&P International Journal of Computing and Digital Systems

2,

o S

A2 ™ j
e

0 AL,
L

oy

ISSN (2210-142X)
Int. J. Com. Dig. Sys. 13, No.1 (Jan-2023)

http://dx.doi.org/10.12785/ijcds/130107

Assuring Software Reuse Success Using Ensemble Machine
Learning Algorithms

Mustafa Hammad' and Mariam Amin?

'Department of Software Engineering, Mutah University, Al-karak, Jordan
’Department of Computer Science, University of Bahrain, Sakheer, Kingdom of Bahrain

Received 6 Dec. 2021, Revised 29 Sep. 2022, Accepted 13 Dec. 2022, Published 31 Jan. 2023

Abstract: Software reuse is a critical practice that helps software developers to increase their productivity. Also, it reduces the
developing effort and project budget. Howsoever, some factors may lead to a software reuse failure. Software development companies
have to consider these factors to prevent project failure due to software reuse. These factors are not only related to the technical aspects
of the project, but they cover the companies’ managerial decisions too. This work incorporates ensemble machine learning to predict
successful software reuse experience. To the best of our knowledge, this the first work that used ensemble learning to predict successful
software reuse. Also, a feature selection technique was used to extract the essential attributes from the dataset. The empirical study

showed remarkable results that scored an accuracy of 100%.

Keywords: Software Reuse, Ensemble Leaning, Stacking, Bagging, Voting, Wrapper Subset Evaluation

1. INTRODUCTION

In 1968, the NATO science committee sponsored a
conference, which discussed all concerns related to software
development and software engineering discipline. Some of
these concerns tackled the massive gap between the users’
expectations and the developed software. Also, the devel-
oped software lack meeting the requirements specifications
and suffered from budget overrun. Furthermore, it took
more time than scheduled to complete the software projects
[1]. It has been 53 years since the NATO conference,
but still, these concerns persist. Moreover, they become
more complicated nowadays due to the growth of software
project complexity. Typically, developing software takes a
lot of time and effort. Recruiting more workforce may
significantly increase the project cost. Large-scale software
projects or critical software such as space navigation sys-
tems require even more time and budget since any software
defect could be catastrophic.

According to Lehman’s laws of software evolution [2],
software changes are inevitable. The software’s complex-
ity will continue to grow until a software replacement
is more cost-effective than maintaining the existing one.
Furthermore, it is trivial to implement complex software
from scratch. Therefore, reusing well-tested software assets
would increase software development productivity and re-
duce the project cost. Furthermore, the surging growth of
Open Source Software (OSS) has offered a wide selection
of reusable software components [3]. Although software

reuse increases the software dependability and reduces the
error margins, selecting reusable software components can
be critical. In 1996, during flight 501 of Ariane 5, the
rocket veered the flight path at an altitude of 3700 miles
and exploded. The investigation concluded that the cause
of failure was a bug in a reused source code in the flight
control system [4]. Therefore, assessing software assets is
for reuse is very crucial and must be systematic.

Software reuse is a strategy that is adopted widely
among software developers. This strategy improves soft-
ware quality and reduces project time, which relieves some
pressure of the delivery deadlines. Also, it dramatically
increases the software developers’ productivity. There is
few successful commercial OSS provided a good source
for reusable software assets. In addition to that, some
organizations have developed their own software reuse
repository. However, assessing and selecting the appropriate
component could be a complicated, lengthy, and expensive
process that contradicts the purpose of reusing software.
One of the solutions that could improve the software
artifacts assessment is by utilizing machine learning.

Many researches focused on assessing the reusability
of software components by evaluating the source code.
However, other factors could play a role in the success of
the software reuse, such as the project settings, software
developers’ experience, motivation, and the top manage-
ment commitment. There are few pieces of researches that

E-mail address:' hammad @mutah.edu. Jo, 219980608 @ stu.uob.edu.bh,

http://journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/130107
http://journals.uob.edu.bh

s
@ iy
g’ ooy ;:X
E 2
%

A ™ j
70

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

utilize a single classifier to predict successful software reuse
experience. Therefore, there is a demand for prediction
models that use multiple classifiers to predict software reuse
experience. This work proposed two ensemble prediction
models using three types of ensemble machine learning
algorithms. These algorithms are stacking, bagging, and
voting.

The remaining of the study is structured as follows.
Section 2 briefly reviews some works of literature about
software reuse, machine learning, and ensemble learning.
Section 3 defines the proposed ensemble learning models.
Section 4, 5, 6 presents the proposed models’ components
in detail. Section 7 depicts the used evaluation criteria.
The results of the experiments are presented in Section 8.
Section 9 presents the best and worst ensemble predation
models. The threats to validity are discussed in Section 10.
Finally, Section 11 concludes this work.

2. REevratep WoRk

Software reuse reduces software development costs. Al-
Badareen et al. [5] studied the software reuse decision-
making based on the cost of specific scenarios for seven
software components. The study showed that developing
a new reusable software component from scratch might
cost more than the development of a standard software
component. However, reusing an acquired reusable software
asset might reduce the project cost by about 23%. The work
in [6] compares the cost of two software reuse strategies.
These strategies are platform-oriented and clown and own
by conducting 26 interviews and reviewing 57 pieces of
literature. The authors concluded to a similar result as [5],
which is developing reusable components is more expensive
than developing a single-use software component. Patrick
[7] hypothesized that software reuse cost is directly affected
by the software understandability and indirectly by soft-
ware complexity. The author proposed a machine learning
classifier (LANLAN). The classifier’s training data was
extracted from a Question and Answer (Q&S) forum. The
classifier had to distinguish whether the software reuse cost
was influenced by software understandability or software
complexity. The proposed classifier performed very well
with a ROC curve about 0.9.

Software reuse is considered a goal in modern devel-
opment methodologies. For instance, in Software Product
Lines (SPLs), Abbas et al. [8] proposed an approach that
recommended reusing software assets based on customer
requirements. The proposed approach links the new require-
ments with existed assets in the requirements repository
using natural language processing and machine learning.
The evaluation showed that the proposed approach could
match new requirements with existing assets with about
74% accuracy. In [9], The authors proposed a reuse sys-
tem. This system was integrated into the DevOps process
to manage and maintain the reuse repository. Also, the
proposed system would ease the process of reviewing,
identifying, and retrieving the reusable assets. A controlled

experiment was conducted to evaluate the effectiveness of
the proposed system. The results showed that the proposed
system performed very well but need further evaluation in
more complex situations. Lahouij et al. [10] proposed an
approach that helps preserve the reliability of the composite
cloud services. The proposed approach focuses on finding
and reusing the appropriate substitution if any composite
service component is unavailable. The authors’ evaluation
concluded that the proposed approach had reconfigured the
composite cloud services successfully.

Machine learning was leveraged in various ways in
software reuse. Negi and Taweri [11] assessed the reusabil-
ity of open source Object Oriented (OO) source code
using machine learning. The authors generated a dataset
using Chidamber and Kemerer (CK) metrics from selected
source codes. The prediction model scored about 98.4%
accuracy. Similar work in [12] predicted software compo-
nent reusability by proposing an algorithm that integrates
gradient boosting and random forest. The results conclude
that the proposed algorithm outperformed eight supervised
machine learning algorithms by 23%. In [13], data min-
ing was used to evaluate OO software components for
reuse. The experiments showed that data mining could be
useful in assessing software reusability. A novel approach
(Deepclone) was proposed by Hammad et al. [14]. This
approach uses deep learning to facilitate the reuse of code
clones from a source code repository. Deepclone predicts
the next required tokens based on what has been written.
The evaluation of the proposed approach showed promising
results.

Ensemble machine learning improves the prediction mo-
del outcomes. Zhang et al. [15] used the Internet of Things
(IoT) and ensemble learning to improve the accuracy of
electricity transformers fault detection. The ensemble model
evaluation showed a prediction improvement reached about
99%. The work in [16] assesses the performance of five en-
semble machine learning algorithms in classifying financial
data. The experiment results showed that ensemble learning
is effective and reliable in predicting corporate bankruptcy.
In [17], an ensemble learning model was proposed. This
model, which utilizes voting, detects brain cancer. The
results showed that the model was able to diagnose brain
tumors with an accuracy of 99%. Gao et al. [18] proposed
an adaptive voting algorithm to improve the ensemble
prediction of four machine learning classifiers. The authors
compared the performance of the proposed algorithm with
the prediction performance in previous works. The results
concluded that the proposed voting algorithm improved the
prediction outcomes. The work in [19] studied the effect of
proposed bagging-based ensemble learning on classifying
imbalanced datasets. The evaluation showed that there was a
significant improvement in the performance of the proposed
algorithms.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023)

¥
S
N

Gle aas
LN

%,

430 AL

Predicted Value

Ensemble Prediction Model

Feature Selection

Figure 1. Proposed Ensemble Prediction Models

TABLE I. Dataset Statistical Details

Statistical Component Statistical Detail

Number of the instances 23
Number of the attributes 24
Number of successful software 15
reuse instances

Number of failure reuse instances 8
Percentage of successful software reuse 65.22%
Percentage of failure software reuse 34.78%

3. Prorosep ENsEMBLE PrREpICTION MODELS

This work proposed two ensemble prediction models.
Figure 1 depicts the proposed models. According to Figure
1, the first proposed ensemble prediction model utilizes
the full dataset to predict software reuse experience. In the
second model, features selection technique was introduced
to the ensemble prediction model, as shown in Figure 1.
The purpose of introducing feature selection to the proposed
ensemble prediction model is to extract the most relevant
features from the dataset. Since, the redundant and irrelevant
features increase the data dimensionality without adding
new information to the dataset. This could negatively affect
the performance of the prediction model.

4. Usgep DATASET

The used dataset was constructed by interviewing 19
software development companies that introduced software
reuse in their industrial projects. The interviews were guided
by a questionnaire that was given to the interviewees.
Furthermore, the interview questions focus on collecting in-
formation about the companies such as business domain and
the number of staff. Also, information related to the reuse at
the organization level, such as management commitment to
software reuse and the employees’ training and awareness
about software reuse. In addition to that, reuse processes
and assets [20].

The software reuse dataset consists of 23 instances.
Each instance depicts a software project. Table I presents
statistical information about the used dataset. The dataset
is classified into two classes, successful software reuse,
and failure software reuse. The number of instances with
successful software reuses is 18 instances, which is about
65% of the dataset instances. Meanwhile, the total number
of failure instances is eight that is around 35% of the dataset
instances.

Furthermore, the dataset attributes were divided into
groups based on the company’s control over these attributes.
These groups are state variables and control variables. Any
attribute that requires weeks to change was considered as
a state variable. Table II presents the state variable of the
used dataset, the value of the attributes, and the attributes’
description.

The type of software production is one of the state
variables. The dataset authors defined a product-family
company that develops software that may evolve with time.
Meanwhile, the product company develops software that
shares anything in common. According to [20], fifteen
projects from the 20 projects were developed by product-
family companies have succeeded in reusing software as-
sets. Meanwhile, none of the product companies have
succeeded in reusing software. Furthermore, Table II shows
that the dataset covered 13 application domains. Telecom-
munication (TLC) and manufacturing application projects
are more likely to succeed in reusing software [20].

The second attribute group is the control variables,
which are influenced the company’s process of decisions.
These variables are divided into high-level control and low-
level control. Table III presents the control variable, possible
attribute values, and the attributes’ description. According
to [20], most of the projects that introduced the high control
variables had a successful software reuse experience. Also,
projects that have a loose reuse approach were successful.
In addition to that, companies with higher-grained assets are
more likely to succeed in their projects. Projects 51-100 or
100+ assets have a higher number of successful software
reuse experiences.

5. WRaAPPER FEATURE SELECTION

There are many benefits of using feature selection
techniques. For instance, it reduces the training time, helps
visualize the data, and optimizes the storage requirements.
In this paper, the primary purpose of using feature se-
lection techniques is to improve the prediction model’s
performance by removing the irrelevant attributes [21].
The selected feature selection algorithm is Wrapper Subset
Evaluation. The Wrapper Subset Evaluation uses a machine
learning classifier as an inducer. The inducer’s role is to
define a subset of dataset attributes where the accuracy of
the inducer algorithms is the maximum, and the selected
features are relevant [22]. The performance of the chosen
feature selection algorithm was tested in previous work [23].
Figure 2 depicts the variance of error rates between the
between the tested feature selection algorithms. In most
case the Wrapper Subset Evaluation scored the minimal
error rate. The low error rates indicate that the Wrapper
Subset Evaluation is the most accurate feature selection
algorithms among the tested algorithms. Also, this feature
selection algorithm improves the prediction of successful
software experience. Therefore, we choose the Wrapper
Subset Algorithm as a feature selection technique in the
proposed model. The wrapper subset evaluation algorithm

http://journals.uob.edu.bh

http://journals.uob.edu.bh

i

Lo b))

X

10 iy

e j
72 e

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

TABLE II. Description of Dataset State Variables

Attribute

Attribute Values

Attribute Description

Software staff

Overall staff

Type of software production

Software and product

SP maturity

Application domain

Type of software

Size of baseline

Development approach

Staff experience

S: (Small)
M: (Medium)

L: (Large)
S: (Small)
M: (Medium)

L: (Large)

X: (Extra-large)
Isolated
Product Family
Product

Alone

Process

Low

Middle

High

TLC

SE-Tools

Bank

Engine Controller
FMS

TS

ATC
Manufacturing7
Measurement
Finance

TTC

Space
Book-keeping
Technical

Business

Embedded-RT
Non-Embedded-RT
S: (Small)

M: (Medium)
L: (Large)

00
Proc
Low
Middle
High

Software development team is small which about 1- 50 team members
Software development team is medium which can between 51- 200
team members

Software development team is large and ranges from 201 and more
Company’s employee is small which ranges from 1 to 50 employees
Hired employees is considered medium which can be between 51
and 200

Overall staff is large and ranges from 201and 500

Company’s staff is extra-large which is more the 501 employees
There is no commonality between the company’s project

There is commonality between the company’s project

The developed software is embedded inside a product

The developed software is a standalone product

The developed software embedded inside a process

The Capability Maturity Model (CMM) level of the software process
is 1 or it is not ISO9001 certified

The CMM level of the software process is 2 it is ISO9001 certified
The CMM level of the software process is 3 or more
Telecommunications

Software tools

Bank applications

Engine controller application

Fire management applications

Train simulation applications

Air traffic control application

Manufacturing applications

Measurement environment control and management applications
Finance applications

Train Traffic Applications

Aerospace applications

Book keeping applications

The develop software neither embedded nor real-time with limit

or no database

The develop software neither embedded nor real-time but database
intensive

The developed software is embedded and real-time

The develop software is not embedded but real-time

The of reused assets in a projects is less than 10KLOC and take
10 person-months of effort

The of reused assets in a projects is between 10KLOC and 100KLOC
and take effort of 10 to 100 person-months

The of reused assets in a projects ranges between 100

to S00KLOC and take more than 100 person-months of effort
Object oriented development approach

Procedural development approach

The experience of project members is one year or less

The experience of project members between 2 and 4 years

The experience of project members is more than five years

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023)

0
S "}?}

)

S

&30 Alisy;
v
£

) 73

TABLE III. Description of Dataset Control Variables

Control Level Attribute

Attribute Values

Attribute Description

High Top management commitment yes
no
Key reuse roles introduced yes
no
Reuse processes introduced yes
no
Non-reuse processes modified yes
no
Repository yes
no
Human factors yes
no
Low Reuse approach Tight
Loose
Work products D+C
C
R+D+C
Domain analysis yes
no
Origin €X-Nnovo
as-is
reeng
Independent team yes
no
When assets developed before

Just in time
Qualification yes

no
Configuration management yes

no
Reward s policy yes
no
1-20
21 -50
51 - 100
100+

assets

Whether the top management are committed to adopt
software reuse as a prominent practice

The reuse initiative came from the middle management
or the individuals

Indicator whether any reuse role was given to a project
team member

At least one software reuse process was introduced

The development process which are not related

to reuse were modified

Whether the software assets is established are assets
are stored in repository

Whether the staff were aware and trained about
software reuse

Reusable product the tightly coupled cannot be isolated
Reusable product the loosely coupled can be isolated
Type of the reusable assets Design D, Requirement R,
Code C

Whether is the baseline of the product was established
by domain analysis or not

Software assets were developed from scratch

Software assets were reused as it is

Software assets were reengineered from existing product
Indicator that there is a dedicated reuse team with

the project to develop the reusable assets

The reusable assets were developed before the project’s
need

The reusable assets were developed during the project
There is a quality process that defined the reusable
assets

The reusable assets are maintained by a configuration
managements

The existence of a reward policy that promotes
software reuse

Total number of the reusable assets which are stored
in the repository

extracted a features subset that contains three attributes from
the used dataset. These attributes are the type of software
production, application domain, and human factors.

6. ENSEMBLE ALGORITHMS

Ensemble learning is a machine learning methodology
that combines multiple learning classifiers. The primary
purpose of combining machine learning classifiers is to
eliminate the errors and risks when using a single classifier
[24]. Moreover, ensemble learning improves the perfor-
mance of the prediction by counterbalance the weakness of
a single classifier. Furthermore, the volume of the dataset
may cause problems while training the classifier. For in-
stance, it is impractical to introduce a single classifier on
a large dataset. Therefore, the optimal solution is to divide

=

REPTree Simple OneR Random Decision
Logistic Committee Table

Classifier Attribute Evaluation = Correlation Attribue Evaluation
® Wrapper subset Evaluation Classifier Subset Evaluation

0.15

0.10

= il
0.00 I

JRip LwL SGD

= Full Dataset
InfoGrainSubsetEval
u CfsSubsetEval

Figure 2. Summary of Testing Feature Selection Algorithms on The
Selected Dataset

http://journals.uob.edu.bh

http://journals.uob.edu.bh

74

b
S Q“ .

e
:

% e iy /
%,
Ry . s

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

the dataset into subsets where each subset is used to train
multiple classifiers. Also, ensemble learning may resolve
problems that are caused when using a small dataset [25]. In
this work, three ensemble algorithms were used to improve
the prediction models’ performance. These algorithms are
Stacking, Bagging, and Voting. The selected ensemble
algorithms are described as following:

Stacking: is a type of ensemble learning that com-
bines multiple classification algorithms. Basically,
the learning process of stacking learning consists of
two stages. Basically, the learning process of stack-
ing learning consists of two stages. The first stage
combines different machine learning classifiers P={P;
(s,f),i=1,... I}, which are called base classifiers. Each
base classifier utilizes the training set f. The second
stage is the meta-learning stage, where a single ma-
chine learning classifier M uses the outputs on the
base classifiers as an input to generate the ensemble
learning final outcome [24], as shown in Figure 3a.
Therefore:

Jstack(s) = M(s, P) ey

where jgack (8) is the final stacking prediction of the
input s. In this paper, six supervised machine learning
classifiers were chosen for the first stage of the stack-
ing. These classifiers are Hoeffding Tree, Random
Forest, Naive Bayes, Stochastic Gradient Descent
(SGD), J48, and Multilayer Perceptron (MLP). Also,
three machine learning algorithms were used as meta-
learners in the second stage of the stacking. These
algorithms are SGD, Sequential minimal optimization
(SMO), MLP.

Bagging: this type of ensemble algorithms uses a
single machine learning classifier. However, it gen-
erates different replicates from the classifier. These
replicates use different subsets of instances from
the dataset [26]. Bagging algorithms improve the
prediction outcome by reducing the classifier variance
and the mean square error, which will create a more
stable classifier [27]. The predictor P(s,f) that utilizes
the training set of f{(ji,...,jm,Sn), m= 1,...M, n=
1,...,N} and input j to predict the value j can predict a
better results if replicates of the predictor were trained
on different subsets of the training set fy {fx C f,
k=1,...,K }, Therefore:

Jrag(8) = ar%’fmlaxw(s, £0))

where jyag(s) is the maximum aggregated prediction,
K is the number of training subsets. The bagging al-
gorithm’s final result is generated by plurality voting
[28], shown in Figure 3b. In the bagging experiments,
three machine learning algorithms were used as base
classifiers. These algorithms are SGD, SMO, and
MLP.

Voting: the vote combiner utilizes different robust
machine learning classifiers on the same dataset f.
The predictions’ results are combined using a voting
rule to obtain the final outcome, as shown in Figure
3c. Voting can provide a better output than using
a single machine learning classifier. Therefore, it
improves the prediction model reliability [29]. In this
work, six machine learning classifiers were combined
using voting ensemble learning to predict successful
software reuse experience. These classifiers are Ho-
effding Tree, Random Forest, Naive Bayes, SGD, J48,
and MLP. Moreover, the voting learning experiment
was repeated five times for each combination rules.
The selected combination rules are as following [30]:
o Average of probabilities (AP): this voting rule
calculates the mean value of each predicted
class. The final predict would the class that has

the maximum mean value such that

M
jar(s) = max 2 Palslpm)

o Product of probabilities (PP): the Final class is
class that has the maximum product value of
among the products values of predicted classes.
Therefore final classification is computed by the
following formula:

M
jer(s) = max [[Pactn @

o Majority voting (MV): when assigning the final
class using the MV the class the has the highest
votes is considered the final results. Therefore,

jnv(s) = max Py(sf) 5)

o Minimum probability (MinP): in this combina-
tion rule, the minimum posterior probabilities
of each class computed. Then, the final clas-
sification is the maximum value among these
minimum values

) kK M
Jminp(8) = max min Pu(slf) (6)

o Maximum probability (MaxP): this combina-
tion rule assign the final classification to the
maximum value among the maximum posterior
probabilities for each individual. Therefore the
final prediction is calculated by the following
equation:

. K M
JMaxp(8) = max max P (slf) @)

Where k is the number of voting classifiers, m number
of predictions of each classifier, P is the posterior
probabilities of the classifier, and s is the true class
of the features f.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023)

I
I | Classifier 1 | | Classifier 2 | | Classifier 3 || Classifier n |
I

| Classifier 1 | | Classifier 2 | | Classifier 3 || Classifier n :
|

| Classifier 1 | | Classifier 2 |

| Classifier 3 | | Classifier n |

Predicted Value

(a) Stacking

Plurality Voter
Predicted Value

(b) Bagging

Voting Rule
Predicted Value

(c) Voting

Figure 3. Ensemble Algorithms

7. Usep EVALUATION CRITERIA

There are various statistical metrics to assess the per-
formance of machine learning models. Seven evaluation
metrics were selected to evaluate the chosen ensemble
learning algorithms. These metrics are the following:

e True Positive Rate (TPR): TPR also referred to as
recall or sensitivity, is one of the evaluation criteria
derived from the confusion matrix. TPR is the ratio
of the number of correctly classified instances and the
instance of actual positive instances [31]. TPR can be
calculated using the following formula

TPR=TP/(TP+ FN) ®)

where TP is the number of true positive instances,
FN the number of false negative instances.

e False Positive Rate (FPR): FPR is the rate at which
the classifier has incorrectly classified the instances as
false positives. The FPR value is the fraction of the
number of false positive instances by the number of
actual negative instances [31]. The FPR is evaluated
as the following

FPR =FP/(FP+TN) ©)

where FP is the number of false positive instances,
TN the number of true negative instances.

e Precision: This criterion presents the ratio between
the true positive instances and positive classified
instances [31]. The following formula can derive the
precision value

Precision = TP/(TP + FP) (10)

where TP is the number of true positive instances, and
FP is the total number of false positives instances.

e Mean Absolute Error (MAE): MAE is an evaluation
metric that measures the error of predicting the over-
all instances in the dataset [31]. This error rate can
be derived from the following formula

MAE =) lyi = xil/n 1)

n

i=1

where y; is the real target value of an instance, x;
is the predicted value of an instance, n is the total
number of dataset instances.

e Receiver Operating Characteristic (ROC) area: The
ROC area value shows the tradeoff between the
sensitivity and FPR. It represents the threshold value,
which the classifier distinguishes, the positive from
negative classification. ROC area is useful to identify
how to minimize the error rates. Also, it is helpful to
compare the performance between multiple classifiers
[31].

e Time Taken to Build the Model: This evaluation
criterion presents the execution time required to build
the model and classify the dataset instances [32]. The
time taken to build the model is useful when assessing
the model’s effectiveness [33].

e F-measure: The f-measure helps in assessing the
accuracy of the prediction model. F-measure creates a
harmonic mean that combines the values of the recall
and precision. This combined value is used to judge
whether the prediction model has a good performance
or not [31]. The following formula calculates the f-
measure value

2(Precision = Recall)

B _ 12
f —measure (Precision + Recall) (12)

8. ExPERIMENTAL REsuLTS

The experiments were conducted using WEKA 3-9-3
with the default settings. The selected training technique
was ten folds cross-validation. This technique is widely used
to test the machine learning classifier due to its reliabil-
ity. Training and testing the machine learning classifier is
repeated in iterations. Also, the dataset is divided equally
into ten subsets called folds. In each iteration, the classifier
used nine folds for training and one fold for testing. This
process ended when the classifier tested all the data [34].
The following subsections present the experiments’ results
in detail.

A. Stacking
This subsection presents the results of using stacking
algorithm to predict successful software reuse experience.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

\}
@ iy
g’ ooy ;:X
g 2

2 e iy j
76

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

Also, the subsection shows the effect of incorporating
feature selection with stacking algorithm.

1) Prediction Using Full Dataset

This subsection analyzes the results obtained from ap-
plying stacking algorithms on the full dataset. Table IV
shows the performance results of the stacking prediction
models. Overall, all prediction models took about eight
seconds to build the model. The stacking experiments’ true
positive rates vary between 0.826 and 0.913, while the false
positive rates were between 0.105 and 0.209. The MAE
rates were relatively low. The error rate values vary between
0.0969 and 0.1739. Also, the ROC area results indicate
the prediction models’ good performance. In general, all
prediction models have a high capability of distinguishing
between success and the failure of the software reuse
experience. However, applying stacking algorithms with
MLP as a meta-classifier has outperformed the other models
since its ROC area scored 0.973, which is the closest to 1.

2) Prediction After Feature Selection

This subsection analyzes the results of using stacking
algorithm after applying the feature selection technique.
Table V stated the performance criteria results, which shows
that evaluation criteria scored the best results. All prediction
models have successfully classified all the dataset instances
shown since TPR and FPR are 1 and 0, respectively. Fur-
thermore, the MAE of the Stacking with MLP was 0.0154,
which is extremely low to negligible. Meanwhile, the MAE
of stacking with SMO and SGD was 0. Also, the precision
results of the prediction models scored were the best value
that is 1. In addition to that, all models took about 0.5
seconds to be built. The ROC area results indicate that the
stacking prediction models have an excellent performance.
The models scored the best results, which is 1. A Roc area
equals one indicates that the models have a good measure
of separating the successful software reuse experience from
failed experience.

3) Comparison Performance Results Before and After Fea-

ture Selection

This subsection presents the effect of applying feature
selection techniques on stacking algorithm. According to
Table IV and Table V , there is a significant improvement
in instances classification. The prediction models failed to
classify some of the dataset instances before applying the
feature selection technique; meanwhile, the prediction mod-
els have all the instances successfully. Figure 4 shows the
improvement of MAE rates after applying feature selection.
The error rates of stacking using the SGD and SMO as
meta-classifiers have sharply plunged to zero. Meanwhile,
the error rate stacking with MLP has significantly declined
from about 0.1 to 0.01.

B. Bagging

The subsection presents experimental results of applying
bagging as an ensemble prediction model on the full dataset.
Also, it discusses the effect of feature selection on bagging
algorithms.

Stacking + MLP —

»
2
o
o
)
S

a
+
%)
<
(o]

Prediction Model

Stacking + scp |

0.00 0.05 0.10 0.15 0.20
MAE

m Full Dataset m Selected Features

Figure 4. Progressions of The Error Rates Before and After Feature
Selection

1) Prediction Using Full Dataset

Table VI presents the evaluation criteria of applying
bagging ensemble learning of the full dataset. The TPR
and FPR of bagging with SMO have the best results that
are 1 and 0, respectively. This points out that bagging with
SMO had classified all the instances correctly. Meanwhile,
bagging with SGD and MLP has failed in classifying all the
instances correctly. The effectiveness of bagging with SGD
and SMO is more than bagging with MLP since the time
taken to build the model was 8.86 seconds. Moreover, the
error rates were minimal. The bagging with MLP scored
the highest MAE rate that is 0.0618, which indicates that
this prediction model is less efficient than bagging with
SMO and SGD. However, the ROC area of bagging MLP
has the best value that is 1. The ROC area measures
the performance of the prediction model. The closer the
ROC area value is to 1, the better. Therefore, bagging
with MLP and SMO outperformed bagging with SGD.
Furthermore, the precision of bagging with SMO scored
the best value; meanwhile, the precision of bagging with
MLP and bagging with SGD was slightly lower by 0.087
and 0.0041, respectively.

2) Prediction After Feature Selection

To improve the bagging algorithms’ performance feature
selection technique was applied. Table VII presents the
results of the bagging prediction models after selecting
the relevant attributes. According to Table VII, all bagging
models have correctly classified the dataset instances. The
true positive rate, false positive rate, and Roc area scored
1,0, and 1 respectively. The results are considered the
best outcome that any classifier can achieve. The ROC
area, which evaluates the prediction model performance,
showed that all bagging models have good performance
since the ROC area has reached 1. The MAE rates range
between 0.0087 and 0.0711, which are very superficial.
Also, bagging with SGD and SMO were more effective than
bagging with MLP since the time taken to build the models
is better by 0.44 and 0.32 seconds. Also, all prediction
models have the best precision value.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

0
A

.
5@?@% J-:\

& 1
RACEEA T

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023) y""‘hw)j 77

TABLE IV. Results of Applying Stacking Algorithm on The Full Dataset

Prediction Model TP FP Precision ROC MAE Time taken to build

(Full Dataset) Rate Rate Area model (seconds)
Stacking + SGD 0.870 0.186 0.869 0.842 0.1304 8.75
Stacking + SMO 0.826 0.209 0.826 0.808 0.1739 8.76
Stacking + MLP 0913 0.105 0.913 0.973 0.0969 8.88

TABLE V. Results of Applying Stacking Algorithm on Selected Features

Prediction Model TP FP Precision ROC MAE Time taken to build

(Selected Features) Rate Rate Area model (seconds)
Stacking + SGD 1.000 0.000 1.000 1.000 0.0000 0.53
Stacking + SMO 1.000 0.000 1.000 1.000 0.0000 0.54
Stacking + MLP 1.000 0.000 1.000 1.000 0.0154 0.54

TABLE VI. Results of Predicting Software Reuse Using Bagging

Prediction Model TP FP Precision ROC MAE Time taken to build

(Full Dataset) Rate Rate Area model (seconds)
Bagging + SGD 0913 0.105 0.913 0.992 0.0478 0.04
Bagging + SMO 1.000 1.000 1.000 1.000 0.0304 0.49
Bagging + MLP 0.957 0.082 0.959 1.000 0.0618 8.86

TABLE VII. Evaluation Criteria Results of Using Bagging with Feature Selection

Prediction Model TP FP Precision ROC MAE Time taken to build

(Selected Features) Rate Rate Area model (seconds)
Bagging + SGD 1.000 0.000 1.000 1.000 0.0087 0.01
Bagging + SMO 1.000 0.000 1.000 1.000 0.0087 0.13
Bagging + MLP 1.000 0.000 1.000 1.000 0.0711 0.45

3) Comparison Performance Results Before and After Fea-

Prediction Model

ture Selection
Features selection technique helps to improve the pre- Bagging + MLP “

to build the model has significantly improved, especially

for bagging with MLP, where the time taken has decreased

with MLP has slightly increased by 0.00093 points. On

the other hand, the MAE of bagging with SGD and SMO 00 hm kG G ne o oor o

diction model’s performance. The bagging models have
benefited from feature selection. For instance, the time taken

Bagging + SMO F
from 8.86 to 0.54 seconds, as shown in Table VI and Table _
VII. However, Figure 5 shows the error rate of bagging Bagging* SGD -
have efficiently improved by 0.0391 and 0.0217 points, u Full Dataset u Selected Features
respectively.

Figure 5. Effect of Feature Selection on MAE rates

http://journals.uob.edu.bh

http://journals.uob.edu.bh

b
S Q“ .

>

Lo b))

10 iy

e j
78

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

C. Voting

This subsection of presents the voting results of the
voting ensemble prediction models before and after feature
selection.

1) Prediction Using Full Dataset

Table VIII shows that the best combination rule to
classify the dataset was the majority voting. The majority
voting got the best TPR and FPR results that is, 1 and
0 consecutively. Therefore, the classified majority voting
has classified all instances correctly. Meanwhile, the worst
combination rule was the maximum probability since it
scored the lowest TPR and the highest FPR. Also, the
error rates are considered low. The MAE results were
between 0.0952 and 0.2126. Furthermore, the products of
probabilities and minimum probability voting rules failed
to classify two instances.

Although voting with majority voting has the best results
of the evaluation criteria, the model is the least effective
since it took 0.93 seconds to build it. Two voting models that
use the product of probabilities and minimum probability
could not classify two instances, while the rest of the voting
models classified all the instances.

The ROC area results measure the prediction model’s
ability to distinguish between the dataset’s classes. The
closer the ROC area value to one, the better. According
to Table VIII, voting with majority voting has the best
performance, followed by voting with average probabilities.
Meanwhile, the least performance model was the voting us-
ing minimum possibility and product of probabilities. Also,
voting with maximum probability has the least precision
results, which 0.869 meanwhile, the most precise voting
model use the majority voting.

2) Prediction After Feature Selection

Table IX illustrates the results of the voting prediction
models after applying the feature selection technique. The
results showed that two of the voting models have correctly
classified all the dataset instances. These voting models
used the average of probabilities, majority voting. The true
positive rates and false positive rates for the voting with
products of possibilities and minimum probability were 1
and 0, respectively. However, These products of possibilities
and minimum probability could not classify one instance.
Moreover, the TPR and FPR of voting with maximum
probability indicate that the model had misclassified some
instances.

Furthermore, the voting models’ error rates were min-
imal and varied between 0.140 and 0. In addition to that,
the ROC area results show that all voting models have a
good performance in predicting software reuse experience.
Furthermore, voting using the maximum probability, as a
voting rule, was the least precise model among the voting
model, shown in Table IX.

Vting + M ——
< Voting + MinP I
o
o
=
§ Voting + MV
k=)
g
£ .
a Voting + PP I
Voting + AP —
0.00 0.05 0.10 0.15 0.20 0.25

MAE

® Full Dataset m Selected Features

Figure 6. Progression of MAE Before and After Using Feature
Selection

3) Comparison Performance Results Before and After Fea-
ture Selection

This subsection highlights the features selection tech-
nique’s effect on the prediction models’ performance. In
general, there is a significant improvement. The time taken
to build the model was reduced for all voting models in
an average of 0.838 seconds. Also, the true positive rates
and false positive rate of voting with average of proba-
bilities, products of possibilities, and minimum probability
improved to the best results, which is 1 and 0, respectively.
Moreover, the number of unclassified instances for voting
with products of probabilities and minimum probability has
reduced to one instance, as shown in Table VIII and Table
IX.

Figure 6 illustrates the error rate improvement before
and after applying feature selection techniques. MAE result
for voting with majority voting remains the same, which
is 0. Voting with average of probabilities has improved
by 0.0389 points. In addition to that, voting with maxi-
mum probability has also been enhanced by 0.0725 points.
Meanwhile, error rates of voting minimum probability and
products of probabilities experienced a reduction to the best
error rate results that is 0.

9. DiscussioN

The f-measure was utilized to evaluate, compare the
performance for experimented prediction models. Moreover,
two evaluation criteria were used to identify the best and
worst ensemble prediction models. These evaluation criteria
are the f-measure and MAE. Figure 7 illustrates the stacking
models’ performance also depicts the effect of using the
Wrapper Subset Evaluation as a feature selection technique.
Overall, the performance of all stacking ensemble models
had improved after applying feature selection. Stacking with
SMO as a meta-learner witnessed the best progression. The
f-measure has jumped from about 0.8 to 1. This shows
the wrapper subset evaluation has a positive impact on the
stacking ensemble learning performance. The best stacking
ensemble model was the stacking with SMO since the MAE
and f-measure have achieved the best results, which are
0 and 1, sequentially. Meanwhile, stacking with MLP is

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023)

%
&) ,“ .

)

S

™) j
K
Raiy + P

0 Alisy,

79

TABLE VIII. Performance Results of Applying Voting Learning on The Full Dataset

Prediction Model TP FP Precision ROC MAE Time taken to build Unclassified
(Full Dataset) Rate Rate Area model (seconds) Instances
Voting + AP 0913 0.105 0913 0.992 0.1063 0.92 0
Voting + PP 0905 0.119 0.905 0.861 0.0952 0.91 2
Voting + MV 1.000 0.000 1.000 1.000 0.0000 0.93 0
Voting + MinP 0.905 0.119 0.905 0.861 0.0952 0.88 2
Voting + MaxP 0.870 0.186 0.869 0.963 0.2126 0.89 0
TABLE IX. Evaluation Criteria of Voting Learning on Selected Features

Prediction Model TP FP Precision ROC MAE Time taken to build Unclassified
(Selected Features) Rate Rate Area model (seconds) Instances
Voting + AP 1.000 0.000 1.000 1.000 0.067 0.08 0
Voting + PP 1.000 0.000 1.000 0.980 0.000 0.06 1
Voting + MV 1.000 0.000 1.000 1.000 0.000 0.07 0
Voting + MinP 1.000 0.000 1.000 0.980 0.000 0.06 1
Voting + MaxP 0.957 0.082 0.959 1.000 0.140 0.07 0

1.200

1.000

0.800

0.600
m Full Dataset

Selected Features

F-measure

0.400
0.200

0.000

Stacking + SGD Stacking + SMO Stacking + MLP

Prediction Model

Figure 7. Performances of Stacking Prediction Models Before and
After Feature Selection

considered the worst since it scored the highest MAE even
after applying feature selection, as shown in Figure 4.

Figure 8 depicts the bagging ensemble learning perfor-
mance with and without feature selection. In general, all
bagging prediction models have scored the best results for
the f-measure after utilizing feature selection performance.
The performance of bagging using SGD on the full dataset
was the worst. However, bagging with SGD performance
had sharply improved when feature selection was introduced
to the model. Meanwhile, the feature selection had neither a
positive nor negative impact on bagging with SMO. The f-
measure of bagging with SMO was one, which is the highest
result a prediction model could achieve. The performance
of bagging with MLP has significantly improved; however,
the error rate has slightly increased after applying feature
selection, as shown in Figure 5 . When comparing the
error rates in Figure 5 and performance in Figure 8, it

1.020
1.000
0.980
0.960
0.940

m Full Dataset

0.920 Selected Features

F-measure

0.900

0.880

i

Bagging + SGD

0.860
Bagging + SMO

Prediction Model

Bagging + MLP

Figure 8. Performances of Bagging Prediction Models Before and
After Feature Selection

can be educed that introducing Wrapper Subset Evaluation
to bagging with MLP is best in terms of performance
and efficiency. Meanwhile, bagging with MLP is the worst
among the bagging models.

The impact of the feature selection on the voting
ensemble prediction models was also positive. However,
voting ensemble prediction with majority voting did not
improve when applying feature selection since the majority
voting outperformed all the other voting rules with or
without feature selection. The model had scored the best
performance results, which is one, as shown in Figure 9.
Also, Figure 6 shows that majority voting has the lowest
error rates. Meanwhile, the maximum probability has the
most deficient performance and error rates among the voting
prediction models.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

iy

Lo b))

X

10 iy

e j
80

Hammad & Amin: Assuring Software Reuse Success Using Ensemble Machine Learning Algorithms

1.050

1.000

0.950 —

1l

Voting + AP Voting + PP Voting + MV Voting + MinP Voting + MaxP

m Full Dataset
Selected Features

F-measure

Prediction Model

Figure 9. Performances of Voting Prediction Models Before and
After Feature Selection

10. THREATS TO VALIDITY

There is no machine learning algorithm that superiorly
classifies all the instances. Therefore, another classifier may
obtain different outcomes while classifying the dataset.
Moreover, the size of the dataset is extremely small, which
may affect the classifier’s performance. Also, the prediction
models may react differently if the dataset was the larger
than the used dataset.

11. CoNcLUSION

It has been more the half of century since the NATO
science committee expressed its concerns about software
development productivity and the quality of the developed
software. The experts and researchers in the software en-
gineering discipline are determined to increase software
development productivity and reduce the development time
and effort. Software reuse is one of the practices which
software development professional adopt to solve NATO
concerns. However, some factors may prevent the success of
reusing software assets. The software engineering discipline
has to consider the non-technical factors that contribute to
the success of the software development project. In this
work, ensemble learning was utilized to ensure the success
of the software reuse experience. Three ensemble learning
algorithms were selected. These algorithms are stacking,
bagging, and voting. Also, Wrapper Subset Evaluation was
used to improve the outcome of the ensemble learning.
The results showed that ensemble leaner had performed
very well in distinguishing the successful software reuse
experience. Moreover, feature selection positively impacted
the ensemble learner’s prediction where the accuracy re-
searched 100% in some experiments. The experimental
results also showed that voting using the majority voting
obtained the optimal results compared to other ensemble
learning models. Meanwhile, bagging with SGD on the full
dataset was the worst ensemble prediction model. However,
the used dataset is relatively small. Also, the portion of the
failure software reuse instance to successful software reuse
instances is around 1:2. This portion indicated an imbalance
in the used dataset. The future work will concentrate on
finding the appropriate techniques to solve the dataset size
and imbalance.

REFERENCES

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Naur and B. Randell, “Report on the nato software engineering
conference,” NATO Scientific Affairs Division, 1968.

M. M. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology. Springer, 1996, pp.
108-124.

Lampropoulos et al., “React-a process for improving open-source
software reuse,” in 2018 11th International Conference on the
Quality of Information and Communications Technology (QUATIC).
IEEE, 2018, pp. 251-254.

J.-L. Lions et al., “Flight 501 failure,” Report by the Inquiry Board,
vol. 190, 1996.

A. B. AL-BADAREEN et al., “In the process of software devel-
opment: Available resources and applicable scenarios,” Journal of
Theoretical and Applied Information Technology, vol. 99, no. 1,
2021.

J. Kriiger and T. Berger, “An empirical analysis of the costs of clone-
and platform-oriented software reuse,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020,
pp. 432-444.

M. T. Patrick, “Exploring software reusability metrics with q&a
forum data,” Journal of Systems and Software, vol. 168, p. 110652,
2020.

M. Abbas et al., “Automated reuse recommendation of product line
assets based on natural language requirements,” in International
Conference on Software and Software Reuse. Springer, 2020, pp.
173-189.

N. Ali et al., “A hybrid devops process supporting software reuse: A
pilot project,” Journal of Software: Evolution and Process, vol. 32,
no. 7, p. €2248, 2020.

A. Lahouij et al., “Dynamic reconfiguration of cloud composite
services using event-b,” in International Conference on Software
and Software Reuse. Springer, 2020, pp. 69-84.

P. Negi et al., “Machine learning algorithm for assessing reusability
in component based software development,” EasyChair, Tech. Rep.,
2020.

A. K. Sandhu et al., “Software reuse analytics using integrated
random forest and gradient boosting machine learning algorithm,”
Software: Practice and Experience, 2020.

B. A. Prakash et al., “Application of data mining techniques for
software reuse process,” Procedia Technology, vol. 4, pp. 384-389,
2012.

M. Hammad et al., “Deepclone: Modeling clones to generate code
predictions,” in International Conference on Software and Software
Reuse. Springer, 2020, pp. 135-151.

C. Zhang et al., “Transformer fault diagnosis method using iot
based monitoring system and ensemble machine learning,” Future
Generation Computer Systems, vol. 108, pp. 533-545, 2020.

S. Lahmiri et al., “Performance assessment of ensemble learning
systems in financial data classification,” Intelligent Systems in Ac-
counting, Finance and Management, vol. 27, no. 1, pp. 3-9, 2020.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 69-81 (Jan-2023)

0
S "}5

)

S

Y’ g1

&30 Alisy;

£
¥

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

L. Brunese et al., “An ensemble learning approach for brain cancer
detection exploiting radiomic features,” Computer methods and
programs in biomedicine, vol. 185, p. 105134, 2020.

X. Gao et al., “An adaptive ensemble machine learning model for
intrusion detection,” IEEE Access, vol. 7, pp. 82512-82 521, 2019.

W. Feng et al., “Class imbalance ensemble learning based on the
margin theory,” Applied Sciences, vol. 8, no. 5, p. 815, 2018.

M. Morisio et al., “Success and failure factors in software reuse,”
IEEE Transactions on software engineering, vol. 28, no. 4, pp. 340—
357, 2002.

X. Deng et al., “An improved method to construct basic probability
assignment based on the confusion matrix for classification prob-
lem,” Information Sciences, vol. 340, pp. 250-261, 2016.

R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.

M. Amin and M. Hammad, “Improving software reuse prediction
using feature selection algorithms,” in 2020 International Confer-
ence on Innovation and Intelligence for Informatics, Computing and
Technologies (3ICT). 1EEE, 2020, pp. 1-6.

O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. &, no. 4, p. e1249, 2018.

R. Polikar, “Ensemble based systems in decision making,” IEEE
Circuits and systems magazine, vol. 6, no. 3, pp. 21-45, 2006.

L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123-140, 1996.

P. Biihlmann, B. Yu er al., “Analyzing bagging,” The Annals of
Statistics, vol. 30, no. 4, pp. 927-961, 2002.

L. I. Kuncheva, Combining pattern classifiers: methods and algo-
rithms. John Wiley & Sons, 2014.

B. Parhami, “Voting algorithms,” IEEE transactions on reliability,
vol. 43, no. 4, pp. 617-629, 1994.

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining
classifiers,” IEEE transactions on pattern analysis and machine
intelligence, vol. 20, no. 3, pp. 226-239, 1998.

[31]

[32]

[33]

[34]

C. Sammut and G. I. Webb, Encyclopedia of machine learning.
Springer Science & Business Media, 2011.

S. Alabdulwahab and B. Moon, “Feature selection methods simul-
taneously improve the detection accuracy and model building time
of machine learning classifiers,” Symmetry, vol. 12, no. 9, p. 1424,
2020.

A. Ozdemir et al., “Performance evaluation of different classifica-
tion techniques using different datasets,” International Journal of
Electrical and Computer Engineering, vol. 9, no. 5, p. 3584, 2019.

T. C. Smith and E. Frank, “Introducing machine learning concepts
with weka,” in Statistical genomics. Springer, 2016, pp. 353-378.

Mariam Amin received her M.Sc. degree
in Software Engineering from the University
of Bahrain in 2022. In 2005, she received
her B.Sc. in Computer Science from the
University of Bahrain. Also, she works as
a Computer Specialist at Bahrain Defense
Force, Royal Medical Services. Her current
research focus is in software analysis and
evolution and machine learning.

Mustafa Hammad is an Associate Profes-
sor in the Department of Computer Science
at the University of Bahrain. He received his
Ph.D. in Computer Science from New Mex-
ico State University, the USA, in 2010. He
received his Master’s Degree in Computer
Science from Al-Balqa Applied University,
Jordan, in 2005 and his B.Sc. in Computer
Science from The Hashemite University, Jor-
dan, in 2002. His research interests include

wireless sensor network, machine learning, software engineering
with a focus on software analysis and evolution.

http://journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Related Work
	Proposed Ensemble Prediction Models
	Used Dataset
	Wrapper Feature Selection
	Ensemble Algorithms
	Used Evaluation Criteria
	Experimental Results
	Stacking
	Prediction Using Full Dataset
	Prediction After Feature Selection
	Comparison Performance Results Before and After Feature Selection

	Bagging
	Prediction Using Full Dataset
	Prediction After Feature Selection
	Comparison Performance Results Before and After Feature Selection

	Voting
	Prediction Using Full Dataset
	Prediction After Feature Selection
	Comparison Performance Results Before and After Feature Selection

	Discussion
	Threats to Validity
	Conclusion
	References
	Biographies
	Mariam Amin
	Mustafa Hammad

