
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 11, No.1 (Jan-2022)

https://dx.doi.org/10.12785/ijcds/110148

Method of Adjacent Distance Array Outperforms
Conventional Huffman Codes to Decode Bengali

Transliterated Text Swiftly
Pranta Sarker1 and Mir Lutfur Rahman2

1Department of Computer Science and Engineering, North East University Bangladesh, Sylhet, Bangladesh
2Department of Computer Science, University of Hertfordshire, Hertfordshire, United Kingdom

Received 10 Jun. 2021, Revised 26 Nov. 2021, Accepted 4 Jan. 2022, Published 20 Jan. 2022

Abstract: This research works on high symbolic Bengali text and transforms it into corresponding less symbolic English complying
with the transliteration method. The Huffman-based approaches serve to compress retaining the original quality of the data. On the
other hand, faster encoding and decoding is the most sophisticated sphere in data compression. We propose an adjacent distance
array, a novel data structure based on the Huffman principle for encoding and decoding the character of transliterated text. The
encoding and decoding algorithms have been explained for the introduced modus operandi and juxtaposed with conventional
Huffman-based algorithms. Our research is outdoing than any regular Huffman-based algorithms, concentrating on the speed of the
encoding and decoding manner discovered after estimating all decisions.

Keywords: Huffman coding, Bengali transliterated text, Adjacent distance array, Data compression, Decoding time

1. Introduction
The consequence of compression data is to linger the

quality by lessening the original file’s size. However, that
compression might happen on either lossy or lossless [1].
Usually, the research area of data compression empha-
sizes lossless compression and its techniques, and the
Huffman principle [2] is considered an asset in this field.
The Huffman encoding or related arithmetic coding can
construct a lumpy frequency distribution, mainly relying
on the symbols’ neighboring context [3]. Another form
of compression algorithms is based on the dictionary [4].
These algorithms are in the form of Ziv-Lempel [5],
and they are capable of replacing a string to a first
appearance with a pointer of the identical string [6].
The compressions based on the dictionary technique are
now implementing new quaternary methods instead of
traditional binary codes [7]. At present, Huffman coding is
efficiently running on data mining [8] and wireless sensor
networks to compress data [9], [10].

Some word-based compression exploits each word
considering a basic unit [4]. Using Huffman coding, word-
based text compression has already raised a standard [11].
Many natural language text compressors used data com-
pression techniques for general purposes by performing
the character-level compression [12]. A natural language
might have either more symbols (such as Chinese, and
Bengali) or less symbols (such as Arabic, and English)
of the alphabet to represent. If we want a more symbolic
natural language in terms of a less symbolic one, the
occurred frequency of some symbols increases [3]. Thus,
we can get a peak compression ratio according to the

minimum redundancy-coding scheme of the Huffman
principle [2]. This research used to translate each alphabet
of a high emblematic language Bengali to English, which
is less symbolic of language. It availed the technique of
adjacent distance array with the Huffman principle on that
transliterated text to acquire a significant decoding time
while decoding process.

The rest of this research paper has been arranged into
several sections. The related works of our study are sum-
marized in Section 2. Section 3 described the objective
of our research. The details of our two desired languages
have presented in Section 4. The architecture for our
introduced system has been developed in Section 5. It
is analyzed and implemented in Section 6 and Section 7.
Finally, Section 9 concluded the research by discussing
all experimental data and their outcomes in Section 8.

2. RelatedWork
The research on Huffman-based data compression

began in 1952 when [2] introduced a Binary tree-based
variable code length. Under the scheme of minimum
redundancy code, that research produced a small code
word for the most occurred and the longest code word
for the minor occurrence of symbols with an individual
prefix for neglecting the ambiguity in the text. Later on,
many works have been done to improve space in Huff-
man decoding. Reference [13] presented a data structure
based on an array that requires 2n − 3 memory for a
Huffman tree, where n is the number of symbols. The
data structure is further updated and reduced memory to⌈

3n
2

⌉
+

⌈(
n
2

)
log n

⌉
+ 1 by [14]. Hashemian [15] introduced

E-mail address: psarker@neub.edu.bd, mirlutfur.rahman@gmail.com

http://journals.uob.edu.bh

596 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

ordering and clustering way to diminish the extra memory
requirement from O

(
(n+d)

⌈
log 2n

⌉)
to O

(
2d

⌈
log 2n

⌉)
bits.

For the single side grown Huffman tree, the research
gained O(d) decoding time to remove the effect of spar-
sity. Lin and Chung [16] were later able to improve an
ample memory less than [15]. Reference [17] got an
astral memory reduced to

⌈
3n
2

⌉
by introducing the leaf

of circular nodes concept to define a Huffman tree. The
ternary Huffman tree presented to enhance the searching
process to find a symbol on the tree also alleviates the
space [18].

There has been a plethora of research that emphasized
the decoding performance of Huffman coding. Refer-
ence [19] implemented a recursive Huffman tree that
found the decoding competence by decoding more than
one symbol at a time for some small size blocks. Ref-
erence [20] provided a quaternary Huffman tree method
expressed by 00 (left-branch), 01 (left-mid), 10 (right-
mid), and 11 (right-branch) instead of a traditional binary
tree that has 0 and 1 for both left or right child or
branch. It can generate an optimum codeword so the
tree can follow the 2-bit process that helps to perform
the decoding on O(log4 n) in the opposite of O(log2 n)
for traditional binary Huffman. Habib et al., [21] further
upgraded their research and proposed Octanary (tribit-
based) and Hexanary (quadbit-based) approaches that
outperform both encoding and decoding time for some
existing methods Zopfli and quaternary.

The research history of Bengali data compression is
still not rich enough. One of the Bengali corpus, Ekushe-
Khul, was considered by [22] to perform compression
with the Type to Token Ratio and Compression Ratio
concept for all large and mid-length lists. Implementing
a static compression method [23] kept the Bengali short
text message system stability between decoding time and
compression for the devices with low processing power
and storage. The first traditional Huffman-based translit-
eration approach has presented by [3]. They have taken a
Bengali text, a more symbolic language transformed into
English, a less emblematic of natural language, and ap-
plied traditional Huffman to get an optimum compression
ratio for the Bengali text.

Furthermore, they increased the compression perfor-
mance complying with the same method [4]. The adjacent
distance array based on the Huffman technique was
first applied to English text and attained an outstanding
decoding time prospect performance [1]. Only for the
compression purpose, they introduce the system of the
adjacent distance array for the transliterated Bengali text
afterward [24].

3. Research Objective
The fundamental goal of our research is to translate

a more symbolic language into a less symbolic one,
which is known as the transliteration process. Then we
have performed the encoding and decoding process with
Huffman-based novel modus operandi of the adjacent
distance array on that transliterated text. We concentrated
on the compression-decompression time that attained sig-
nificantly compared to various and usual Huffman-based

algorithms for the transliterated text. The alphabet of a
natural language which is high and low symbolic, we have
taken our consideration as follows —

• Bengali —as a language of more symbolic, and

• English —as a language of less symbolic.

4. Language Interpretation
A. Representation of Bengali Alphabet

The language of Bengali has a proud history. The
only language in the world for which people had to give
their life in 1952. The writing structure for the Bengali
characters can be [3], [4]:

• বাংলা িলিপ (Bangla lipi), and

• বাংলা হরফ (Bangla horof)

The vowels (e.g., অ, আ, ই, ঈ, উ, ঊ, ঋ, এ, ঐ, ও,
ঔ) of the Bengali language are known as “shorborno”,
comprised of 11 characters. The consonants (e.g., ক, খ,
গ, ঘ, ঙ, চ, ছ, জ, ঝ, ঞ, ট, ঠ, ড, ঢ, ণ, ত, থ, দ, ধ, ন, প, ফ,
ব, ভ, ম, য, র, ল, শ, ষ, স, হ, ড়, ঢ়, য়, ৎ, ◌ং, ◌ঃ, ◌ঁ) are called
“byanjonborno”, which consists of 39 characters. Besides,
the Bengali alphabet has modifiers for ten vowels (e.g.,
◌া, ি◌, ◌ী, ◌ু, ◌ূ, ◌ৃ, ে◌, ৈ◌, ে◌া, ে◌ৗ) and five consonants
(e.g., ব-ব ফলা, -য ফলা, -র ফলা, -েরফ, -হসন্ত) that call
“kar” and “fola”, respectively. In the Bengali language,
there also has some conjunct or joint symbols (e.g., ক্ষ,
ঙ্ক, ঙ্গ, ঞ্চ, ঞ্ছ, ঞ্জ, ত্ত, ষ্ণ, হ্ম, ণ্ড), and often may different
characters can bound unitedly like ডাক্তার, অষ্ট, আেস্ত. The
numeric symbols in the Bengali language are dissimilar
from English (0 − 9) as those are represented by (e.g., ০,
১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯). ঌ, ঽ, ৠ, ৡ, ৲৺ are Unicode
characters rarely used in the Bengali language. However,
Dari (।), comma (,), semicolon (;), full stop (.), colon (:),
hyphen (-) and space () are remaining the same as English
in Bengali to manifest. In addition, the Bengali language
has no case sensitivity issue, and this language considers
the uppercase and lowercase English letters as equivalent.
There are 16 bits of Unicode required to express each
Bengali character on the computer. Figure 1 is showing
all Bengali alphabets Unicode presentations.

B. Representation of English Alphabet
The English language consists of 26 alphabets (e.g.,

a, b, c, d, e, . . ., z, A, B, C, D, E, . . ., Z). There have
five vowels (e.g., a or A, e or E, i or I, o or O, u or U)
and the rest of consonants (e.g., b or B, c or C, d or D,
f or F, g or G, h or H, j or J, . . ., n or N, p or P, . . .,
t or T, v or V, . . ., z or Z) among them. The alphabets
of the English language are case sensitive, which means
the lowercase alphabets (e.g., a, b, c, d, e, . . ., z) are
not as equivalent as uppercase (e.g., A, B, C, D, E, . . .,
Z). Since the ASCII character set can express the 8 bits
character of the English language, the uppercase letter of
combination always gives a different value with lowercase
letters unless defined for a distinct goal [25].

5. Architecture
A. Transliteration Procedure

Transliteration is the process used to transform one
language or script into another. However, translation is

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 597

Figure 1. Unicode representation of Bengali characters

another approach that differs from the transliteration sys-
tem. The transliteration approach generally does not rely
upon to express the novelty of linguistics. It allows the
Graphemic conversion of the alphabet. Here offered some
different transliteration of vowels Graphemes in Figure 2.

Systematic transliteration happens letter by letter,
or even enumerate with mapping from one system to
write another that a scholar can restore the genuine
spelling [26]. This research is about Bengali characters
used to express the Graphemic conversion of English.
Since the transliteration process allows transformation,
in that case, we can represent a high symbolic with a
less symbolic language. Therefore, we might need the
following actions in Table I to present a Bengali character.
This process increases the compression ratio significantly
found on [3], [4] as the Bengali text transforms corre-
sponding 39 English or ASCII set of characters according
to Avro Phonetic Layout in Figure 3. Moreover, 16 bits of
Bengali Unicode characters are demoted to 8 bits ASCII
characters despite the occurred frequency for each English
symbol increases.

Concerning 65 Bengali characters, the necessities of
the bit are determined by the modus operandi of the data
structure book as follows [27]:

NT = NI + NE = 64 + 65 = 129 (1)

Here, NT calculating the number of total nodes by the
summation of both internal NI = 64 and external NE = 65
nodes. Therefore, the height or depth of the tree is:

Depth = Floor (log2 NT + 1)

Depth = Floor (log2 129 + 1) = Floor (7.01 + 1) = 8

Hence, the number of bits that are wanted to represent

65 Bengali symbols is:

NB = 65 × Largest level = 65 × (Depth − 1) (2)

NB = 65 × (8 − 1) = 65 × 7 = 455 bits

Accordingly, for the representation of 39 English
symbols, we have needed total bits are:

NT = NI + NE = 38 + 39 = 77

Depth = Floor (log2 NT + 1)

Depth = Floor (log2 77 + 1) = Floor (6.26 + 1) = 7

NE = 39 × Largest level = 39 × (Depth − 1) (3)

NE = 39 × (7 − 1) = 39 × 6 = 234 bits

Therefore, the ultimate compression ratio is:

r = F(NB,NE) (4)

r =
(NB − NE

NB

)
× 100%

r =
(455 − 234

455

)
× 100% = 48.57%

As we know, the Huffman tree can not generate a
complete binary tree, and it is preferably relaying on a
2-tree or an Extended binary tree. Thence the number of
symbols is diminished by 26 (65 − 39 = 26) certainly to
represent the corresponding Bengali text in English.

B. Compression using Adjacent Distance Array
This research adopted a Huffman-based compression

mode with an adjacent distance array applied in [1]. Then,
it has been initiated by transliterating the Bengali text
into English [24]. The conventional Huffman forms the
lowest code for the most frequent symbols. However, the
codeword formed of minimum recurrent symbols grows
sequentially and would be immense. It might take a much
time to read data during the decoding process from the

http://journals.uob.edu.bh

598 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

Figure 2. Transliteration for some different vowels Graphemes

TABLE I. Expressing Bengali Letters into Corresponding English

Bengali letter Corresponding letter(s) requires to represent in English

Letter Type
অ o Small letter

ঈ I Capital letter

◌ং ng Composing of small letters
only

ঔ OU Composing of capital letters
only

ঠ Th Composing of both small
and capital letters

◌ঁ ˆ ASCII character of the set

encoded file, denoted by encoded. The modus operandi
in this research has strived a modification here. It has
used a threshold value, denoted by T , which helps to
identify the adjacent symbols. An array is preserving the
distances of ASCII values among all adjacent characters
that data structure we are calling the adjacent distance
array, denoted by adjacent. For instance, the distance
between ‘A’ and ‘C’ is 2 in ASCII Character set if we
view whatever ‘A’ to ‘C’ → (-2) or ‘C’ to ‘A’ → (-2).
The distances can obtain the position of a symbol. Now,
if the distance of ASCII values between two adjacent
characters S i and S i+1 is lesser or equal to the threshold
value, T , in that case, the adjacent symbols would have
S i+1 + S i+2 + S i+3 + . . . + S i+m for a distinct character S i.

Therefore,
| S i − S i+1 | ≤ T (5)

If (5) is fulfilled by any distinct symbol S i there would
be happened following operations:

• The encoded would save the Huffman formed code,
and

• The adjacent would keep the ASCII value distances
among all satisfied symbols.

What if dissatisfaction of the condition in this case,

• S i would recognize as a new symbol for the en-
coded.

Moreover, this procedure recommences until we get to
the end of the text.

In encoded, ‘0’ has been used as a “separator bit” to
create a separation for each distinct symbol. In adjacent,
the ASCII value distances of adjacent symbols hold as
a unique coding scheme that relies on a threshold value,
T . Thus, two kinds of a scheme of bits would generate
below:

• The first kind of design for 2-bit patterns
◦ The first bit contains ‘1’, which indicates the

beginning of the code.
◦ The second bit might hold any one of the

following:
‘0’ specifies the positive value of distance,
and
‘1’ indicates the non-positive value of dis-
tance.

• The second sort is the binary interpretation of
distances.

That binary interpreted distances have an equal unit
of bits. Again, that length is determined by how the
threshold value, T can represent the maximum bits. From
this concept, we can compute it as:

T = 2x + 1 (6)

Here, x is the highest amount of bits demanded to
design the threshold value, T , and it is always performed
accurately for this method. Therefore, the encoded has a
memory that computed by:

σ1 =

N∑
i=1

(Fi − Ai) ×Ci (7)

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 599

Figure 3. Avro Phonetic Layout

In (7),
Fi = total frequency of occurred symbol.
Ai = the frequency miniaturized from the encoded into
adjacent.
Ci = code bits produced by the Huffman coding scheme.
N = cumulative symbols in the encoded.

Again, the memory for the adjacent is computed by:

σ2 =

M∑
i=1

(Ai × x) (8)

In the (8),
x = amount of bits is expected to represent the distance.
M = cumulative distances for the adjacent symbol.

Consequently, we have obliged to compute the whole
memory for putting the complete message is:

σ = σ1 + σ2 + HT + S N (9)

In the (9),
HT = the header of Huffman tree.
S N = cumulative separators in adjacent for each distinct
symbol.

In the decoding manner, our approach is used to
decode the first symbol (e.g., S i) from the encoded. The
adjacent would help to decode the following adjacent
characters (e.g., S i+1, S i+2, S i+3, . . ., S i+m) by calculating
the ASCII value distances unless any separator bit ‘0’ is
found or unless the adjacent has reached the end. Thus,
the process keeps traversing away from the whole code
list of the Huffman for adjacent characters that certainly
enhance the decoding time.

6. Analysis
A. Data Analysis

We have taken some Bengali text as a sample for
our consideration. Then, we have transliterated it into
corresponding English text employing the Avro Phonetic
Layout shown in Figure 3. In that case, we have included

the frequencies of symbols for both Bengali and English
text concerning their number of unique and total charac-
ters shown in Table II.

B. Decoding Time Complexity for Regular Huffman
As we know, the traditional Huffman can construct

a binary tree based on the frequency of the symbols
shown in Figure 4, but the tree is not balanced [21], [28]
though. Meanwhile, consider the first sample text for the
transliterated English from Table II.

For each character, Table III presents the ASCII values
and their occurrences. That’s also included the Huffman
produced code bits from Figure 4 and resembling Bengali
probable characters would be decoded during the decod-
ing process.

Regarding the time complexity, for traversing a binary
tree, there is a required O(log2 m) if we consider m,
the number of nodes on the tree [29]. For the time
being, if we see Figure 4, we must traverse the whole
Huffman binary tree at least for twelve leaf nodes during
the decoding manner to get the corresponding Bengali
character manifested in Table III. Therefore, on average,
if a tree has k nodes for n length of the encoded string,
that case, the time complexity O(log2 k) is required for
visiting the entire tree, and O(n log2 k) works as an overall
time complexity for decoding a character [30].

C. Decoding Time Complexity for Our Approach
Our adjacent distance array technique based on the

Huffman principle utilizes the encoded file that saves
the binary representation of each distinct symbol. Con-
sidering the encoded, the decoding process endeavors to
decode a symbol by computing the ASCII value distances
with caring desired adjacent that keeps all distances
for each character. Hence, this process needs O(1) time
complexity because only an arithmetic function (subtrac-
tion) has issued exactly from keeping the whole Huffman
binary tree away to traverse. In that case, our decoding

http://journals.uob.edu.bh

600 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

TABLE II. Some Transliterated Specimen Strings From Bengali to English

SN. Language Specimen texts Total symbols Unique symbols

1. Bengali ও আমার েদেশর মািট, আিম েতামায় ভালবািস। 38 20

English o amar deSer maTi, ami tomay valobasi. 38 18

2. Bengali নাগিরেকর মেধয্ সম্পেদর সুষম বন্টন িনিশ্চত করা
এবং রােষ্টৰ্র সকল অথর্ৈনিতক উন্নয়েন সম্পদ অজর্েনর
উেদ্দেশয্ সুষম সু্েযাগ-সুিবধা পৰ্ধান করা রােষ্টৰ্র অনয্তম
দািয়তব্। তাই সবর্তৰ্ নাগিরেকর মােঝ সুেযােগর সমতা
সৃিষ্ট করা েগেলই েকবল নাগিরেকর েসবা িনিশ্চত
হেব; ইিতমেধয্ বাংলােদশ একিট সব্াধীন গণতািন্তৰ্ক রাষ্টৰ্
িহেসেব িবশব্সভায় পিরিচিত লাভ কেরেছ।

335 43

English nagoriker moddhe sompoder suShom bon-
Ton nishcit kora ebong raShTrer sokol or-
rthonOItik unnoyone sompod orrjoner ud-
deShZe suShom suzOg-subidha prodhan kora
raShTrer onZotom dayitwo. tai sorrbotro
nagoriker majhe suzOger somota srriShTi
kora gelei kebol nagoriker seba nishcit hobe;
itimodhZe bangladesh ekTi swadhIn goNo-
tantrik raShTro hisebe bishwosovay poriciti
lav koreche.

375 33

3. Bengali েমােদর গরব, েমােদর আশা আ-মির বাংলা ভাষা। মােগা
েতামার েকােল, েতামার েবােল কতই শািন্ত ভালবাসা।
িক যাদু বাংলা গােন, গান েগেয় দাঁড় মািঝ টােন...
েগেয় গান নােচ বাউল, গান েগেয় ধান কােট চাষা।
আ-মির বাংলা ভাষা। িবদয্াপিত, চন্ডী-েগািবন, েহম-মধু,
বিঙ্কম-নবীন...
ঐ ফুেলরই মধুর রেস, বাঁধেলা সুেখ মধুর বাসা।
বািজেয় রিব েতামার বীেণ, আনেলা মালা জগৎ িজেন।
েতামার চরণ-তীেথর্ মােগা আিজ জগৎ কের যাওয়া-
আসা। আিম ঐ ভাষােতই পৰ্থম েবােল, ডাকনু মােয়
'মা' 'মা' বেল। আিম ঐ ভাষােতই বলেবা হির সাঙ্গ
হেল কাঁদা হাসা। মােগা েতামার েকােল, েতামার েবােল
কতই শািন্ত ভালবাসা। েমােদর গরব, েমােদর আশা আ-
মির বাংলা ভাষা...

585 52

English mOder gorob, mOder asha a-mori bangla
vaSha. magO tOmar kOle, tOmar bOle kotoi
shanti valobaSha. ki zadu bangla gane, gan
geye daˆR majhi Tane...
geye gan nace baul, gan geye dhan kaTe
caSha. a-mori bangla vaSha. bidZapoti,
conDI-gObin, hem-modhu, boNgkim-nobIn...
OI fuleroi modhur rose, baˆdhlO sukhe mod-
hur basa. bajiye robi tOmar bINe, anolO mala
jogot“ jine. tOmar coroN-tIrrthe magO aji
jogot“ kore zaOya-asa. ami OI vaShatei pro-
thom bOle, Dakonu maye ’ma’ ’ma’ bole. ami
OI vaShatei bolobO hori saNgg hole kaˆda
hasa. magO tOmar kOle, tOmar bOle kotoi
shanti valobaSha. mOder gorob, mOder asha
a-mori bangla vaSha...

625 39

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 601

TABLE III. Occurred Frequency and ASCII Values for Sample String – 1 (Transliterated English)

Serial
no.

Characters ASCII (deci-
mal)

Frequency Huffman
generated
bits

Corresponding Bengali char-
acter while decoding (except
any modifiers* and conjunct*

symbols)
0. ‘a’ 97 7 00 ‘আ’

1. ‘ ’ 32 6 110 ' '
2. ‘m’ 109 4 100 ‘ম’

3. ‘i’ 105 3 1011 ‘ই’

4. ‘o’ 111 3 1110 ‘অ’

5. ‘r’ 114 2 11111 ‘র’

6. ‘e’ 101 2 11110 ‘এ’

7. ‘.’ 46 1 10100 ‘।’
8. ‘S ’ 83 1 01110 ‘শ’

9. ‘T ’ 84 1 01111 ‘ট’

10. ‘b’ 98 1 01010 ‘ব’

11. ‘d’ 100 1 01011 ‘দ’

12. ‘l’ 108 1 01000 ‘ল’

13. ‘s’ 115 1 01100 ‘স’

14. ‘v’ 118 1 01101 ‘ভ’

15. ‘y’ 121 1 01001 ‘য়’

16. ‘,’ 44 1 101010 ‘,’
17. ‘t’ 116 1 101011 ‘ত’
* All modifiers and conjunct symbols make use of vowels and consonants for the Bengali language.

38

15 23

a | 7 8

4 4

2 2

s | 1 v | 1 S | 1 T | 1

2 2

b | 1 d | 1 l | 1 y | 1

10 13

m | 4 6

i | 3 3

. (DOT) | 1 2

, (COMMA) | 1 t | 1

" " (SPACE) | 6 7

o | 3 4

e | 2 r | 2

0 1

0

1

0

0 0

1

0

0

0

0

1

0

0

0

0

1

1

1

1

1

0

1

1

1

0

0

1011

1

1

Figure 4. Structure of regular Huffman tree for sample text – 1 (transliterated English)

process demands O
(((

n− a
)

log2 n
)
+ a

)
time complexity,

which is a significant depletion from the traditional Huff-
man method, decodes the entire text of characters. Here,
‘a’ considers a code width of overall adjacent symbols.
The decoding process has been described thoroughly in
Section 7-B.

7. Implementation
Heretofore, we have provided a thorough analysis

of the transliteration process in Section 5-A. Our novel
compression proposal employs the adjacent distance array
with the Huffman principle in Section 5-B. The translit-

eration approach defines the transformation of Bengali,
identified as a high emblematic to the less emblematic
English language. Moreover, the adjacent technique can
get a significant time to decode characters while decoding,
explained in Section 6-C. Hereafter, we would describe
the implementation of our method. With the reduction of
encoding symbols, this process can decode each charac-
ter preserving adjacent symbols respecting the threshold
value. Thus, there is no requirement to bother any tree
or code list. The implementation of our proposed system
follows two procedures:

• The Encoding procedure, and

http://journals.uob.edu.bh

602 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

• The Decoding procedure.

A. Elaboration of Encoding Procedure
At the beginning of the encoding process, the intro-

duced technique takes the Bengali text (B) and transforms
it into analogous Graphemic English text (E), allowing
the transliteration process. It can offer a specific threshold
value, T and approach to a Huffman-produced code list
(L) of characters. The Huffman-generated codeword for
each distinct symbol would save on the encoded from the
transliterated English text. In the meantime, the encoding
process of the proposed technique would scrutinize two
several conditions as follows:

i. The resultant distance between adjacent symbols
(e.g., S i+1, S i+2, S i+3, . . . , S i+m) from S i should be
lesser or equal to the threshold value, T , and

ii. Each adjacent distance’s code length should also be
lesser or equal to the length of Huffman generated
code bit.

The proposed technique offers the adjacent to keep
distances if both (i, and ii) are true. It otherwise allows
the encoded for considering the adjacent symbol as a
new one and continues the procedure. Our proposed
approach uses ‘0’ as a separator bit for a distinct symbol
in the adjacent after storing the distances of all adjacent
characters from the encoded. The whole encoding process
will last until the range of the transliterated English
text finishes. Algorithm 1 describes the entire process in
pseudocode form. However, two coded files can generate
from a complete encoding process –

• The file of encoded codes, and

• The file of codes for the adjacent.

Algorithm 1 Encoding Algorithm

Input: Bengali text (B)
Output: adjacent, and encoded

1: Take the Bengali text (B) as an input
2: Transliterate the corresponding Bengali into En-

glish text (E)
3: Set threshold value, T , and generate the Huffman

code list (L)
4: for i← 0 to size(E) do
5: S i ← E[i]
6: if i = 0 then
7: encoded ← encoded ∪ {S i}
8: previous← S i
9: else

10: if distance(S i, previous) ≤ T and size(Li) ≥
size(T) then

11: adjacent ← adjacent ∪{(
distance

(
S i, previous

))}
12: else
13: encoded ← encoded ∪ {S i}
14: previous← S i
15: end if
16: end if
17: end for
18: return

B. Elaboration of Decoding Procedure
The decoding manner of the proposed method con-

siders the final encoded file (encoded), and also Huffman
formed a code list (L) of characters after completion of
the encoding stage. According to the decoding procedure,
the first character can decode from the encoded. Then
it would focus on the adjacent distance array (adjacent)
utilized in the encoding process for decoding the rest of
the adjacent characters computing the distance of ASCII
values. The decoding process would run until it finds a
separator bit ‘0’ or reach the ends of the adjacent and
so on illustrated as pseudocode format in Algorithm 2.
Lastly, the decoded English text converts into corre-
sponding Graphemic Bengali following the transliteration
system, indicating the decoding process’s termination.

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 603

Algorithm 2 Decoding Algorithm

Input: encoded, adjacent, and Huffman code list (L)
Output: English text (E) converts into Bengali text (B)

allowing the Transliteration system

Initialization : e← null; decoded ← ∅
1: for i← 0 to size(encoded) do
2: e← encoded[i]
3: if e ∈ L then
4: decoded ← decoded ∪ {L.symbol}
5: for j← 0 to size(adjacent) do
6: if adjacent[j] = 0 then
7: break
8: else
9: adjs ← adjs ∪

{
(char) distance(

L.symbol, adjacent[j]
)}

10: decoded ← decoded ∪ {adjs}
11: end if
12: end for
13: else
14: i← i + 1
15: e← e.concate(encoded[i])
16: end if
17: end for
18: return

8. Result and Discussion
The observation intends to assess the overall perfor-

mance of our proposed method juxtaposing the conven-
tional Huffman-based algorithm to attain a significant
time in the decoding manner. Accordingly, we have con-
sidered regular Huffman [31] and Zopfli [32], [33], one of
the most prosperous binary Huffman-based compression
mechanisms by Google Inc. Not only the Zopfli has a
tremendous compression ratio, however, but it also has
an enormous prospect to replace Gzip, an efficient file
format employed on Internet [34]. The proposed approach
of our research follows the transliteration process from
Bengali to corresponding English text. Additionally, in
decoding the symbols, the method has to utilize English
and transliterate it into original Bengali text. In this case,
we have taken into account some eminence and examined
corpus data as transliterated English text condensed in Ta-
ble IV to evaluate the encoding-decoding or compression-
decompression performance contrasted to the traditional
Huffman and Zopfli. The appraisal ran on a Linux-based
64-bit Operating System (Ubuntu 14.04 LTS), including
the hardware like 7.7 GiB Primary memory, Intel(R)
Core (TM) i5-6500 CPU @ 3.20 GHz × 4 -Processor,
and Gallium 0.4 on llvmpipe (LLVM 3.4, 256 bits) -
Graphics. The codecs are all compiled on the same GCC
4.9.2 compiler.

According to our approach, we have conceded two
different threshold values to estimate the performance for
each corpus, threshold values T = 7 and T = 15. Also,
we have implemented the Huffman codes, and Zopfli [35]
in our environment and juxtaposed the time of decoding
manner with the ultimate compression method of adjacent
distance array. Note that the compression-decompression

time is determined by the second unit (in short, S).
Also, we would utilize some notations for each corpus
to compute at our convenience as follows in Table V.

A. Performance Analysis for the Canterbury Corpus
The Canterbury Corpus [36] is all about 1158.08

Kilobytes (in short, KB) in size, and it consists total
87 of discrete characters. Table VI is proffering the
exploratory outcome for that corpus, which indicates the
Zopfli, and regular Huffman performs very poorly than
our proposed algorithm in terms of the decoding time.
Though Zopfli is capable of procuring a high compression
ratio, it is not our concerning point. With T = 15,
our adjacent distance array technique outperformed any
traditional Huffman-based algorithms, even the Zopfli, for
the compression-decompression time. It is around 63% of
time improvement on average shown in Table VII.

B. Performance Analysis for the Brown Corpus
The renowned Brown Corpus [37] is a file of

6040.63 Kilobytes. The number of distinct characters
for this corpus is 95, so Table VIII shows a compar-
ison study. The consequence indicates the best perfor-
mance of our proposed method while the traditional
Huffman-based algorithms are consuming significantly
compression-decompression time. As displayed in Ta-
ble IX, our algorithm with T = 15 performs better for
achieving an average of around 59% enhancement of
compression and decompression time though T = 7 has
a good compression ratio than T = 15.

C. Performance Analysis for the Supara Corpus
The analyzing study for the Supara Corpus [38] has

manifested in Table X. Our proposed method is usually
performed up to the mark for this corpus than any binary
Huffman-based algorithms. On the other hand, T = 7
achieved a relatively better compression ratio though this
is not significant if we consider the result of T = 15
by concerning the compression-decompression time. Av-
eragely, the time accomplished almost 62% improvement
than Zopfli, and regular Huffman algorithm manifested in
Table XI. The file size of the Supara Corpus is 1464.21
Kilobytes, and it is composed of 106 distinct symbols.

Summing up all of the experimental effects in a graph
with Figure 5, we can say that the method of adjacent
distance array can accomplish a significant compression
and decompression time when the value of the threshold is
rising than regular Huffman-based algorithms. Moreover,
the contrast is almost half of Zopfli.

However, it can get a comparatively much compres-
sion ratio for the minimum threshold value if we take
many, which happens to cause fewer adjacent characters.
Again, the size of the encoded file can be huge for
the fewer adjacent characters that consume much time.
Hence, the threshold value is such a parameter that can
regulate the overall execution of our technique. Figure 6
is appeared with a comprehensive chart for each corpus
to demonstrate the time enhancement ratio concerning the
Huffman-based traditional algorithms.

9. Conclusions and FutureWork
This research has focused on the lossless data com-

pression methodology. We have executed a novel modus

http://journals.uob.edu.bh

604 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

TABLE IV. Different Data Set has been considered for the experiment

Serial no. Name of data set Description Size of the data set (in
Kilobytes)

1. Canterbury Corpus The corpus has been designed for loss-
less data compression purposes. How-
ever, the improved version of this cor-
pora is known as the Calgary Corpus.

1158.08

2. Brown Corpus This corpus considers the leading ma-
jor formed corpora with various gen-
res. It is not used only the compression
but also for different purposes.

6040.63

3. Supara Corpus This corpus consists of several cus-
tomized data classes such as Litera-
ture, Politics, News, and other aspects
of Bangladesh in a translated copy
from the Bengali language. The cre-
ators have designed it for data com-
pression purposes only.

1464.21

TABLE V. The Table of Notations

Notations Description
TTn The compression-decompression time for the

threshold value is either n = 7 or n = 15.

TRH Indicates the compression-decompression time
for the regular Huffman algorithm.

TZP Indicates the compression-decompression time
for the algorithm of Zopfli.

ITRH The overall improved time we compared to get
the regular Huffman algorithm.

ITZP The overall improved time we compared get to
the algorithm of Zopfli.

TABLE VI. Comparison of Performance for the Canterbury Corpus (1158.08 KB)

Algorithm/Approach Compressed file size (in Kilobytes) Time of compression-decompression
(in seconds)

Method of this research with
T = 7 (TTn=7)

788.18 1.449

Method of this research with
T = 15 (TTn=15)

796.97 1.433

Regular Huffman (TTRH) 681.48 4.318

Zopfli (TZP) 418.50 3.431

TABLE VII. Time Improvement (in %) for Canterbury Corpus (1158.08 KB)

Algorithm/Approach Time improvement with
compared to regular
Huffman, ITRH =(
100 −

(TTn

TRH

)
× 100

)
%

Time improvement with
compared to Zopfli, ITZP =(
100 −

(TTn

TZP

)
× 100

)
%

Average time improvement in
terms of regular Huffman and
Zopfli,

(ITRH + ITZP

2

)
%

Method of this research
with T = 7, n = 7

66.44 57.77 62.11

Method of this research
with T = 15, n = 15

66.81 58.23 62.52

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 605

TABLE VIII. Comparison of Performance for the Brown Corpus (6040.63 KB)

Algorithm/Approach Compressed file size (in Kilobytes) Time of compression-decompression
(in seconds)

Method of this research with
T = 7 (TTn=7)

4037.61 7.064

Method of this research with
T = 15 (TTn=15)

4093.39 7.037

Regular Huffman (TTRH) 3470.66 22.353

Zopfli (TZP) 2230.37 13.574

TABLE IX. Time Improvement (in %) for Brown Corpus (6040.63 KB)

Algorithm/Approach Time improvement with
compared to regular
Huffman, ITRH =(
100 −

(TTn

TRH

)
× 100

)
%

Time improvement with
compared to Zopfli, ITZP =(
100 −

(TTn

TZP

)
× 100

)
%

Average time improvement in
terms of regular Huffman and
Zopfli,

(ITRH + ITZP

2

)
%

Method of this research
with T = 7, n = 7

68.40 47.96 58.18

Method of this research
with T = 15, n = 15

68.52 48.16 58.34

TABLE X. Comparison of Performance for the Supara Corpus (1464.21 KB)

Algorithm/Approach Compressed file size (in Kilobytes) Time of compression-decompression
(in seconds)

Method of this research with
T = 7 (TTn=7)

989.04 1.824

Method of this research with
T = 15 (TTn=15)

1002.35 1.807

Regular Huffman (TTRH) 856.28 6.169

Zopfli (TZP) 442.00 3.789

operandi based on the Huffman principle advancing a data
structure name adjacent distance array. The data structure
performs efficiently regarding the compression and de-
compression time by putting the distances of characters
instead of vising the whole binary Huffman tree. We
appropriated this theory for the transliteration approach.
Moreover, we have exerted the more symbolic Bengali
language, transforming it into a less symbolic English
language. Subsequently, we have put the conjecture of
the adjacent distance array technique in the transliterated
English text. We analogized our empirical data with the
traditional Huffman approaches and obtained a significant
enhancement of compression-decompression time. If we
infer the worst-case scenario, the time is around half
lesser than the conventional Huffman algorithms acknowl-
edged in this research. We have studied such binary
Huffman algorithms that perform fitter to compress data;
however, growing separator bits for the several adjacent
symbols is the drawback for this purpose. Therefore,
mitigating the separator bits would be the future aspect
of research in our case. Besides, the study might have an
example of the transliteration process that practiced only
Bengali texts concerning the overall encoding-decoding

time aspect. Nevertheless, the fundamental goal of this
research can be investing in other languages, which have
more symbols than the English language.

Acknowledgment
The authors are grateful for the help of the Robotics

Lab under the Department of Computer Science and
Engineering of North East University Bangladesh for the
settlement of testing data.

http://journals.uob.edu.bh

606 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

TABLE XI. Time Improvement (in %) for Supara Corpus (1464.21 KB)

Algorithm/Approach Time improvement with
compared to regular
Huffman, ITRH =(
100 −

(TTn

TRH

)
× 100

)
%

Time improvement with
compared to Zopfli, ITZP =(
100 −

(TTn

TZP

)
× 100

)
%

Average time improvement in
terms of regular Huffman and
Zopfli,

(ITRH + ITZP

2

)
%

Method of this research
with T = 7, n = 7

70.43 51.86 61.15

Method of this research
with T = 15, n = 15

70.71 52.31 61.51

0

5

10

15

20

25

Canterbury
Corpus (1158.08

KB)

Brown Corpus
(6040.63 KB)

Supara Corpus
(1464.21 KB)

1.449

7.064

1.824
1.433

7.037

1.807
4.318

22.353

6.169

3.431

13.574

3.789

Se
co

nd
s

with T=7 with T=15 Regular Huffman Zopfli

Figure 5. Summary of compression-decompression time for different corpus

0 20 40 60 80

Canterbury Corpus (1158.08KB)

Brown Corpus (6040.63KB)

Supara Corpus (1464.21KB)

66.44

68.4

70.43

66.81

68.52

70.71

57.77

47.96

51.86

58.23

48.16

52.31

Enhanced time (in %)

T=15 with compared to Zopfli T=7 with compared to Zopfli
T=15 with compared to regular Huffman T=7 with compared to regular Huffman

Figure 6. Time enhancement ratio for each corpus for regular Huffman and Zopfli

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 11, No.1, 595-608 (Jan-2022) 607

References
[1] M. L. Rahman, P. Sarker, and A. Habib, “A Faster Decoding

Technique for Huffman Codes Using Adjacent Distance
Array,” in Proceedings of International Joint Conference on
Computational Intelligence, M. S. Uddin and J. C. Bansal, Eds.
Singapore: Springer Singapore, 2020, pp. 309–316.

[2] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE, vol. 40, no. 9, pp.
1098–1101, 1952.

[3] M. M. Hossain, A. Habib, and M. S. Rahman, “Transliteration
Based Bengali Text Compression using Huffman principle,” in
2014 International Conference on Informatics, Electronics &
Vision (ICIEV), 2014, pp. 1–6.

[4] ——, “Performance Improvement Of Bengali Text Compression
Using Transliteration And Huffman Principle,” Int. Journal of
Engineering Research and Application, vol. 6, no. 9, pp. 88–97,
2016.

[5] P. Fenwick, “Differential Ziv-Lempel Text Compression,” in
J.UCS The Journal of Universal Computer Science: Annual
Print and CD-ROM Archive Edition Volume 1 {\textbullet} 1995,
H. Maurer, C. Calude, and A. Salomaa, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 591–602. [Online].
Available: https://doi.org/10.1007/978-3-642-80350-5_49

[6] D. A. Lelewer and D. S. Hirschberg, “Data Compression,” ACM
Comput. Surv., vol. 19, no. 3, p. 261296, 9 1987. [Online].
Available: https://doi.org/10.1145/45072.45074

[7] A. Habib, M. J. Islam, and M. S. Rahman, “A dictionary-based
text compression technique using quaternary code,” Iran Journal
of Computer Science, vol. 3, no. 3, pp. 127–136, 2020. [Online].
Available: https://doi.org/10.1007/s42044-019-00047-w

[8] C. Oswald, A. I. Ghosh, and B. Sivaselvan, “An Efficient Text
Compression Algorithm - Data Mining Perspective,” in Min-
ing Intelligence and Knowledge Exploration, R. Prasath, A. K.
Vuppala, and T. Kathirvalavakumar, Eds. Cham: Springer
International Publishing, 2015, pp. 563–575.

[9] S. Renugadevi and P. S. N. Darisini, “Huffman and Lempel-Ziv
based data compression algorithms for wireless sensor networks,”
in 2013 International Conference on Pattern Recognition, Infor-
matics and Mobile Engineering, 2013, pp. 461–463.

[10] D. I. Săcăleanu, R. Stoian, and D. M. Ofrim, “An adaptive Huff-
man algorithm for data compression in wireless sensor networks,”
in ISSCS 2011 - International Symposium on Signals, Circuits and
Systems, 2011, pp. 1–4.

[11] A. Sinaga, Adiwijaya, and H. Nugroho, “Development of word-
based text compression algorithm for Indonesian language docu-
ment,” in 2015 3rd International Conference on Information and
Communication Technology (ICoICT), 2015, pp. 450–454.

[12] P. M. Long, A. I. Natsev, and J. S. Vitter, “Text compression
via alphabet re-representation,” in Proceedings DCC ’97. Data
Compression Conference, 1997, pp. 161–170.

[13] K.-L. Chung and Y.-K. Lin, “A novel memory-efficient Huffman
decoding algorithm and its implementation,” Signal Processing,
vol. 62, no. 2, pp. 207–213, 1997. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0165168497001254

[14] H.-C. Chen, Y.-L. Wang, and Y.-F. Lan, “A Memory-Efficient and
Fast Huffman Decoding Algorithm.” Inf. Process. Lett., vol. 69,
pp. 119–122, 2 1999.

[15] R. Hashemian, “Memory efficient and high-speed search Huffman

coding,” IEEE Transactions on Communications, vol. 43, no. 10,
pp. 2576–2581, 1995.

[16] Y.-K. Lin and K.-L. Chung, “A space-efficient Huffman decoding
algorithm and its parallelism,” Theoretical Computer Science,
vol. 246, no. 1, pp. 227–238, 2000. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0304397599000808

[17] R. Chowdhury, M. Kaykobad, and I. King, “An Efficient De-
coding Technique for Huffman Codes,” Information Processing
Letters, vol. 81, 9 2001.

[18] P. Suri and M. Goel, “Ternary Tree and Memory-Efficient Huff-
man Decoding Algorithm,” International Journal of Computer
Science Issues, vol. 8, 1 2011.

[19] Y.-K. Lin, S.-C. Huang, and C.-H. Yang, “A fast algorithm
for Huffman decoding based on a recursion Huffman tree,”
Journal of Systems and Software, vol. 85, no. 4, pp. 974–
980, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121211002925

[20] A. Habib and M. S. Rahman, “Balancing decoding speed
and memory usage for Huffman codes using quaternary tree,”
Applied Informatics, vol. 4, no. 1, p. 5, 2017. [Online]. Available:
https://doi.org/10.1186/s40535-016-0032-z

[21] A. Habib, M. J. Islam, and M. Rahman, “Huffman Based Code
Generation Algorithms: Data Compression Perspectives,” Journal
of Computer Science, vol. 14, pp. 1599–1610, 12 2018.

[22] M. R. Islam and S. A. RAJON, On the Design of an Effective
Corpus for Evaluation of Bengali Text Compression Schemes, 1
2009.

[23] A. S. Mohammad Arif, M. Asif, and I. Rashedul, “An Enhanced
Static Data Compression Scheme Of Bengali Short Message,”
International Journal of Computer Science and Information Se-
curity, vol. 4, 9 2009.

[24] P. Sarker and M. L. Rahman, “Introduction to Adjacent Distance
Array with Huffman Principle: A New Encoding and Decoding
Technique for Transliteration Based Bengali Text Compression,”
in Progress in Advanced Computing and Intelligent Engineering,
C. R. Panigrahi, B. Pati, B. K. Pattanayak, S. Amic, and K.-C.
Li, Eds. Singapore: Springer Singapore, 2021, pp. 543–555.

[25] B. S. Gottfried and . K. Chhabra, “The ASCII Character Set,” in
Programming With C, 3rd ed. Tata Mcgraw Hill, 0, ch. Two, p.
2.17.

[26] N. Kharusi and A. Salman, “The English Transliteration of Place
Names in Oman,” Journal of Academic and Applied Studies,
vol. 1, pp. 1–27, 10 2011.

[27] S. Lipschutz, Data Structures with C, 1st ed. New York, USA:
McGraw-Hill, 2010.

[28] K. K. Rajput, “Are Huffman trees balanced?” 2017. [Online].
Available: https://www.quora.com/Are-Huffman-trees-balanced?
q=AreHuffmantreesbalanced%3F

[29] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduc-
tion to Algorithms. United States: MIT Press, 1989.

[30] The University of Auckland, “Huffman Encoding.”
[Online]. Available: https://www.cs.auckland.ac.nz/software/
AlgAnim/huffman.html#:

[31] “The source code of Regular Huffman,” 10
2021. [Online]. Available: https://www.geeksforgeeks.org/
huffman-coding-greedy-algo-3/

http://journals.uob.edu.bh

608 Pranta Sarker and Mir Lutfur Rahman: Method of Adjacent Distance Array Outperforms. . .

[32] J. Alakuijala, E. Kliuchnikov, Z. Szabadka, and L. Vandevenne,
“Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and
Bzip2 Compression Algorithms.”

[33] J. Alakuijala and L. Vandevenne, “Data compression using
Zopfli.” [Online]. Available: http://fh7922mg.bget.ru/articles/
compression/data-compression-using-zopfli.html

[34] Z. Syed and T. Soomro, “Compression Algorithms: Brotli, Gzip
and Zopfli Perspective,” Indian Journal of Science and Technol-
ogy, vol. 11, pp. 1–4, 2018.

[35] Google Inc., “The source code of Zopfli.” [Online]. Available:
https://github.com/google/zopfli

[36] R. Arnold, T. Bell, and M. Powell, “The Canterbury
Corpus,” 2001. [Online]. Available: http://corpus.canterbury.
ac.nz/resources/cantrbry.zip

[37] H. Kučera and W. N. Francis, “The Brown Corpus,”
1961. [Online]. Available: https://ia800306.us.archive.org/21/
items/BrownCorpus/brown.zip%0A

[38] A. Habib, M. L. Rahman, and P. Sarker, “The Supara
Corpus,” 2017. [Online]. Available: https://github.com/shidhu/
Supara-Corpus

Pranta Sarker Pranta Sarker completed
his Bachelor of Science in Engineer-
ing degree in Computer Science and
Engineering from North East University
Bangladesh. After graduation, he joined
as a Faculty member in the Department
of Computer Science and Engineering at
the same University. The journey of his
teaching is three years now, and that might
be quite long. Currently, he is pursuing a

Master of Science in Thesis degree under the department of
Computer Science and Engineering from Shahjalal University
of Science and Technology. His research works usually focus
on Data Compression, Blockchain, Trust, Reputation, and Fed-
erated Identity Management.

Mir Lutfur Rahman Mir Lutfur Rah-
man completed his Bachelor of Science in
Engineering degree in Computer Science
and Engineering from North East Univer-
sity Bangladesh. He joined as a Faculty
member in the Department of Computer
Science and Engineering at the same Uni-
versity after graduation. Now, his MSc
degree is ongoing in Advanced Computer
Science at the University of Hertfordshire.

He has two years of teaching experience. His research works
usually focus on Data Compression, Computer Vision, and
Machine Learning.

http://journals.uob.edu.bh

