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ABSTRACT

In the present paper, use will be made of Thorne's series solution of Lambert problem to develop
an orbit determination method valid for hyperbolic and elliptical orbits. Numerical illustrations
are given.
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INTRODUCTION

Lambert problem of space researches is concerned with the determination of an orbit from two
position vectors and the time of flight (Danby 1988). It has very important applications in the
areas of rendezvous, targeting, guidance (Noton 1998) and interplanetary missions (Eagle 1991).

Solutions to Lambert’s problem abound in the literature, as they did even in Lambert’s time
shortly after his original formulation in 1716. Examples are Lambert’s original geometric
formulation, which provides equations to determine the minimume-energy orbit, and the original
Gaussian formulation, which gives geometrical insight into the problem.

Up to the year 1965, a fairly comprehensive list of references on Lambert’s problem are given
in (Escobal 1965), (Herrick 1971) and (Battin1964). In 1969, (Lancaster and Blanchard 1969)-
also (Mansfield 1989)- established unified forms of Lambert’s problem, and in 1990 (Gooding,
1990) developed a procedure for the solution. An algorithm for the universal Lambert’s problem
based on iterative scheme that could be made converge for all coin motion was established by
(Sharaf, et al. 2003).

Each of the above methods is characterized primarily by: (1) a particular form of the time of
flight equation and, (2) a particular independent variable to be used in an iteration algorithm to
determine the orbital elements. For examples the semi-major axis 4, and in some cases, the
orbital parameter p is also used (Sun, 1981). The main disadvantage of using p as an
independent variable is that a singularity occurs in the equation for collinear position vector.
The independent variables used in Lambert’s problem, all satisfied transcendental equation.
Transcendental equations are usually solved by iterative methods, which in turn need: (a) initial
guess, (b) an iterative scheme. In fact, these two points are not separated from each other, but
there 1s a full agreement that even accurate iterative schemes are extremely sensitive to the
initial guess. Moreover, in many cases the mitial guess may lead to drastic situation between
divergent and very slow convergent solutions.
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To avoid these difficulties, analytical tool is to be used .In this respect (Thorne and Bain, 1995)
developed an important and useful series solution to the Lambert problem. It is equally valid for
hyperbolic and elliptical transfer times that are less than the time for minimum-energy transfer.

In the present paper use will be made of the above analytical solution and the basic Lambert's
parameters to develop an orbit determination method valid for hyperbolic and elliptical orbits.
Numerical illustrations are also given.

BASIC FORMULATIONS

LAGRANGE'S FUNCTIONS
On any of the two bodies orbits (elliptic, parabolic, or hyperbolic) we have:

r,=Fr,+Gv,, (1)
v,=Fr, +Gv,, (2)
where [r1 ,V, )are the position and velocity vectors at time #, while (rz,v 2) are the corresponding
vectors at another time #,. The coefficients " and G are functions of Af =17, —¢, and known as
the Lagrange F and G functions, F and G are their time derivatives. r and v are given in

components as:
r=ix+i y+i,z (3)
v=ix+i,p+i,z, Q)

i, 15, and i, are the unit vectors along the coordinate axes x, y and z respectively, and
r=(x1+y1+zz)”2 (5)

There are different forms of Lagrange's functions. Here we use only the expression of the G
function in terms of the diffrence &= f, — f; in the true anomalies (€ usually called the

transfer angle):

G= % sin 6 (6)
where h 1s the magnitude of the angular momentum vector h,

h=rxv ©))

BASIC EQUATIONS OF LAMBERT’S PROBLEM
The basic equations of Lambert’s problem are given in many references and may be summerized
as follows:
» Traveling between two specified points can take the long way or the short way. For
the long way, 0 exceeds 180°, while for the short way 0<180°, so that
<l‘1,l‘2:> |r1 X, |

cosd = ; sin@ =
hr, hr,

or sin@=t,v1-cos>@ (8)

where t,, is (+1) for short way transfers and (-1) for long way transfers.
e The length of the chord between the two position vectors r, and r,is:

c= ,frﬁ +r) —2rr,cosf 9)
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e Define the semiperimeter, s, as half the sum of the sides of the triangle created by the
position vectors and the chord, then

=%(ri +7,+c) (10)

Some constants were introduced for elliptic and hyperbolic orbits, of these are(ag, ,)
and (:x;, : ﬁ ) where

sm(—ﬂ:) \[7 sm( B.) = 1’ (11)

[ i) gm0 (12)

and a 1s the semi-major axis of the orbit

smh( a, ) 2:::

e The constants o’s and B’s are related to the eccentric and hyperbolic anomalies by:
AE=E,-E =a, -, (13)

AH=H,-H, =a,-p, (14)

e Finally (Battin,1999), the general time of flight, some times called Lambert's equation,
1s, given for elliptic and hyperbolic orbits as:

= E[(m—siwe)—(ﬂ,—shlﬂe)] (15)
\ &
3
= T“I(sinhah ~a,)—(sinh B, - B,)] (16)

where pu is the gravitational parameter.

THORNE'S SOLUTION OF LAMBERT PROBLEM
Let us frist define the quantity T:
T=t/t, -1 (17)

As nondimentional time parameter, where # = £, or ¢, is the desired flight (Equation (15) or

(16)) and 7, is the known parabolic flight time between the two given position vectors,

55T

Thorne and Bain (1995) established the following power series for T in the unknown semi-major
axis g as:
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T e
"[-=) B

(o) “54aa) &

5

The symbols (x). are Pochhammer symbols, defined by (x), = x(x+1)...(x +i—1).

Having caculated the 4’s terms to the desired order from Equation (19), we can use them to find
the B's coefficients of the following series:

a= GJ iﬂ;*—z (20)

i=1

This sereies solution is to be used only when the time parametre lies in the interval (-1<T <1).

If T is exactly zero, the path 1s parabolic, and the orbit geometry is already known. If T < 0.0, the
transefer is hyperbolic, and if T > 0.0, it is elliptic.

To compute the B's coefficients in Equation (20) two steps to be performed:

First construct the lower triangular matrix, Q[g; ;] from the following recursive formulae:

qd1 = 4y :
i-1

di; = qu-k,;-l 91 (f =2,3,4, ‘"):1 = f =i (21)
k=1

i-1{ 1
=3 7 A
1

k=1

The second step, is to to apply the matrix @ on the known series coefficients 4, to obtain the
final series coefficients B, as:

=1
Bjwi 3 il (22)

k=1

Finally, the semi-major axis, a is, given by Equation (20), generally, the closer T is to zero, the
more accurate a will be.

ORBITAL DETERMIATION METHOD
The radial distance for elliptic and hyperbolic orbits 1s given respectively as:

r=a(l—ecosE) (23)
and
¥ =a(cosh H —1) (24)

where e is the orbital eccentricity . Since a < 0, for hyperbolic orbits, it follows from Equations
(13), (14), (23) and (24) that
eacosE, =a—r (25.1)
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1

S ((r, - @) (r, — a)cos(ez, - B.)) (25.2)
eacoshH, =r—a (26.1)
1
easinh H, = — (r, —a)—(r, —a)cosh{a, — 5,) (26.2)
1 Elnh(ﬂh —ﬁh)( 2 1 h h )

Also we have:

N cos £, = cosE, —e (27.1)
o

"isin £, =(1—€*)"* sin E, (27.2)
a

fi cos f, =e—cosh H, (28.1)
a

D sin £, = (e* —1)*sinh H, (28.2)
a

For both orbits, the components (4,,4,,4,) of the angular momentum vector /4 are related to the
velocity components (%, , z) and the orbital elements by:

h, = yz—zy = hsinQsini, (29.1)
h, = zx — xz = —hcosQsini (29.2)
h, =xp— yx = hcosi (29.3)

where i is the orbital inclination and Q the longitude of the accending node.

From the second Equation in (8), we have

rr,sind=(A* + y* +v*)"? (30)
where
A=NzZ,=2,y,  X=Z% X2, s V=EX)Y, VX, (1)
Using Equations (1), (6) and (27) we get:
A ; :
=sin2sini 32.1
(12 +Zl +y2)1fz ( )
4 3
=—cos{2sini ; 32.2
(.2,2 +Iz _l_y,i)lfz ( )
< = cos . (32.3)

1/2

(A +7° +v?)

Finally, for both orbits, we have:
r,cosu =X, cos Q2+ y, sinQ) (33.1)

rysiny = (—x, sm €+ y, cos{l)/cosi (33.2)
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where u is the argument of latitude given in terms of the longitude of pericenter @ and the true

anomaly f; by:

u=o+f

(34)

COMPUTATIOAL DEVELOPMENTS
COMPUTATIOAL ALGORIHM
e Purpose: To detrmine the orbital element for elliptic or hyberbolic orbite using
Thorne's seres soution of Lambert problem

e Input:x,y,z;x,,¥,,2,; 4,n(order), ¢ (time)
e Output: a,e,i,0,Q,u
e Computational sequence

L

oL BF -

g

9.

10.

1L,

12,
13.

n=08+y +2)",
=G 47+
co = (X%, + ¥, +2,2,)/ 11,
c=(r’+r, —2nr,xco)"”,
§=0.5(r, +r, +c),
k=(s—-c)/s
2 |s° 1.5

i 25\5 (1-k7),
T=t/t,-1,

e (U'S)f (1 -5):‘ (1 - kmj)
“T a0,
g, ; from Equation (21),
B, ;Error! Objects cannot be created from editing field codes. from Equation (22),
a from Equation (20),
If T >0, then

« ¢ and f from Equation (11)

» QO =(r,—a—(r,—a)cos(a— fF))/sin(a - f)

. Q,=a-n

5 E = tan "’ (@ /0;)

. e=(QI+0)"/a
i ml[smE]ﬁ]

coskE, —e

Error! Objects cannot be created from editing field codes.

« @ and S from Equation (12)

+ 0 =(—a—(r —a)cosh(a— B))/sinh(c - B)
’ O, =—a+n
. E, = tanh™ (Ql sz)
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. e=—Q’+0)/a

. f—tan" sinh E, v1— e’
1 coshE, —e
And If

14. A,y and v from Equation (31),
15. Q=tan"'(A/-p)),
| 42 2
: 4] A"+ 7
16.  i=tan 1[\!{ : J ;

ycosQ—x sinQ
cosi (x, cosQ+ y,sinQ )’

17.  u= tan“[-

NUMERICAL APPLICATIONS
1. Sputnik ITI (Sconzo,1962)
t, =1959, May 14.044194 UT

1, =1959, May 14.049333 UT

t =444.01 s
x, =—1597.82 km x, =145.779 km
y, =—3706.07 km y, =—5734.34 km
z, = 6483.79 km z, =4911.73 km

1 =398600.8 km® /sec?

First: The value of the semi-major axis to accuracy =~10“ meter was found to be
a="7209.977140084 km with n=16

Second: The other orbital elements are:

e=0.061080 ; i=65".1132 ; Q=114°8612 : o=277".1397 ;
u=110°6302.
2. Minor Planet 1569 Evita (Sconzo, 1962)

t, =0

t=1t, =28.9118 days

x, =2.376754 AU x, =2.507401 AU

y, =-1.102329 AU y, =—0.826966 AU

z, =—0.973496 AU z, =—0.896717 AU

u = 0.000295912 AU*/day’

First: The value of the semi-major axis to accuracy ~ 10" AU was found to be
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a=3.1568626454 AU with n=17

Second: The other orbital elements are:
e=0.117682 ; i=24°2635 ; Q=30°6399 : @w=316"7239 : u=302°0492.

3. Hyperbolic orbit

t,=0

t=t, =1000s

x, =—10316.00709 km x, =—5081.722922 km
y, =—6389.956846 km y, =—4306.977002 km
z, =-4005.124124 km z, =—14234.301845 km

4 =398600.8 km’ /sec’

First: The value of the semi-major axis to accuracy ~10"" AU was found to be
a=—5102.503477929 kmwith n=17

Second: The other orbital elements are:
e=3.49358 : i=85%330 ; 0Q=30°23 : w=204°366; u=198°3287.

The data of the last illustration is obtined as follows:
» We already used the orbital elements of the illustration.

¢ From the applications of the standered frasformation formulae between the
orbital elements and the position and velocity vectors with ~=1000 sec. we

obtained the coordinats (x,,y,,z,) and the corresponding velocity
vecor(4.452701327, 1.5666645370, -10.8730539400 km/sec).

o With these position and velocity vectors as initial values for the differential system
of the pure Kepler motion we get from the application of Runge-Kutta method the
coordinats ( x,, y,, 2, ) after 1000sec.

Finally, it should be mentioned that, all the results of the above numerical illustrations are in
agreements with results from which their data were taken.

CONCLUSION
In concluding the present paper, an efficient orbit determination method was developed using
Thorne's power series solution of Lambert problem. Its efficiency is due to factors such as:

e The used analytical power series is invariant under many operations because, addition,
multiplication, exponentiation, arising to powers, differentiation, integration, etc. of a
power series is also a power series. A fact which provides excellent flexibility in dealing
with the analytical as well as computational developments of problems related to orbit
determination.

¢ The method is universal in the sense that, it uses one algorithm for both elliptic and
hyperbolic orbits. Importance of the universal formulations is due to the fact that: during
space mission all types of the two body motion appear. For examples the escape from the
departure planet and the capture by the target planet involve hyperbolic orbits, while the
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intermediate stage of the mission commonly depicted as a heliocentric ellipse, may also be
heliocentric hyperbola. In addition, in some systems, the type of an orbit is occasionally
changed by perturbing forces during finite interval of time. Thus we have been obliged to
use different functional representations for motion depending upon the energy state and a
simulation code must then contain branching to handle a switch from one state to another
In cases where this switching i1s not smooth, branching can occur many times during a
single integration time-step causing some numerical “chatter”. Consequently, universal
formulations are desperately needed so that, orbit determination will be free of the
troubles, since a single functional representation suffices to describe all possible states.

e The method does not need the solution of Kepler’s equation and its variants for hyperbolic
orbits. A fact, which is very important, because these equations are transcendental and
could be solved by iterative methods which in turn need: (a) initial guess, (b) an iterative
scheme. In fact, these two points are not separated from each other, but there is a full
agreement that, even accurate iterative schemes are extremely sensitive to initial guess.
Moreover, in many cases the initial guess may lead to drastic situation between divergent

and very slow convergent solutions (Sharaf et al. 2007).

¢ The method 1s of dynamical nature, in the sense that it includes iterative schemes, such
that moving from one scheme to the subsequent one, only one additional instruction is
needed. This recurrent nature facilitates the computations of any number of the series
coefficients needed for accurate orbit determination,
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