 

Figure 10: Logistic growth function of information complexity expansion 
in complexity space     
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 Based on Equation (13), Figure 10 shows that CN(T) is 
now expected to show logistic growth behaviour over time 
(t0-tn) in the boundaries of complexity space. While doing 
this, CN(T) is not only limited by the inherent degression 
factor of the function (d) but also by the volume of 
complexity space dimensions and the resulting complexity 
space bias of the system in which information complexity 
expands until the D(S), with VSphere (MAX), is reached  

    After introducing the most relevant functions of the 
proposed complexity space model, the next chapter now 
showcases and discusses the results of a first application of 
complexity space modelling on a real-world system in the 
European beauty & health industry to illustrate the 
applicability and limitations of the proposed modelling 
approach.  

5. CASE STUDY: COMPLEXITY SPACE MODEL OF 

A MANUAL ASSEMBLY LINE 

The structure of this chapter starts with the description 
of case and the chosen and applied case study research 
design and describes the operationalization of complexity 
space modelling of a real-world system. In a final step the 
results of the case study and their applicative value are 
discussed.  

A. Case Description  

The proposed complexity space modelling approach is 
applied on a manufacturing system of the type of manual 
assembly line at an international health & beauty 
manufacturer with the goal to establish a complexity space 
model of the system and to showcase the general 
functionality and applicability of the proposed modelling 
approach on real-world manufacturing systems. The 
analysed system comprises a linear assembly line of 4 
working stations manned with one worker each. It is 
necessary to acknowledge that the analysed system must be 
regarded as a stable, simple, non-problematic system at its 
core and therefore serves as demonstrative, illustrative 
purpose as a case study to establish a first proof of concept. 
Figure 11 illustrates the basic layout of the modeled 
system.  

 

Figure 11: Basic layout manual assembly line 

    Figure 11 shows that the modeled manufacturing 

system contains the assembly of two intermediate products 

which get assembled in a final product and are then 

packaged in a final step before getting shipped to the 

customer. 

B. Method: Document Analysis 

    To achieve system complexity modelling, the company 
provided documentation as the data basis for system 

modelling. 10 computer-based and internet-transmitted 
documents of various types collected in a database were 
individually reviewed by research team and used to 
generate a complexity space model of the analysed 
manufacturing system. The utilized documents for 
complexity space modelling encompass factory layouts, 
production schedules, cost calculations, maintenance 
reports as well as videos of the facility.  

C. Complexity Analysis  

    The conducted analysis of the case via the complexity 
space modelling approach is achieved through conducting 
four different steps which are defined in Table 1.  

Table 1: Complexity Analysis via Complexity Space Modelling 

Step of analysis Description 

1.Structural 
complexity analysis 

Establishment of complexity 
space model based on the three 
dimensions of structural 
complexity.  

2.Complexity Space 
Profile (CSP) & Bias 
(CSB) 

Interpretation of complexity 
space model through the means 
of the CSP and the resulting 
CSB. 

3.Dynamic 
complexity analysis 

Establishment of a conception 
of information complexity. 

4.Aggregated 
analysis 

Integration of structural and 
complexity analysis in one 
system model. 

    After showcasing the four different steps necessary to 
conduct complexity space modeling & analysis on the 
provided case, the next sections now show the application 
of the different steps. 

D. Structural Complexity Analysis: Complexity Space  

    Based on the analysed documents, the resulting 

properties of the modeled system are now defined by the 

complexity dimensions shown in Equation (14). 

 
SC= {m=4, l=5, g=8}, with VCspace =13,9 (14) 

    Equation (14) shows that the modelled system is 
characterized by 4 machines (m), 5 links (l) and 8 gates (g). 
Based on the Equations (4) - (7) this results in an overall 
complexity space volume VCspace =13,9.  

    Figure 12 now illustrates the resulting complexity space 
of the analysed system. 
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Figure 12: Complexity space model of assembly line 

     Figure 12 shows, that it is possible to construct a 
complexity space for the analysed system based on the 
calculations shown by Equations (4) – (7) and therefore to 
coherently allocate all dimensions of structural complexity 
of the analysed case in a model-coherent way via the 
compound state of complexity space.  

     In a next step the complexity space profile (CSP) and 
bias (CSB) are identified to allow interpretation of the 
established complexity space.  

E. System Complexity Space Profile & Bias  

Based on the propositions made in Chapter 3, the 
complexity space profile (CSP) and bias (CSB) of the 
modelled system is now illustrated in Figure 13.  

 

Figure 13: System Complexity Space Profile of manual assembly line 

Figure 13 shows that the modelled system can be 
categorized as a two-dimensional CSB (2D-CSB), with the 
strongest bias being interconnectivity complexity, the 
second strongest bias connectivity complexity. This 
indicates that the structural complexity has a major source 
in the interconnectivity of system parts and connectivity, 
thus in the arrangement of the gates and the layout of 
machinery. Based on Chapter 4, it can now be concluded 

that the arrangement of gates is to be expected to be the 
hypothetical main source of system distortion.  

F. Dynamic Complexity Analysis 

Due to the analysed system being a manual assembly 
line the information complexity (CN(T)) of the system is 
difficult to quantify in practice, since no dedicated 
machine-memory space is utilized to achieve the 
transformation process in the system even though the 
system itself can be described as a sequence of well-
ordered instructions (input), that serve to solve a well-
formulated problem to obtain the overall goal of the 
system. Consequently, information is flowing in the system 
in the physical form of materials and manual human labor. 
Based on Equation (9) 

CN ={Qi,Vi,Hi}   (9) 

It can be concluded through a qualitative assessment 
that the overall information quantity, variability, and 
content is non-complex, and that the system is undistorted 
by the degree of existing information complexity. The 
provided documents also show that sufficient controls are 
in place to keep the system running in a stable and reliable 
fashion and which inhibit information complexity 
expansion effectively.  

G. Aggregated Complexity Analysis 

When modelling this kind of information complexity in 
the established complexity space model for the case shown 
in Figure 12, the information complexity sphere (VSphere) 
can be expected to be non-distortive, leading to undistorted 
complexity space. Additionally, the expansion of the 
information complexity sphere can be expected to be 
minimal or even non-existent.  Based on this, Figure 14 
illustrates a hypothetical approximation of information 
complexity in the modelled complexity space of the case. 

 

Figure 14: Complexity space model of assembly line with information 

complexity approximation 
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     As stated in Chapter 4 it can now be determined that the 
analysed system must be regarded as non-complex since 
only minimal information is flowing, irrespective of the 
size of complexity space volume. 

H. Summary 

     The results of individual steps of the conducted case 
study analysis are now displayed in Table 2.  

Table 2: Complexity Analysis via Complexity Space Modelling 

Step of analysis Results 

Structural 
complexity analysis 

A complexity space with the 
properties:  

SC= {m=4, l=5, g=8}, with 
VCspace =13,9  

is established. 

Complexity Space 
Profile (CSP) & Bias 
(CSB) 

A two-dimensional CSB (2D-
CSB), with the strongest bias 
being interconnectivity 
complexity, the second 
strongest bias connectivity 
complexity is identified. 

Dynamic complexity 
analysis 

The overall information 
quantity, variability, and 
content show that the system is 
non-complex, and that the 
system is undistorted by the 
degree of existing information 
complexity. An approximation 
of information complexity is 
integrated into the established 
complexity space. 

Aggregated analysis The information complexity 
sphere (VSphere) is modeled to be 
inhibited and non-distortive, 
leading to undistorted 
complexity space. The 
expansion of the information 
complexity sphere can be 
expected to be minimal or even 
non-existent.  The analysed 
system represents a stable and 
functional system. 

    The results of the conducted case study are now 
discussed in the next section. 

I. Discussion  

The provided case study shows that the proposed 

complexity space modelling approach is generally 

applicable to the conceptual modelling of the complexity 

space of a real-world manufacturing system based on 

existing and partly standardized company documentation. 

Due to the analogue and non-complex nature of the 

analysed manual assembly line the extent of contained 

information complexity was only determinable in a 

qualitative way and got integrated into the established 

complexity space as an approximated information 

complexity sphere. This indicates the necessity for further 

case studies with fully digitized production systems. 

Nevertheless, the generated complexity space model of the 

system can be regarded as an adequate representation of 

the real-world systems structure, volatility, and 

performance reliability in terms of its complexity. Overall, 

the results allow the goal of early-stage exploratory 

analysis. 

J. Implications of Results: Applicative Value  

    The provided complexity space modelling case study 

application allows to draw the following first implications 

for the applicative value of the approach:  

 

• The model allows to characterize the basic 

constituents and/or governing dynamics of 

industrial system complexity in a coherent 

framework. 

• A coherent understanding of the dimensions and 

factors that unify the complexity of the analysed 

complex system is achieved. 

• The results can serve as a baseline component for 

more advanced modelling and simulation 

approaches for complex engineered systems  

• The model can support the reduction of 

uncertainty in the decision-making process 

between different system stakeholders. 

 

    The mentioned implications show that the proposed 

complexity space modelling approach achieves its primary 

goals of enabling early-stage exploratory system analysis 

while serving as a potential conceptual baseline for more 

advanced system models and simulation. 

6. CONCLUSION 

A complexity space modelling approach for industrial 
system complexity is introduced and aims to serve as a 
conceptual modelling approach with the primary function 
of early-stage exploratory system analysis and enabling 
more advanced modelling and simulation approaches. The 
model is based on the axiomatic conception of a three-
dimensional static complexity space in which 
informational complexity is modelled as a sphere that 
expands dynamically over time until expansion is limited 
by the boundaries of complexity space.  It can be concluded 
in the context of the model, that any engineered system 
maximizes information complexity over time and thus also 
maximizes entropy over time, making the system 
increasingly prone to error, hazardous and cost intensive 
over time, if the system information complexity expansion 
is not adequately artificially controlled via an external 
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control system of proportionate size and ability. Based on 
the provided case study application in the form of a 
complexity space model of a manual assembly line, it is 
shown that complexity space modelling can be generally 
applied to create conceptual models of the complexity of 
real-world industrial systems which can be used for more 
advanced modelling and simulation approaches. 

A. Research Outlook 

There are now many open directions for future work. 
Firstly, it would be interesting to further analyze the 
behavior of information growth in current and future IoT-
based industrial systems. Secondly, based on the case study 
applications, the model could be extended in a way that it 
would allow to derive analytic and strategic implications 
for decision-makers for system optimization, for example 
through the translation of the complexity space model into 
a complexity assessment matrix or risk assessment matrix. 
Finally, it would be interesting to study current real-world 
IIoT systems, like cyber-physical systems, through 
complexity space modelling in more detail. 
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