
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys.13, No.1 (May-23)

http://dx.doi.org/10.12785/ijcds/1301118

Reinforcement Learning: A review
Hanae MOUSSAOUI1, Nabil EL AKKAD1 and Mohamed BENSLIMANE2

1LISA, Engineering, Systems, and Applications Laboratory, ENSA of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2LTI Laboratory, EST of Fez Sidi Mohamed Ben Abdellah University, Fez, Morocco

Received 28 Sep. 2022, Revised 1 May. 2023, Accepted 23 May. 2023, Published 30 May. 2023

Abstract: Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the
trial-and-error technique. The process starts with the main actor that is the agent interacting with a given environment and attempting
to achieve a multi-step goal within this environment. The environment is characterized by a state that the agent detects and examines.
On the other hand, due to the agent’s several actions, the environment’s state changes according to these modifications. Eventually,
and at this stage, the agent gets reward signals as it proceeds nearer to its goal. The agent uses these rewards signals to determine
which actions were successful and which actions were not. The state action is then repeated and the reward is looped until the agent
learns how to operate effectively within the environment using the trial-and-error concept. The agent’s main objective is to learn how
to always choose the right action given any state of the environment that leads it closer to its goal. In this paper, we gathered all the
methods used in the literature. Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well
as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues. The current paper is
organized and structured as follows: we’ll start with an introduction followed by a reinforcement learning section where we discussed
all the methods and techniques used in the literature. Furthermore, the third section will be about deep reinforcement learning, here we
gathered deep reinforcement learning techniques. In the fourth section, we will summarize the reinforcement and deep reinforcement
learning algorithms in detail. Furthermore, we will finalize the article with a discussion and a conclusion.

Keywords: Reinforcement learning, Deep reinforcement learning, multi-armed bandits, Markov decision process, Monte Carlo
methods, dynamic programming, Deep model predictive control, Actor-critic network, temporal-difference learning, Deep Q-learning,
Deep dueling q network, Advantage actor-critic network.

1. INTRODUCTION
Recently, reinforcement learning [1] has exploded

through the birth of many challenging projects. Robotic arm
manipulation, 1v1 Dota, and vintage Atari games are one
of the most important implementations using reinforcement
and deep reinforcement learning. Moreover, the winnings
of supervised deep learning [2] have continued to cumulate,
giving the example of the ImageNet classification challenge
in 2012. In addition, researchers from many areas have been
involved in deep neural networks to solve an important
range of new projects such as comprehending intelligent
attitudes and actions within a convoluted dynamic environ-
ment. Reinforcement learning is considered as a subfield
of machine learning [3] and is considered one of the most
favorable and helpful orientations to attain a high level of
intelligence in robotics behavior. Nearly every researcher
uses supervised learning [4] in machine learning projects
and applications ([5], [6]), where an input is given to the
neural network model while knowing exactly what output
the model should produce, subsequently, gradients will be
calculated by utilizing the backpropagation method to train
the network to output the results. Unfortunately, by using

supervised learning elements should be collected in the
created dataset. This step of the process is not always easy
for doing, regarding the amount number of elements that
should be gathered in the dataset. Furthermore, the neural
network will be trained to straightforwardly emulate the
human player records and actions, knowing that an agent
can never perform well at playing compared to a human.
Thereafter, reinforcement learning ([7], [8], [9]) remains the
idealistic choice to handle the issue of an agent being a
better player than a human gamer, and also to learn how to
play it by itself with no human interaction. Reinforcement
learning and the normal framework of supervised learning
are similar, we constantly have an input frame that is
run through certain neural network models, and afterward,
the network generates an output action. In reinforcement
learning, and owing to the absence of a dataset it’ll be
impossible to recognize the target label, unlike supervised
learning. Likewise, a Policy Network is defined as a network
that modifies input frames to output actions, and among
the uncomplicated ways or techniques to train the Policy
Network is by employing the Policy Gradient. Moreover,
the output of the network will consist of two numbers, the

E-mail address: hanae.moussaoui1@usmba.ac.ma, nabil.elakkad@usmba.ac.ma, mohamed.benslimane@usmba.ac.mahttp:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/1301118
http://journals.uob.edu.bh

1466 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

Figure 1. Policy optimization process

probability of each decision, and what to do while training.
In reinforcement learning we want to authorize the agent to
acquire knowledge completely by itself [9], the only given
feedback, in this case, is the scoreboard. The agent in this
process receives a reward of (+1) whenever it achieves to
mark or score a goal, or else, in the case when the opponent
was the first to score the goal, the agent is then rewarded
with a penalty of (-1). The noteworthy aim of the agent
is to optimize its policy to increase the amount received
rewards. The policy network will be trained by first of all
gathering a bunch of experiences by running a whole set of
game frames through the network. Then, pick out random
actions and feed them back into the system as shown in
Figure 1.

The agent is randomly going to select a whole suc-
cession of actions that lead to scoring a goal. Multiple
sequences of actions will be selected randomly by the agent
to score goals, subsequently, it will receive a reward. A key
thing to retain here is that for each episode, and in any
case, we can calculate the gradients to make the agent’s
action, either we need a positive or a negative reward.
Ordinarily, the normal gradients are chosen to increment
the likelihood of the taken actions in the future. The same
gradient will also be used but this time multiplied by
(-1) whenever we obtain an unfavorable reward. In this
case, and by using this minus sign, every action that is
taken in a bad episode will be less likely. Consequently,
during the policy network training all the actions that lead
to an unfavorable or negative reward will be filtered out,
thereafter, the positive ones will be more likely. However,
the problem with policy gradients is that if in an episode
the agent was lucky by taking good actions, it did badly
in the last one. In this case, the gradient policy is going
to presume that since that episode is missed, every taken
action must be bad and reduce the probability of taking
those actions in the future [10]. In reinforcement learning,
this is called the “Credit Assignment problem”. This issue
is entirely related to the fact that we have what it’s called a
“Sparse Reward setting”. Rather than gaining a reward for
every single action, we only acquire a reward posterior to
an entire episode, and the agent needs to find out in what
part of its action sequence the reward has been created. In
reinforcement learning, algorithms ([11], [12]) must have a
training time before they can learn some useful behavior.
In some extreme cases, the sparse reward setting fails; a

famous example is the Montezuma’s Revenge game ([13],
[14]), where the main motivation of the agent is to navigate
a bunch of stairs, leap over the skull, snatch a key and
navigate to the way out to get to the following stage. The
problem here is that by taking random actions, the agent
is never going to see a singular reward; and that is due to
the succession of actions that it needs to take to get that
reward that is so complicated. That means that the policy
gradient is never going to see a single positive reward. The
traditional approach to solve this issue of sparse rewards
has been the employment of ‘Reward Shaping’ which is the
process of manually designing the reward function which
needs to guide the policy to some required attitude. For
the Montezuma’s game, the agent could be rewarded every
single time it manages to avoid the skull or reach the key.
Posteriorly, these additional rewards will guide the policy
to some desired behavior. Nevertheless, there are some
significant downsides to reward shaping. Firstly, reward
shaping is a custom process that needs to be redone for
every novel environment, and the second problem is that
reward shaping suffers from what is called alignment.

2. Reinforcement Learning:
A. History

In the early 1980s, reinforcement learning history [15]
has two main orientations. The first thread is about learning
by experience and error that began in the animal’s learning
psychology. The second orientation is about the optimal
control issue by involving the value functions as well as
the dynamic programming. Mostly, this orientation did not
implicate learning. Even though these two threads have been
autonomous. A unique property of reinforcement learning
is that the training information is our evaluations and error
vectors, this is learning to increase the amount of reward
and decrease the amount of penalty. This has been called
‘learning with a critic’. The critic evaluates the system’s
behavior and doesn’t need to know what the target output
should be. A unique property of reinforcement learning [16]
is that the critic does not even need to see the output of
the learning system, it can base its evaluation on some
distal consequence of that learning system behavior that’s
produced through some unmodeled system. The roots of
this return to the psychologist Edward Thorndike [17] who
talked about learning by trial and error. His study was about
putting a cat in a box, the cat was motivated to get out
and stumble on the method of releasing itself, then he
put it back in the box, and the cat would let itself out
much more quickly. After multiple times it would release
itself immediately. This is called learning by trial and error
and coined this Law-of-Effect (Thorndike, 1911). Rein-
forcement learning [18] is about coaching search results or
coaching the results of a search, which means that systems
build a memory that caches the results of these searches so
the system remembers what worked best for each situation
and it can start from there the next time. The surprise
is that trial and error learning had not been intensively
studied from an artificial intelligence point of view, this is
puzzling because such a common-sense idea would have

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1467

been studied but not intensively. One of the issues is
that trial-and-error learning is not error-correction learning
(trial-and-error error correction), instead of trial-and-error
it should be trial-and-evaluation. There were exceptions,
Alan Turing in 1948 talked about the penalty pain and
pleasure pain system that was never implemented. There
are others notably Minsky [19] (1954, SNARCs), Minsky’s
thesis was reinforcement learning in artificial intelligence
disciplines where he conferred about computational patterns
of reinforcement learning, furthermore, he characterized
his work with the SNARCs which is an abbreviation of
the Stochastic Neural-Analog Reinforcement Calculators.
On the other hand, Farley and Clark [20] (1954) came
up with the idea of an alternative neural network of a
programmed machine learning to learn using trial and error.
Shannon (1952, Theseus), built his machine learning exam-
ple which was a robotic maze-solving mouse recognized
by the name of Theseus. Arthur Samuel (1959) proposed
and applied a literacy system that incorporated temporal-
difference concepts [21], as part of his famed checkers-
playing project. Widrow and Hoff in 1960 developed LMS
which is the least mean square that is a learning algorithm.
LMS is used in different applications of adaptative signal
processing. Michie (1961, Menace) described a learning
system that depends on trial-and-error to acquire a piece
of knowledge on how to play tic-tac-toe named MENACE
which is an abbreviation of Matchbox Educable Noughts
and crosses Engine [22]. Michie and Chambers (1968, Glee)
came out with another reinforcement learning system [23]
for tic-tac-toe named GLEE which is a shortened form of
Game Learning Expectimaxing Engine, and the BOXES
invention which is a reinforcement learning controller).
Widrow, Gupta together with Maitra (1973) proposed a
modification of the LMS that gives the ability to learn using
the success and failure signals, rather than learning using
the training examples. In 1975 Holland (CAS) redacted
the book titled ground-breaking on inheritable algorithms,
“Adaptation in Neural and Artificial System”. In addition
to that, he developed Holland’s schema theorem. Harry
Klopf [23] (1972, 1975, 1982) focused his research on
those fundamental features of adaptive behavior. Various
neuroscience techniques that have been ameliorated at this
moment are well demonstrated according to temporal differ-
ence learning for Hawkins and Kandel in 1984; as well as
Byrne, Gingrich, and Baxter in 1990; additionally, we find
also Gelperin, Hopfield, and Tank in 1985; then Tesauro in
1986; Friston et al. in 1994, even though in most cases there
was absolutely no historical relation. Schultz, Dayan, and
Montague (1997) came out with a novel synopsis of some
connections between neuroscience concepts and temporal-
difference learning.

B. Reinforcement learning models
1) Model-based in reinforcement learning

The first biggest dichotomy is between the first type
which is model-based and the second one which is model-
free reinforcement learning. Initially, the model-based RL
([24], [25]) is the simplest form of reinforcement learning,

in this version, we know everything about the environment
and there will be no need for exploration ([26], [27]).
In particular, what we know is the complete likelihood
distribution of the following state, with an already specified
(st, at) we know the likelihood of reaching any possible state
st+1 besides the reward Rt+1. In this situation, the value
function is given as follows:

V∗(st) = max
at

(E[rt+1] + γ
∑
st+1

P(st+1|st, at)V∗(st+1)) (1)

This equation can be solved and then calculate the
values of the value function V where E[rt+1] represents the
expected reward. The optimal policy starting from state st
is going to be as shown in equation 2 the moment that we
have the value function:

Π∗(st) = arg max
at

(E[rt+1|st, at] + γ
∑
st+1

P(st+1|st, at)V∗(st+1)) (2)

The important thing here is to figure out the value
function for each one of the states using an algorithm with
the steps:
Step 1: Initialize the value functions to arbitrary values
Step 2: Repeat this part of the algorithm until V(s)
converge
For all s ∈ S
For all a ∈ A

Q(s, a)← E[r|s, a] + γ
∑
s′∈S

P(s′|s, a)V(s′) (3)

V(s)← max
a

Q(s, a) (4)

Where E[r|s,a] refers to the predictable reward in the
given state ‘s’ while choosing the action ‘a’ The second
we obtain the value function; it will be able to compute
the optimal policy in any state. The following algorithm
allows us to estimate the optimal policy directly without
going necessarily via the estimate to the value function.
This algorithm is called the policy iteration, and it follows
the steps below:
Step 1: Arbitrarily initialize a policy Π
Step 2: Repeat this part of the algorithm until convergence
Π← Π′

Calculate the values using Π by determining the linear
equations:

VΠ(s) = E[r|s,Π(s)] + γ
∑
s′∈S

P(s′|s,Π(s))VΠ(s′) (5)

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1468 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

Upgrade the policy in each state:

Π′(s) = arg max
a

(E[r|s, a] + γ
∑
s′∈S

P(s′|s, a)VΠ(s′)) (6)

2) Model-free in reinforcement learning
In reinforcement learning, model-free [28] is the

opposite of model-based. It’s an algorithm that does not
require the use of the transition likelihood distribution,
along with the reward function that are associated with
the Markov decision process, which means that we don’t
know the P (s’, r | s, a). Model-free methods [29] are
trial-and-error trainees that try to optimize the value
function along with the policy without trying to assess the
transition and the reward function. Furthermore, and in this
case, everything will be based on trying to estimate some
average values over time without keeping track of what
has been done before. The average reward at the state ‘s’
in time ‘t’ is:
Et(s) = (r1 + r2 + ... + rt)/t
Et+1(s) = (r1 + r2 + ... + rt + rt+1)/(t + 1)
Subsequently:
Et+1(s) = t/(t + 1)Et(s) + rt+1/(t + 1)
Et+1(s) = (t + 1)/(t + 1)Et(s) − Et(s)/(t + 1) + rt+1/(t + 1)

Et+1(s) = Et(s) + 1/(t + 1)[rt+1 − Et(s)] (7)

Can be similar to:

Et+1(s) = Et(s) + δ[rt+1 − Et(s)] (8)

This allows us to perform an incremental estimation of the
average. If δ is small it will converge to the real average
very slowly, otherwise, if δ is large it will oscillate around
the average. The parameter δ is called the learning rate.

3) The main two models’ differences
In model-based, the environment is represented just

as Markov Decision Process using a subsequent element.
Given a collection of states where a single state is des-
ignated by s, and a series of actions that are disposable
in every state, where a single action is indicated by a. a
transition probability function from the actual state which
is s to the upcoming state denoted as s’ within the action a T
(s, a, s’). The reward function represents the instant reward
obtained while transitioning starting with the state s achiev-
ing s’ using the action a. The model-based reinforcement
learning algorithms assume that we already know the model
of our environment, and that model is Markov Decision
Process where we know all the states and the actions that are
available in the states, as well as the transition probability
function including the immediate reward function. With this
knowledge, there are two mutual approaches to coming up
with optimal policy involving the recursive relation of the
Bellman equation, the first one is called value iteration, and

the second one is known as the policy iteration. Moreover,
in the value iteration method, the ideal policy is gotten by
picking out the action that increases the ideal state value
function. Moreover, the perfect state value function will be
obtained by employing an iterative algorithm, which is the
reason behind the name value iteration. Furthermore, the
policy function is not used during iteration, rather, the ideal
state value function is updated by choosing the action that
increases the estimate for the optimal state value function.
The second algorithm for the model-based reinforcement
learning to get the perfect policy is recognized as policy
iteration. In the policy iteration method, the ideal policy
is gained by discovering iteratively a preferable estimates
of optimal policy function. In this approach, there’re two
major steps, the first one is policy evaluation as well as
policy improvement. For policy evaluation case, the state
value function is evaluated for the present policy, while
in policy amelioration the policy is improved using the
assessment of the state value function. Moreover, the key
limitation of the model-based in reinforcement learning
technique is that it works only when we know the model of
the environment which means the Markov Decision Process
corresponds to that environment when we already know
all the states, actions as well as the transition probability
function in addition to the reward function. However, that is
not possible for all reinforcement learning games. In model-
free reinforcement learning case, the simulation model of
the environment is given, and by reacting with it, the neces-
sary information about this environment is gathered, which
means that we can learn about the game only if we play
the game. Model-free reinforcement learning techniques
don’t need information about the Markov Decision Process.
The most common technique for model-free reinforcement
learning is the Monte Carlo method. Furthermore, the main
idea here is to play the game repeatedly for a large number
of times and in each play of the game, we keep track of
the states that we’re in, the actions that we take in those
states, and the rewards that we receive for every taken action
in each state. By using this information, we can assess the
action value function that is the Q-value, as well as the state
value function. The Monte Carlo method for reinforcement
learning works by following two main steps. The first one
is policy evaluation where the policy is evaluated, and the
second one is policy improvement where we improve our
policy. Unfortunately, Monte Carlo has many limitations,
the first one is that is practicable for games that have only
a few states and actions, which means in cases where the
game doesn’t last for a long time. Another shortcoming
is that the procedure may pass a lot of time assessing
suboptimal policies, which signifies that for a specified state
‘s’ only one of the actions will correspond to optimal policy
and all the other actions will correspond to suboptimal
policy. In addition to that, the Monte Carlo method works
only for episodic issues. Table I below shows the two
different models of reinforcement learning in detail:

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1469

TABLE I. Reinforcement learning models

RL model Policy Strength Weakness Applications

Model-free

-Use sampling to set up
a policy as well as
value function.
-Model dynamics are
disregarded.
-The model can foretell
the optimal policy
without using reward
function besides the
transition function.
-In the environment, the
agent can’t reach a model.

-Has reduced
assumptions that
labor enormous
collection of tasks
-Show performance
at learning intricate
policies.
-In some tasks, the
policy may be
propagated better

-Conduct mediocre
decisions
-In the case of
a complex model,
it might be exposed
to overfit

-Real-world applications
-Self-driving cars
-Atari
-AlphaStar
-Robotics
-Open AI

Model-based

-Employ the model to get
the optimal policy
-It’s not required to
develop a policy
explicitly
-Employ the reward
function besides the
transition function to
assess the optimal policy
-The agent is capable to
access an environment
model.

-Self-trained
-Sample effectual
-The mastered
dynamic model is
portable

-Requires retraining
in order to optimize
the controller for a
certain task
-The policy is not
immediately optimized
-Further hypothesis
and not suitable for all
tasks
-A model might be
more intricate than a
policy

-Chess games
-Applications in
robotics (Motion
control, surgical,
kicking, walking,
balancing, tracking,
. . .)
-Autonomous vehicles
-Sanford Helicopter
-Poker
-AlphaGo
-MuZero

C. The multi-armed bandits
Reinforcement learning is evaluating the actions rather

than instructing, what the correct actions are with the
correct set of labels. If we imagine the situation of having
four different buttons to press, and by pushing each of
these buttons we get a reward. The main purpose here is to
detect a way to smartly explore and exploit which buttons
to push. The k-armed bandit [30] is similar to the button or
slot machines with different slot levers. The purpose here
is to increase the reward through a given number of times
steps. Moreover, the agent sends an action to push one
of the four previous buttons, and the environment sends
back a reward. In the situation of the k-armed bandit, it’s
a contrast to other reinforcement learning problems, where
the state is going to be the same environment every time,
and each time the agent has four buttons to push, and at
all times it’s going to be the same regardless of which
buttons it pushes. This is an interesting characteristic of the
k-armed bandit ([31], [32]) problem. The distribution can
be stationary, which means that pushing one of the four
buttons would have the same expected reward for the first
50-time steps. Or it could be non-stationary, for example,
the reward distribution changes over. One good example
of a non-stationary reward distribution [33] could be if
there’s a play against an opponent in an adversarial like
tic-tac-toe; if the player keeps on making the same moves,
the opponent might catch on to this and then change its
strategy accordingly. Therefore, the reward distribution for
making that move is non-stationary, it changes over time.

The idea of the k-armed bandits is to maximize the reward
by having the estimation below of each button’s reward:

Qt(a) =
∑t−1

i=1 RiIAi=a∑t−1
i=1 IAi=a

(9)

By a time, step noted as ‘t’, the assessed value of
action ‘a’ is given as Qt(a). where ‘Ipredicate’ indicates
the arbitrary variable. ‘Ipredicate’ receives 1 in case the
predicate is true, in other ways it gets a 0. The Greedy
action selection rule would be to take the maximum button
value that returned the most reward given by the equation
of the number of rewards achieved over time.
At = argmaxQt(a)
We’ve just defined the Greedy action option and selected
the button with the maximum value function estimated
by our agent. ε-Greedy ([32], [33]) selection is going to
have a probability ε of not selecting the maximum utility
button, but rather sampling another pressed button with
the uniform distribution or a uniform probability. And,
just as the number of steps rises with the ε-Greedy policy,
each action is going to be sampled an indefinite number
of times. Qt which is the value function concerning the
action will converge to q*(a)which means the optimal
value function for an action. There’re different situations
in which the Greedy algorithm [32] is advantageous to
the ε-Greedy, in cases where the reward variance is 0 the
Greedy selection only needs to take the action one time

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1470 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

to know the true reward given by that action, however,
ε-Greedy algorithms [34] do much better when there
are noisier rewards like having more variance in the
distribution away from the mean of the reward on that
action. It also performs much better with non-stationary
rewards, as the reward distribution changes over time the
ε-Greedy algorithm [35] will venture out. The simple
bandit algorithm is the idea of either taking the maximum
action with a likelihood of (1-ε) or taking a haphazard out
action with a likelihood of ε and then updating the sample
average for that action.
Initialization, for a=1 to k we get:
Q(a)receives 0
N(a)receives 0
Loop continually:
R receives bandit(A)
N(A)receives N(A)+1

Q(A)← Q(A) +
1

N(A)
[R − Q(A)] (10)

Adjusting step size is important in the case of non-stationary
rewards. For example, by pushing a button, the reward
given by each button is changing over time with the
underlying distribution. Here we’re having an δ parameter
that weighting how much the expectation is updated for
each pressed button.

Qn+1 = Qn + δ[Rn − Qn] (11)

This idea of unevenly weighting the most recently obtained
rewards compared to the overall average rewards is known
as the “Exponential Recently-Weighted Average”.
Qn+1 = Qn + δ[Rn + Qn]
= δRn + (1 − δ)Qn
= δRn + (1 − δ)[δRn−1 + (1 − δ)Qn−1]
= δRn + (1 − δ)δRn−1 + (1 − δ)2Qn−2
= δRn + (1 − δ)δRn−1 + (1 − δ)2Qn−2 + ... + (1 − δ)n−1δR1 +
(1 − δ)nQ1

Qn+1 = (1 − δ)nQ1 +

n∑
i=1

δ(1 − δ)n−iRi (12)

From step to step and by varying the parameter of the step
size:

Qn+1 = Qn + δ[Rn − Qn] (13)

Another interesting hyperparameter is the initialization of
action values in this algorithm, which helps to provide
prior knowledge of reward expectations. This optimistic
initialization promotes exploration and it’s efficient for
stationary problems, doesn’t matter with non-stationary
rewards. Strategic initialization is often a waste of effort
in practice because in this case, we’re dealing with non-
stationary reward distributions, so things concerning the
initial behavior of the agent don’t matter that much for most
real problems. Upper-Confidence-Bound (UCB) is another

technique for balancing exploration and exploitation of
ε-Greedy [36], it’s about selecting randomly another
action uniformly after deciding not to take the greedy
action. How could we do a better technique of this and
weigh actions based on whether they are almost greedy or
if they haven’t been tested. There’s a lot of uncertainty
about the action, this is done with the UCB equation below:

At = arg max
a

[Qt(a) + c

√
Int

Nt(a)
] (14)

Where Qt(a) is the estimation of the action.
c
√

Int
Nt(a) is the UCB term, and ‘c’ is the parameter that

weights the balance between (lnt) and Nt(a). lnt represents
the ordinary logarithm of t. Nt(a) presents for how many
times action ‘a’ has been chosen before the time t. However,
UCB is more complicated than the ε-Greedy to expand over
bandits to more common reinforcement learning problems
mainly due to non-stationary problem reward distributions
and large state spaces. Another interesting way of balancing
exploration and exploitation is the Gradient Bandit Algo-
rithm. The main idea here is that it’s preferred to take one
action compared to the other actions, and what we have
is a Soft-max distribution over our actions. Whenever the
preference is large, the action will be taken more often.

Pr {At = a} =
eHt (a)∑k
b=1 eHt(b)

= Πt(a) (15)

Where:

Πt(a) at a time ‘t’ presents the likelihood of picking up
an action ‘a’.
Ht(a) presents the preference for each action ‘a’.
Afterward, updating using gradient ascent:

Ht+1(A) = Ht(At) + δ(Rt − Rt)(1 − Πt(At)) (16)

And:

Ht+1(a) = Ht(a) + δ(Rt − Rt)Πt(a) (17)

Where:
a , At
Rt is the average for all rewards.
So far, we’ve been talking about the agent that attempts to
find a unique best action when it’s about a stationary task
or attempts to keep track of the best action when it varies
through a time when it’s a non-stationary task. however,
there are several situations, and the purpose is to acquire
knowledge of a policy or a mapping to the finest actions
from situations. Here we’re talking about the associative
search task that includes trial and error to explore the finest
actions and the combination of these actions together with
the best status. In the literature, this is called the contextual

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1471

bandits.

D. Markov Decision Process (MDP)
Most problems that are solved using reinforcement

learning are based on formalization. This concept of for-
malization was given by the Markov Decision Procedure or
Process. In this case, the agent ([37], [38]) that reacts to
the environment is the decision-maker and it interacts with
the given environment. The agent receives a description
of the environment at any time step and depending on
this description the agent picks out an action to pick up.
Afterward, the environment moves into some novel state,
moreover, and as an outcome of its foregoing action, the
agent will gain a reward. To summarize, the elements of
an MDP include the environment and the agent besides
all the possible environment states in addition to all the
actions that the agent takes, and all the rewards that the
agent acquires from taking actions in the environment. The
procedure of picking out a particular action from a specific
state moving to a new one and obtaining a reward occurs in
a sequential way repeatedly, which produces what it’s called
a trajectory. The trajectory presents the concatenation of
state actions and rewards all over the procedure ([38], [39]).
Moreover, in reinforcement learning, the principal objective
of the agent is to increase the entire number of recompenses
that it obtains from picking up actions in certain states of the
environment, which means that during the entire process,
the agent concentrates on maximizing the instant rewards
as well as the accumulated rewards earned overtime. In the
Markov Decision Process, a group of states ‘S’ as well as
a collection of actions ‘A’ and a series of rewards ‘R’ has
a restricted number of elements. The agent will have for
every time step t=0, 1, 2, . . . a clear description of the
environment state S t ∈ S , according to this, the agent picks
up an action At ∈ A, consequently, we will have the state-
action pairs noted as (At, At). Thereafter, time is increased
and switched from t to t+1 then the environment is changed
to a novel state S t+1 ∈ S , at this stage of the process, the
agent acquires a numeral reward Rt+1 ∈ R from the taken
action At from the state S t. Generally, we can kind of think
of this procedure of gaining a reward as being a random
function:

f (S t, At) = Rt+1 (18)

The trajectory is showing the consecutive procedure of
picking out an action from a state, thereafter moving to
a novel state and gaining a reward can be schematized as:

S 0, A0,R1, S 1, A1,R2, S 2, A2,R3, ...
Figure 2 below illustrates this entire idea.

Step 1: The environment begins is in the state S t
Step 2: The agent spots the actual state and picks up an
action At
Step 3: The environment proceeds until the state St+1 and
grants to the agent a recompense Rt+1.
Step 4: The agent starts again for the upcoming time step
t+1.

Figure 2. The process of the agent-environment

Since the set of states ‘S‘ and the set of rewards ‘R’ are
limited, the casual variables Rt and S t that represent the
reward in the state at time T, have competently described
likelihood distributions. This means that all the probable
values that can be allocated to Rt and St have some related
likelihood. These allocations rely on the preceding state
as well as the action that took place in the precedent
time step t-1. Moreover, it requires a process to combine
and formalize these accumulating rewards, for this, the
predictable return of the rewards is used at a specified time
step. Presently, we can consider the return as the total of
the upcoming recompenses as shown below:

Gt = Rt+1 + Rt+2 + Rt+3 + ...RT (19)

Here T represents the latest time step.
The idea of the predictable return is very significant because
it’s the agent’s main purpose to increase the foreseeable
return which drives the agent to make the decisions that
it makes now. The agent-environment interplay splits up
into subsequences noted as episodes [40], like the game
pong where every novel round or cycle of the game can
be counted as an episode, furthermore, the ending time
step of each episode happens when a player gains a point.
Every episode is finished in the final state at time T that is
succeeded by resetting the environment to several starting
state standards, or a random pattern from an allocation of
probable beginning states. The following episode starts
independently relying on how the preceding episode took
the end. There exist several types of tasks whereas the
agent-environment interconnections don’t split up naturally
into episodes, but instead, proceed without restriction.
These types of assignments are noted as continuing tasks
[41], consequently, the definition of the return at each time
T problematic becomes problematic for the reason that
the final time step T would be equivalent to infiniteness,
therefore the return may be infinite, due to this it’s required
to make the way of working with the return clear. On the
other hand, the expected discounted return of rewards will
be maximized, specifically, the agent will be picking out an
action for every time step to increase the expected return.
However, the main purpose of this discounted return [42]
is to push the agent to be more conscious about the instant
reward than the future rewards for the reason that it will
be heavily discounted. The immediate rewards will have

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1472 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

more influence on the agent’s decision for choosing an
action while it considers the rewards to gain in the future.
The discounted return is described as follows:
Gt = Rt+1 + γRt+2 + γ

2Rt+3 + ...

Gt =

∞∑
k=0

γkRt+k+1 (20)

Where γ represents the discount rate that’s a number
between 0 and 1.
Furthermore, the question to be asked here, is how can an
agent be capable to select a specific action given a particular
state. This is where policies take place. In addition to that,
it’s required to know how the chosen action in a given state
might be benefic over another one in terms of the agent’s
return. To be conscious of this, the agent will have an
advantage in choosing the right action in a specific state to
increase its expected return, at this stage, the value function
becomes functional. The symbol Π represents the policy
function that delineates a particular status to probabilities of
choosing every conceivable action from that state to indicate
policy [43]. While speaking about policies officially, we
presume that an agent follows up a policy Π at time t, at
that time Π(a|s) represents the likelihood that the action at
time t is At = ‘a′ if the state at a precised time t S t = s.
That signifies that at time T using the policy the likelihood
of choosing an action ‘a’ within a given state ‘s’ is Π(a|s),
knowing that for every state s ∈ S , Π is considered as a
probability distribution over s ∈ A(s). Value functions [44]
represent functions of states or of what it’s called state-
action pairs that evaluate how efficient it’s for an agent to
be in a specific state, or how functional for an agent to
execute a specific action in a particular state. This concept is
stated in terms of the predicted return. Since value functions
are determined concerning the predicted return, this means
that value functions are described concerning particular
techniques of acting since the policy that it’s followed by
the agent is influencing directly the ways the agent takes
an action, thereafter, we conclude that value functions are
therefore determined for policies. Therefore, value functions
are defined as being the functions of states or state action
pairs, and there are two sorts of value functions, the first
one is a state-value function, while the second one is the
state-value function. In the case of the state-value function
that is using the policy, Π is designated as Π, and it informs
us on how efficient any particular state is for an agent using
policy Π, moreover, we’ll be given the value of a state. The
foreseeable return is described as the value of state denoted
‘s’ using a policy Π at a time ‘t’. Subsequently, Π(s) is
defined using the expression bellow:
Π(s) = E[Gt |S t = s]

Π(s) = E[
∞∑

k=0

γkRt+k+1|S t = s] (21)

Likewise, q represents the action-value function following
the policy Π, informing us on how efficient for an agent to

pick up any specific action from any specified state using
a policy Π. subsequently, it gives us the value of an action
under Π. Formally, the value of the action ‘a’ at a specific
state ‘s’ at a time ‘t’ is defined as: qΠ(s, a) = E[Gt |S t =
s, At = a]

qΠ(s, a) = E[
∞∑

k=0

γkRt+k+1|S t = s, At = a] (22)

The notation q refers to the action-value function which can
be mentioned as a Q-function. Moreover, Q-value represents
the function’s return in the case of any given state-action
pair, knowing that Q indicates the quality of picking up a
particular action in a specified state.

E. Dynamic programming
Dynamic programming ([45], [46], [47]) is a technique

in computer science frequently used for things like genetic
sequence alignment or spell checking. The computation will
be bootstrapped by using the estimate: k+1(s) = EΠ[Rt+1 +
γk(S t+1)|S t = s]

k+1(s) =k+1 (s) =
∑

a

Π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γk(s′)] (23)

Dynamic programming refers to the idea of not using
a separate array that holds the previous value function
estimates at time step k. What should be done rather is
to update the state values in a single sweep. This might
cause a little bit of noise in the updates; because updating
the states might have a higher magnitude of updating state.
Another interesting extension to dynamic programming that
makes it applicable to reinforcement learning problems like
chess and backgammon is the idea of synchronous dynamic
programming. For example, in the backgammon game ([48],
[49]) there are 1020 states, and to do a complete state space
sweep and update the value pushed estimates of all 1020
states, would take 1000 years at a speed of 1 million states
per second. Asynchronous dynamic programming refers to
the idea of updating the value estimates of a subgroup of
states rather than the entire set of states at every policy
iteration. Asynchronous dynamic programming can also be
distributed across machines.

F. Monte Carlo methods
The Monte Carlo method ([50], [51]) is a way to

learn without prior awareness of the state to the next
state transition given our actions. Monte Carlo methods are
employed to create samples of episodes and then update
the value estimates of the state-action pairs according to
the actual returns that are received by experiencing the
world by doing this model-free approach of trial-and-error
learning. Monte Carlo generally [51] describes randomized
algorithms, here it’s used to describe randomly sampling
episodes in the environment. Figure 3 below shows the
Monte Carlo prediction or evaluation of the state’s given
the actual policy: To use the Monte Carlo algorithm [52],
we follow the following steps:
Step 1: first take in the policy Π, then we’ll have the value

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1473

Figure 3. Monte Carlo prediction

function which is either initialized randomly or inherited
from the previous iteration of the generalized policy itera-
tion loop shown in Figure 3.
Step 2: initialize a Returns (s) array that is an empty list,
which is going to aggregate all the returns every time we
traverse through a given state in the state set. Returns (s)←
an emptied list, for every s ∈ S
Step 3: Loop generating episodes following the policy.
We’ll have these sequences of actions and then different
states that we traverse given the policy that’s determining
the state-to-action mapping.
Π = S 0, A0,R1, S 1, A1,R2, ..., S T−1, AT−1,RT
Step 4: Aggregate the achieved rewards append to the
Returns array.
Step 5: Set the new values of every state as the of the
returns in the Returns array. The average is going to be the
sum of the Returns divided by how many times each of the
states is encountered.
Transitioning from model-based learning to model-free
learning, we’ll be interested in Q functions compared to
the value functions, because we don’t know how the state-
action pairs necessarily translate into the s’ or the follow-
ing state. The value of these state-action pairs should be
explicitly evaluated. Putting this together, we’ll have the
generalized policy iteration framework with Monte Carlo
control. According to Figure 3, the policy is used to assess
the values of the state-action pairs or Q functions using
this policy, then, grouping the policy and making it greedy
concerning the state-action pair table. The blackjack card
game is a good motivating example for using Monte Carlo
control to find the preferable state-action value estimates as
well as the optimal policy. In blackjack, we have got the
dealer’s demonstrating card, our hand, and then whether
or not we have a usable ace. The decisions from these
states or whether we want to hit and receive a new card, or
we want to stick and hold the fort down with our current
configuration, hoping that the dealer doesn’t have a greater
sum than we do, or can achieve it by taking the hit action.

And because the estimates of every state-action pair are
coming from experience rather than by using a table, it’ll
be a need to have a way of balancing exploitation and ex-
ploration. One way of doing this is through exploring starts,
which is initializing the environment with each state-action
pair, such that the entire state-action pairs are experienced
throughout the succession of episodes. The Monte Carlo
with exploring starts works fairly for blackjack. We can
imagine this algorithm scaling very well to most of the inter-
esting problems in reinforcement learning. Another way of
adding exploration to Monte Carlo control differently from
exploring starts is to use -soft policies, this is similar to the
k-armed bandits where we either take the optimal action
or the probability epsilon and randomly sample another
action from the conceivable actions given the current state.
Probably the most interesting way to achieve exploration in
Monte Carlo learning algorithms is with off-policy learning.
The way this is done is by keeping a target policy that
refers to the policy that will try to behave optimally, and
then we’ll have a behavior policy ‘b’ which is like the
exploration policy. Here, episode samples are used from
the behavior policy to explore the environment and then use
this to bring the target policy up to date. At this stage, Π
and ‘b’ must be aligned with importance sampling to weigh
how realistic these trajectories are for the target policy as
they’re experienced by the behavior policy. This significance
sampling ratio is used to weigh the returns achieved by the
behavior policy when used to bring the target policy up to
date. This ratio is calculated by taking the product that’s
relating the probabilities of choosing a particular action
given a certain state from the target policy [53].
Pr(At, S t+1, At+1, ..., S T |S t, At:T−1 ∼ Π)

= Π(At |S t)p(S t+1|S t, At)Π(At+1|S t+1)...p(S T |S T−1, AT−1)

=

T−1∏
k=1

Π(Ak |S k)
b(Ak |S k)

(24)

When computing the importance sampling ratio for off-
policy learning, it’s computed over the trajectory of every
action. There’re two ways of averaging out how we’re
going to overall update the value estimate of the state. It’s
neither weighted by the length of the sequence T, nor it
can be weighted by the same summation of the importance
sampling ratios.

V(s) =
∑

t∈τ(s) ρt:T (t)−1Gt

|τ(s)|
(25)

V(s) =
∑

t∈τ(s) ρt:T (t)−1Gt∑
t∈τ(s) ρt:T (t)−1

(26)

G. Temporal-difference learning
The main idea of temporal difference ([54], [55]) is

to combine learning from sampled experience with the
bellman equations. The bellman equations are shown where
we can assess the value of the actual state depending on the
values of the states that are reached after taking certain

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1474 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

actions and transitioning into those states. The crucial
idea of temporal-difference learning is to improve the way
to do model-free reinforcement learning or learning from
experience. For the Monte Carlo update, the value estimate
is brought of the state up to date by sampling an episode
and then receiving the return Gt. Furthermore, take the error
of the return minus the value under that state or the return
achieved from that state as shown in the equation below:

V(S t)← V(S t) + δ[Gt − V(S t)] (27)

In temporal-difference learning, the same value estimate of
the return is expected from the state but with the use of
bootstrapping or the technique of introducing the bellman
equations.

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + ... (28)

= Rt+1+t+1
Gt � Rt+1 + γV(S t+1)

V(S t)← V(S t) + δ[Rt+1 + γV(S t+1) − V(S t)] (29)

Using this idea, we introduce the full TD (0) [56] algorithm
that is used to assess the value functions given a particular
policy. Furthermore, this algorithm requires a step size δ ∈
(0, 1], and an initial assess of the value function V(s).
Step 1: TD takes the policy Π to evaluate as input
Step 2: Every episode begins in some initial state ‘s’. At this
stage, looping through taking actions given by the policy
Π for a given state. Furthermore, observing the reward in
the following state S’, along with bringing the value of the
state up to date based on the achieved return R at that step
plus the discount factor γ times the value estimate of the
subsequent state V(S’) reached, then subtracting this by the
original prediction of what it was thought it would achieve
from the given state V(S).

V(S)← V(S) + δ[R + γV(S ′) − V(S)] (30)

S ← S ′
Step 3: Reiterate step 2 up till the episode’s ending.
For this reason, the backup diagram of the TD (0) or
the one step ahead temporal-difference learning algorithm
looks like what you can see in Figure 4. It starts in
state S then it picks out an action A, and it finishes in
state S’. Throughout temporal-difference learning, we’ll
have the temporal-difference error which is where we have
the reward achieved at the time step, and then we add it
to the discount factor times the value approximate of the
subsequent state, then we subtract this by the original value
estimate of that state.

δt = Rt+1 + γV(S t+1) − V(S t) (31)

One more important characteristic of free reinforcement
learning algorithms is that we can save the experience by
using patch updating. The main idea here is to repeatedly
process all the available experiences with the novel value
function to make a new gain until they converge. However,
the updates are done only after producing every training

Figure 4. TD (0)

Figure 5. The trajectory of an experience

data batch. Monte Carlo converges differently than the
temporal-difference learning algorithm in these batch updat-
ing. Moreover, the exploration and exploitation need to be
balanced with temporal-difference learning using different
algorithms like SARSA, Q-learning, Expected Sarsa [57],
and Double Q-learning. Practically in these cases, we’re
interested in evaluating the Q-function q (s, a) rather than
the value function of states V(s) and that’s because it’s
a model-free reinforcement learning where it’s not known
how states transition into the next states, and this is because
there’s no way to access the environmental dynamics. For
this reason, it’ll be interesting to evaluate the pairs of state-
action and use the value estimates of the state-action pairs
to improve the policy. SARSA is a shortened form of
the State Action Reward State Action that represents the
On-Policy temporal-difference learning method, therefore,
to balance exploration-exploitation it uses ε-greedy policy.
The probability of ε will pick up the action that achieved
the highest estimate with the likelihood of (1- ε). Then
selecting another action from the actions that are available
at that state. Figure 5 shows how the trajectories of
experience have this structure of action reward: In temporal-
difference learning update, a time step with the policy is
taken or the Q function mapping the state to action, and then
to randomly sample action from the next state achieved,
and bootstrapping. This happens by first starting with an
initial state, then applying one action according to the -
greedy policy. After this, we’ll be in the next state. By
observing the reward and accordingly, feeding the values
([Rt+1 + γQ(S t+1, At+1) − Q(S t, At)]) and bring up to date
the Q value of the preceding state as shown in the equation

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1475

below:

Q(S t, At)← Q(S t, At) + δ[Rt+1 + γQ(S t+1, At+1) − Q(S t, At)] (32)

The full algorithm for the SARSA On-policy temporal-
difference control for estimating the value functions of state-
action pairs is as shown below:
Step 1: Initialize the state-action pairs with random values
in the Q-table.
Step 2: In every state S that is encountered, the first thing
to do is to execute the action A that comes from ε-greedy
policy and get the reward R. Then processing to state S’.
Step 3: Presently, as being in state S’ and planning to get
to the next action A’ using the ε-greedy policy at step S’.
Step 4: Referencing to the Q-table to get the value of Q
(S’, A’).
Step 5: Update Q(S , A) ← Q(S , A) + δ[R + γQ(S ′, A′) −
Q(S , A)]
S ← S ′; A← A′
Which means considering the next state as a new initial
state
Step 6: Reiterate from step 2 unto S is terminal.
Q-learning is very similar to SARSA except for one differ-
ence in Step 5 in the SARSAS algorithm [58], where instead
of sampling another action from our policy, we pick out the
maximum action together with the highest Q-function for
that state action.

Q(S , A)← Q(S , A) + δ[R + γmax
a

Q(S ′, a) − Q(S , A)] (33)

S ← S ′ SARSA outperforms Q-learning because it’s
learning concerning its ε-greedy policy, and that’s because
it’s an on-policy learning algorithm. It knows that its policy
is going to make these random decisions. Although the Q-
learning algorithm isn’t learning concerning its ε-greedy
policy, rather it’s learning for the optimal action it would
take. Another extension to SARSA is Expected SARSA
which turns SARSA from On-policy to Off-policy by rather
than taking the maximum action in Q-learning, expected
SARSA is going to weight the Q-value of each next state-
action pair by the likelihood of taking that action given that
the next, that is determined by the policy.
Q(S t, At) ← Q(S t, At) + δ[Rt+1 + γEΠ[Q(S t+1, At+1)|S t+1] −
Q(S t, At)]

← Q(S t, At) + δ[Rt+1 + γ
∑

a

Π(a|S t+1)Q(S t+1, a) − Q(S t, At)] (34)

The term (a|S t + 1) represents the probability distribution
of actions given the current state, and Q(S t+1) refers to the
Q-value of each of the state-action pairs. A sum-up is then
employed over all the actions, and that’s what it’s used for
the bootstrap. In Q-learning, the temporal-difference method
updates or the bootstrap value estimate of the following
state has a maximization or a positive bias because it’s
taking the action that has the current highest value estimate,
and this is solved with double Q-learning. Furthermore,
the double Q-learning algorithm is going to maintain two
separate tables Q1and Q2 of the state-action pairs, and then
with a probability, using the Q2 estimate of the Q1 taking the

Figure 6. Deep policy network

action. Fundamentally use the Q1 table to take the maximum
action while doing the bootstrap step, and then evaluate that
state-action pair with the Q2 table or vice versa.

Q1(S , A)← Q1(S , A) + δ(R + γQ2(S ′, arg max
a

Q1(S ′, a)) − Q1(S , A)) (35)

Or

Q2(S , A)← Q2(S , A) + δ(R + γQ1(S ′, arg max
a

Q2(S ′, a)) − Q2(S , A)) (36)

3. Deep Reinforcement Learning
Deep reinforcement learning ([59], [60]) is the most

important field in artificial intelligence. It’s a combination
between the power and the capability of deep neural net-
works to represent and make sense of the world, considering
the capacity to act on that understanding. As shown in
Figure 6, the deep section of deep reinforcement learning
is neural networks, using the frameworks and reinforcement
learning where the neural network is doing the description
of the world based on which the actions are made. The
policy is replaced with deep neural network, and the Π is
parametrized by a θ that describes the neural network. Fur-
thermore, it maps the present state to the best probabilistic
action to take in the environment.Πθ(S , A)
The principal idea here is to update this policy to max-
imize future rewards. According to the discount gamma
parameter, γt rewards shortly are worth more than rewards
in the distant future. Usually, these rewards are going to
be relatively sparse and infrequent since we’re in a semi-
supervised learning framework, where these rewards are
only occasional. Consequently, it’s difficult to find out what
actions gave rise to those rewards. As said at the top,
the policy function Π can be parametrized as a neural
network with a weight θ. Moreover, the input of the neural
network represents the state and the output which is the
probability of which action to take. The principal idea is
to optimize weights by computing gradients based on the
cumulative expected future reward using the policy gradient
optimization formula: Given the cumulative future reward
R∑,θ given a set of parameters θ for policy.

R∑,θ =∑
s∈S

µθ(s, a)Q(s, a) (37)

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1476 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

Where: µθ(s) is the expected future distribution or the
probability of being in a state ‘s’, besides Q(s, a) which
refers to the quality function of being in a state ‘s’. Taking
the gradient of the reward concerning theta:

▽θR∑,θ =∑
s∈S

µθ(s)
∑
a∈A

Q(s, a) ▽θ Πθ(s, a) (38)

=
∑

s∈S µθ(s)
∑

a∈A Πθ(s, a)Q(s, a)▽θΠθ(s,a)
Πθ(s,a)

=
∑

s∈S µθ(s)
∑

a∈A Πθ(s, a)Q(s, a) ▽θ log(Πθ(s, a))
= E(Q(s, a) ▽θ log(Πθ(s, a)))

PolicyΠθ(s, a)⇒ θnew = θold + δ ▽θ R∑,θ (39)

A. Deep Q-Learning
One of the greatest demonstrations of deep reinforce-

ment learning in the last five years is deep q-learning [61],
where a quality function with a neural network is essentially
learned. The basic formula for q-learning that represents
an off-policy temporal-difference learning algorithm is as
written below:

Qnew(st, at) = Qold(st, at) + δ(rt + γmax
a

Q(st+1, a) − Qold(st, at)) (40)

his quality function can be parametrized by some neural
network weights:

Q(s, a) � Q(s, a, θ) (41)

The neural network cost function that is used when building
a deep q-learner is:

L = E[(rt + γmax
a

Q(st+1, at+1, θ) − Q(st, at, θ)2)] (42)

The neural network is going to use its algorithm stochas-
tic gradient descent and backpropagation to optimize the
parameters θ to give the best possible q-function that mini-
mizes the temporal-difference error. Deep q-learning which
is also called human-level control, has been implemented in
the deep mind Atari video game where essentially a deep
q-learner with a convolutional level layer can learn the right
quality function for what actions to take given a state that
it finds itself.

B. Deep Dueling Q Network
Deep Dueling Q Network which is abbreviated as

(DDQN) [62], essentially takes the quality function and
splits it into two networks. A value network is a function
of the actual state, and an advantage network tells us the
advantage over the value of being in a given state for
picking up an action.

Q(s, a, θ) = V(s, θ1) + A(a, s, θ2) (43)

C. Actor-Critic Network
The main idea of an actor-critic reinforcement learner

[63] is to take the best of policy-based along with value-
based learning. Furthermore, the actor is trying to learn a
good policy while the critic is critiquing that policy based

on its estimate of the value.
Actor; policy-based: Π(s, a) � Π(s, a, θ) Critic; value-based:

V(st) = E(rt + γV(st+1)) (44)

By bringing up to date the parameters of the policy using the
temporal-difference signal from the value learner, the value
function will be updated as well. The critic is essentially
giving the error signal that is employed to update the policy.

θt+1 = θt + δ(rt + γV(st+1) − V(st)) (45)

D. Advantage Actor-Critic Network
This theory uses the deep-dueling q-network where the

actor represents a deep policy network, while the critic is a
deep dueling q-network that tells us the quality of existing in
a state ‘s’ and picking up an action ‘a’. The policy gradient
iteration in this case is updating the deep policy network,
which is faster than traditional q-learning or the traditional
value iteration.

θt+1 = θt + δ ▽θ (logΠ(st, at, θ)Q(st, at, θ2)) (46)

4. Reinforcement learning algorithms summary
In actor-critic methods, [64] two deep neural networks

are used. One of them is used to approximate the policy
of the agent directly, knowing that the policy is just a
likelihood distribution through the set of actions, where
the state is taken as an input as well as an output will
be a likelihood of choosing each action. The other network
called the critic assesses the value function. Moreover, the
critic acts like any other critic telling the actor how good
each action is based on whether or not the resulting state is
valuable. The two networks labor together to figure out how
best to proceed in the environment. The actor [65] selects
the action while the critic evaluates the states and then the
result is compared to the rewards from the environment.
Over time the critic will be more precise at estimating
the values of states, which gives the actor the ability to
select the actions that guide to those states. The actor-critic
methods appertain to the temporal difference learning class
of algorithms. Actor critic methods are vastly employed in
fields like robotics, where applying continuous voltages to
motor enjoins to actuate movement. They’re necessary for
dealing with continuous action spaces. In the upcoming sec-
tion, we explain in detail all of the reinforcement learning
algorithms and their uses case.

A. Reinforcement learning algorithms
A2C: is an abbreviation of Advantage Actor-Criticand,

A2C amalgamates the policy-based as well as the value-
based. The value function in this case is learned by
following one policy[65]. A2C is similar to A3C except for
the asynchronous section but more efficient. some of the
many real-world applications are: Cooperative autonomous
vehicles; Stock selection; Portfolio management; Robotics;
Mobile-edge computing; Recommender systems; Tracking
user mobility; Open Information Extraction (OIE);
Intelligent traffic signal control; ViZDoom games; Inverted

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1477

pendulum system; Visual navigation tasks; Dialogue
management systems; Self-tuning PID controllers; Starcraft
2 games; Roll control for the underwater vehicle.
A3C: is an abbreviation of Asynchronous Advantage
Actor-Critic, it was liberated in 2016 by Google’s
DeepMind group. A3C defeated DQN (Robust, faster and
simpler, reached superior scores)[66], in this case, multiple
agents training in parallel each one with its environment.
A3C is used in the Atari domain and Autonomous drone
delivery. Other real-world applications that employ A3C
are: Cognitive network security, Starcraft 2 games; Hybrid
flow shop scheduling; Flappy bird game; Real-time energy
management; Elevator group control; Content caching
policy for 5g network; Electricity-Gas-Heat Integrated
Energy system; First-person shooter game; High-speed
train operation system; Autonomous voltage control;
Pathfinding; Mobile robot navigation
DDPG: is an abbreviation of Deep Deterministic Policy
Gradient, and it combines Q-learning as well as policy
gradient. DDPG uses the structure of actor-critic which
means it has two networks. Moreover, the actor network
presumes the observation and gives the action[67], while
the critic network considers the observation and the
corresponding action and outputs the Q-value. In this
case, DDPG is an off-policy. Among the real-world
applications that use DDPG are: energy harvesting wireless
communications; Urban traffic light control; Multi-agent
cooperation and competition; Learn pouring for robots;
Unmanned aerial vehicles (UAVs); Navigation of mobile
robots; Improvement of permanent magnet synchronous
motor; Bipedal walking robot; Target tracking strategy;
Robot grasping; Electricity market equilibrium; Controlling
bicycle without human interaction; Radio resource
scheduling for 5G; Energy management for the hybrid
electric bus; Automatic Landing Control of Fixed-Wing
Aircraft; Automated lane change behavior; Autonomous
driving at intersections; Dosing and Surveillance in the
ICU; Path planning for a humanoid arm.
TD3: which means Twin Delayed Deep Deterministic
Policy Gradients. In this case, a TD3 agent [68] is an
actor-critic agent exploring the appropriate policy that
gives a maximized long-term reward. It’s used in the case
of the overestimation bias problem that emerges from deep
neural network use. TD3 is applied in the following real-
world applications: Decision-making algorithms; Motion
planning of a robot; Oscillation damping control; Motion
planning for a robot; Control of a quadrotor; Control and
simulation of the 6-DOF Biped Robot; Trajectory planning
for a parafoil; UAV path planning; Traffic signal timing
control; UAV target tracking; Energy Harvesting wireless
communication.
SAC: SAC is an abbreviation of Soft Actor-Critic, and
it combines stochastic policies (TRPO, PPO) and the
replay buffer (DDPG, TD3)[69]. SAC is more stable
and more efficient. furthermore, it’s used in many real-
world applications like Path planning for multi-arm
manipulators; Energy management for hybrid electric
vehicles; Harnessing energy flexibility; Co-calibration

-Navigation of mobile robots; Enhance indoor temperature
control in buildings; Integrated energy systems; Robot
skills adaptation.
C51: C51 is the acronym for the Categorical version of
the DQN algorithm. Its main difference from the DQN
[70] is that in the output layer instead of producing a
vector C51 produces several distributions in the form of
a matrix of Softmax.C51 maximizes the expected return
and maintains a full distribution with a more complicated
update. Moreover, it was demonstrated by Bellmar et al
in 2017 on the Atari benchmark. C51 may be included
in the realization of many applications, such as Product
recommender for online advertising; Toolpath design;
Cost-sensitive classifiers to ids.
DQN: DQN or the Deep Q-Network, occurs by
amalgamating Q-learning along with the deep neural
network. Although, a deep neural network that estimates
the Q-function is designated as a deep Q-network [71]. By
using Deep Q-learning we estimate the appropriate action
that an agent might take at a specific state. DQN is used
in the following real-world application: The beer games;
Fault diagnosis methods for rotating machinery; Energy
management for the hybrid electric bus; Human-level
control; Optimization of textile manufacturing; Decision-
making strategy for autonomous vehicles; Microgrid energy
management; Automated stock trading; Autonomous UAV
navigation; Mobile robot in path planning; Mapless
navigation; Text generation; Obstacle avoidance for robots.
DDQN: represents the abbreviation of Double Deep
Q-Network. DDQN improves the performance of DQN.
Due to the issues found in DQN [72] about the low policy
and the unstable training, double deep q-network and by
using the deep q-learning implicates two isolated Q-values
estimators avoid maximization bias, Double DQN achieves
better results when it’s compared to DQN. DDQN’s main
use cases are Pairs trading; Decision-making strategy
for autonomous vehicles; Autonomous UAV navigation;
Energy management for the hybrid electric vehicle;
Scheduling multiple workflows in the cloud; Mobile robot
navigation; Probabilistic Boolean control; Mobile robot
collision avoidance; Proactive content publishing and
recommendation systems; Sepsis treatment; Anti-jamming
system for cognitive radio; Cryptocurrency trading.
PPO: is the acronym of Proximal Policy Optimization.
PPO [73] is designed to obtain maximum efficiency from
the captured training data. It includes several upgrades
of the actor-critic algorithm, they both seek to maintain
smooth gradual gradient updates so we get continuous
improvement and avoid unrecoverable crashes. The major
difference in PPO is how the actor loss is calculated. It’s
the minimum of two surrogate functions. PPO is used in:
Automated lane change strategy; Metro service schedule;
Maintenance of a wind farm with multiple crews; The joint
replenishment problem; Target localization for a multi-
agent; Mixed-autonomy traffic control; Robot running
skills learning; Radiation source research; Learning muscle
control for a multi-joint arm; Quadrotor control; Humanoid
robot running motion; Mobile puzzle games.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1478 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

TRPO: TRPO means Trust Region Policy Optimization
[74], which is an on-policy algorithm that executes
constrained policy updates by involving the KL divergence.
TRPO is used in: Active object recognition; Customized
pearl matter propagation; Control of fixed wings UAVs;
Power allocation for the internet of vehicles (IoV);
Collision avoidance.
ACKTR: Actor-Critic together with Kronecker-factored
Trust Region. ACKTR gives better results and performances
than A2C and TRPO ([75], [76]). ACKTR uses Kronecker-
factored approximation to have better actor and critic. It
employs trust-region optimization. Furthermore, ACKTR is
widely employed in the following real-world applications:
Home energy management; Learning battles in ViZDoom;
Trading financial assets; Computer vision-based interface
tracking; Intelligent traffic signal control; Pedestrian
behavior for pedestrian vehicles; Continuous movement for
robots; Locomotion behavior for robots.
SARSA: SARSA is the abbreviation of State action
Reward State Action [77]. SARSA is an on-policy
temporal difference learning algorithm. It’s slightly
different from Q-learning, however, it converges faster
than Q-learning. SARSA is used for: Robot learning;
Mobile edge computing; Software-defined networking;
Computational mechanism of humans; Video conferencing
and source rate control; Homomorphic encryption;
Autonomous foraging; Electricity transaction; Task
scheduling; Resource provisioning; Load balancing; Traffic
signal control; Autonomous navigation and obstacle
avoidance.
I2A: means Imagination-Augmented Agents. I2A merges
model-free and model-based and learns to expound
predictions using a learned environment model [78]. It can
be applied in the following use cases: Robotic applications;
Goal recognition; Digital agricultural production.
MCTS: is the abbreviation of Monte Carlo Tree
Search. MCTS [79] is defined as a Heuristic search
algorithm, furthermore, it’s a collection of classic tree
search applications and the machine learning rules of
reinforcement learning. MCTS may be used for these
applications: Wind farm layout; Industrial scheduling; Safe
autonomous driving; Green synthetic pathways; Computer
fighting games; Minecraft games; Real-time Atari games;
Walking over graphs; Black box optimization; AlphaGo
game; Online scheduling; Open information extraction;
Motion planning; Beam orientation in radiotherapy;
Backgammon game.

Besides that, previous works addressing approximately
the same issue have been published in the literature. Take
an example of the paper [80] where the authors gave a
survey on reinforcement learning but scientifically limited,
they have included no previous works nor a comparison of
the existing algorithms, unlike our proposed paper where we
tried to give to readers every important information related
to reinforcement learning. Furthermore, in [81] authors have
presented a very slight reinforcement learning summary, it

doesn’t encompass all the methods and algorithms. Besides
that, it has no mathematical aspect, which means there
are no equations or algorithms. For the paper [82], the
authors gave a sprightly review of reinforcement learn-
ing techniques and their state of the art. Furthermore,
reinforcement and deep reinforcement learning might be
included in medical imaging as well ([83], [84]) for object
and lesion detection, surgical image segmentation, and
the classification of different medical images. while image
segmentation ([85], [86], [87], [88], [89], [90]) is considered
a challenging task, first is the fact for obtaining pixel-wise
is very costly, secondly, is that the real world segmentation
data is highly imbalanced which biases the performance
towards the most represented categories. Consequently, it’s
required to minimize human labeling effort and maximize
the segmentation performance simultaneously. Thinking of
employing deep reinforcement learning to learn an optimum
policy [91] to select small and informative image regions to
be labeled from a pool of unlabeled data [92], is a good idea
but still quite challenging. Moreover, reinforcement and
deep reinforcement learning can be employed to solve many
issues, robotics is one major use case where several papers
have been published either for manipulation control [93], in
healthcare [94], as well as its implementation in agriculture
[95]. On the other hand, and with the exponential growth of
the amount of created video games, reinforcement learning
has been included in many works [96]. One other real-world
application cited above that employs reinforcement learning
is the urban traffic light control ([97], [98], [99]). Besides
autonomous car driving ([100], [101]) including decision
making [102].

5. Discussion
One of the important challenges or tradeoffs that exist

in reinforcement learning is exploration versus exploitation
which does not apply to any other paradigm we have seen,
like supervised learning as well as unsupervised learning.
Furthermore, to find the action that leads to the higher
reward in a particular situation, the agent must explore
its neighboring environment, because there is no other
way to understand the effectiveness of doing a certain
action in a particular situation. It’s a necessity to try out
different actions to evaluate which one will lead to a better
reward in the future. However, we can’t do exploration and
exploitation without falling at the tradeoff task to find out
which action the agent should take to maximize its reward.
Furthermore, in stochastic settings where doing certain
actions in the same situation will give different rewards, in
this case doing more exploration is an obligation to come
up with a better estimate or the long-term perspective of
that particular action. Similarly, without exploration, we will
never be able to know which action will lead to a higher
reward. Hence, in reinforcement learning, this tradeoff is
called the exploration-exploitation dilemma, and balancing
them is the solution to an effective reinforcement learning
algorithm. One more challenging point is that reinforcement
learning focuses on the goal in an uncertain environment.
Another type of challenge that we face while designing a

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1479

reinforcement learning model is the reward design, which
occurs while trying to decide how to give a reward for
every action, which is a difficult task at the initial stage,
it happens when we ignore how the game or the real-world
application work. Moreover, the absence of a model. In this
case, it’ll be a need to gather experience over a period
that will be used to design a reward as well as come up
with a final optimal path in that particular case. The next
challenge is the partial observability of states challenge,
which happens when the environment is entirely not visible.
Additionally, time-consuming operations are considered as
a big challenge when opting for reinforcement learning.
This goes back to the number of states and actions that
are possible for every state while designing robots, games,
and other real-world applications, which is going to take a
lot of time. This leads to a very complex application in the
end.

6. Conclusion
Reinforcement learning is a domain of machine learning

that puts its focus on how an agent might take an action
in the environment to maximize the recompenses. The
main interest is to extend some of the algorithms cited
into real life, which is a challenging task. The hardness
comes from running a policy until termination because, in
the real world, termination means crashing and destroying
things by training and simulation, and modern simulators
do not accurately depict the real world. Furthermore, they
don’t transfer to the real world when we deploy them, this
means that in simulation the simulators work very well
unlike when we deploy that policy in the real world. One
of the most interesting applications in the real world is
autonomous cars, where the car represents the agent and
the environment is a 3d track. The possible actions here are
to move left or right or to do nothing. Another interesting
scope is robotics manipulation. Among the main advantages
of reinforcement learning is that it’s highly adaptive to the
surrounding environment. Robots operating highly dynamic
and ever-changing environments that’s impossible to predict
what’s going to happen next, because of this, reinforcement
learning provides a huge advantage to be accounting for
these different scenarios and making sure that the robot’s
function is robust enough and able to handle all of the possi-
ble scenarios. Besides that, many other broad applications in
real life are using reinforcement learning, like in healthcare,
natural language processing, news recommendation, trading
and finance, and many others.

References
[1] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,

and A. P. Schoellig, “Safe learning in robotics: From learning-
based control to safe reinforcement learning,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 5, pp. 411–444,
2022.

[2] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Reinforcement
learning with prototypical representations,” in International Con-
ference on Machine Learning. PMLR, 2021, pp. 11 920–11 931.

[3] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and
deep learning,” Electronic Markets, vol. 31, no. 3, pp. 685–695,
2021.

[4] P. P. Shinde and S. Shah, “A review of machine learning and deep
learning applications,” in 2018 Fourth international conference on
computing communication control and automation (ICCUBEA).
IEEE, 2018, pp. 1–6.

[5] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A survey
of generalisation in deep reinforcement learning,” arXiv preprint
arXiv:2111.09794, 2021.

[6] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow,
“Realistic evaluation of deep semi-supervised learning algorithms,”
Advances in neural information processing systems, vol. 31, 2018.

[7] M. Naeem, S. T. H. Rizvi, and A. Coronato, “A gentle introduction
to reinforcement learning and its application in different fields,”
IEEE Access, vol. 8, pp. 209 320–209 344, 2020.

[8] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee, “Reinforcement
learning–overview of recent progress and implications for process
control,” Computers & Chemical Engineering, vol. 127, pp. 282–
294, 2019.

[9] Y. Qian, J. Wu, R. Wang, F. Zhu, and W. Zhang, “Survey on
reinforcement learning applications in communication networks,”
Journal of Communications and Information Networks, vol. 4,
no. 2, pp. 30–39, 2019.

[10] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay,
J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei et al.,
“Openspiel: A framework for reinforcement learning in games,”
arXiv preprint arXiv:1908.09453, 2019.

[11] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt,
S. Singh, and D. Silver, “Discovering reinforcement learning
algorithms,” Advances in Neural Information Processing Systems,
vol. 33, pp. 1060–1070, 2020.

[12] M. M. Afsar, T. Crump, and B. Far, “Reinforcement learning
based recommender systems: A survey,” ACM Computing Surveys,
vol. 55, no. 7, pp. 1–38, 2022.

[13] T. Salimans and R. Chen, “Learning montezuma’s revenge from a
single demonstration,” arXiv preprint arXiv:1812.03381, 2018.

[14] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Gia-
rdino, M. Re, and S. Spanò, “Multi-agent reinforcement learning:
A review of challenges and applications,” Applied Sciences, vol. 11,
no. 11, p. 4948, 2021.

[15] D. Mehta, “State-of-the-art reinforcement learning algorithms,”
International Journal of Engineering Research and Technology,
vol. 8, pp. 717–722, 2020.

[16] H. Fei, X. Li, D. Li, and P. Li, “End-to-end deep reinforcement
learning based coreference resolution,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics,
2019, pp. 660–665.

[17] E. R. Watters, “Factors in employee motivation: Expectancy and
equity theories,” Journal of Colorado Policing, vol. 970, p. 4, 2021.

[18] B. Recht, “A tour of reinforcement learning: The view from

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1480 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

continuous control,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 253–279, 2019.

[19] K. Sharma, B. Singh, E. Herman, R. Regine, S. S. Rajest, and V. P.
Mishra, “Maximum information measure policies in reinforcement
learning with deep energy-based model,” in 2021 International
Conference on Computational Intelligence and Knowledge Econ-
omy (ICCIKE). IEEE, 2021, pp. 19–24.

[20] V. Saggio, B. E. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky,
V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund
et al., “Experimental quantum speed-up in reinforcement learning
agents,” Nature, vol. 591, no. 7849, pp. 229–233, 2021.

[21] H. Helskyaho, J. Yu, and K. Yu, “Introduction to machine learn-
ing,” in Machine Learning for Oracle Database Professionals.
Springer, 2021, pp. 1–22.

[22] C. Li and M. Qiu, Reinforcement Learning for Cyber-Physical Sys-
tems: with Cybersecurity Case Studies. Chapman and Hall/CRC,
2019.

[23] A. G. Barto, “Reinforcement learning: Connections, surprises, and
challenge,” AI Magazine, vol. 40, no. 1, pp. 3–15, 2019.

[24] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based re-
inforcement learning: A survey,” arXiv preprint arXiv:2006.16712,
2020.

[25] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine et al.,
“Model-based reinforcement learning for atari,” arXiv preprint
arXiv:1903.00374, 2019.

[26] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth,
and S. Levine, “Fully autonomous real-world reinforcement learn-
ing with applications to mobile manipulation,” in Conference on
Robot Learning. PMLR, 2022, pp. 308–319.

[27] A. S. Polydoros and L. Nalpantidis, “Survey of model-based
reinforcement learning: Applications on robotics,” Journal of In-
telligent & Robotic Systems, vol. 86, no. 2, pp. 153–173, 2017.

[28] P. Swazinna, S. Udluft, and T. Runkler, “Overcoming model
bias for robust offline deep reinforcement learning,” Engineering
Applications of Artificial Intelligence, vol. 104, p. 104366, 2021.

[29] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and
S. Levine, “Model-based value estimation for efficient model-free
reinforcement learning,” arXiv preprint arXiv:1803.00101, 2018.

[30] A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi, “Using
multi-armed bandits to learn ethical priorities for online ai sys-
tems,” IBM Journal of Research and Development, vol. 63, no.
4/5, pp. 1–1, 2019.

[31] T. Lykouris, M. Simchowitz, A. Slivkins, and W. Sun, “Corruption-
robust exploration in episodic reinforcement learning,” in Confer-
ence on Learning Theory. PMLR, 2021, pp. 3242–3245.

[32] D. Bouneffouf, I. Rish, and C. Aggarwal, “Survey on applications
of multi-armed and contextual bandits,” in 2020 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2020, pp. 1–8.

[33] R. N. Boute, J. Gijsbrechts, W. Van Jaarsveld, and N. Vanvuchelen,
“Deep reinforcement learning for inventory control: A roadmap,”

European Journal of Operational Research, vol. 298, no. 2, pp.
401–412, 2022.

[34] Z. Wang and T. Hong, “Reinforcement learning for building
controls: The opportunities and challenges,” Applied Energy, vol.
269, p. 115036, 2020.

[35] Y. Liu, Y. Chen, and T. Jiang, “Dynamic selective maintenance
optimization for multi-state systems over a finite horizon: A deep
reinforcement learning approach,” European Journal of Opera-
tional Research, vol. 283, no. 1, pp. 166–181, 2020.

[36] G. Farina and T. Sandholm, “Model-free online learning in un-
known sequential decision making problems and games,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 6, 2021, pp. 5381–5390.

[37] T. Ding, Z. Zeng, J. Bai, B. Qin, Y. Yang, and M. Shahidehpour,
“Optimal electric vehicle charging strategy with markov decision
process and reinforcement learning technique,” IEEE Transactions
on Industry Applications, vol. 56, no. 5, pp. 5811–5823, 2020.

[38] B. Zhang, G. Zhang, W. Sun, and K. Yang, “Task offloading with
power control for mobile edge computing using reinforcement
learning-based markov decision process,” Mobile Information Sys-
tems, vol. 2020, 2020.

[39] X. Xiang and S. Foo, “Recent advances in deep reinforcement
learning applications for solving partially observable markov de-
cision processes (pomdp) problems: Part 1—fundamentals and
applications in games, robotics and natural language processing,”
Machine Learning and Knowledge Extraction, vol. 3, no. 3, pp.
554–581, 2021.

[40] S. Padakandla, P. KJ, and S. Bhatnagar, “Reinforcement learning
algorithm for non-stationary environments,” Applied Intelligence,
vol. 50, no. 11, pp. 3590–3606, 2020.

[41] Y. Lin, J. McPhee, and N. L. Azad, “Comparison of deep rein-
forcement learning and model predictive control for adaptive cruise
control,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 2,
pp. 221–231, 2020.

[42] D. Zhou, J. He, and Q. Gu, “Provably efficient reinforcement learn-
ing for discounted mdps with feature mapping,” in International
Conference on Machine Learning. PMLR, 2021, pp. 12 793–
12 802.

[43] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[44] R. Wang, R. R. Salakhutdinov, and L. Yang, “Reinforcement learn-
ing with general value function approximation: Provably efficient
approach via bounded eluder dimension,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6123–6135, 2020.

[45] N. Yousefi, S. Tsianikas, and D. W. Coit, “Reinforcement learn-
ing for dynamic condition-based maintenance of a system with
individually repairable components,” Quality Engineering, vol. 32,
no. 3, pp. 388–408, 2020.

[46] X. Gao, J. Si, Y. Wen, M. Li, and H. Huang, “Reinforcement
learning control of robotic knee with human-in-the-loop by flexible
policy iteration,” IEEE Transactions on Neural Networks and
Learning Systems, 2021.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1481

[47] Y. Wang, C. Tang, S. Wang, L. Cheng, R. Wang, M. Tan, and
Z. Hou, “Target tracking control of a biomimetic underwater
vehicle through deep reinforcement learning,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[48] D. Daoun, F. Ibnat, Z. Alom, Z. Aung, and M. A. Azim, “Re-
inforcement learning: a friendly introduction,” in The Interna-
tional Conference on Deep Learning, Big Data and Blockchain.
Springer, 2022, pp. 134–146.

[49] P.-A. Andersen, M. Goodwin, and O.-C. Granmo, “Deep rts:
a game environment for deep reinforcement learning in real-
time strategy games,” in 2018 IEEE conference on computational
intelligence and games (CIG). IEEE, 2018, pp. 1–8.

[50] H. Yoo, B. Kim, J. W. Kim, and J. H. Lee, “Reinforcement learning
based optimal control of batch processes using monte-carlo deep
deterministic policy gradient with phase segmentation,” Computers
& Chemical Engineering, vol. 144, p. 107133, 2021.

[51] S. Alaniz, “Deep reinforcement learning with model learn-
ing and monte carlo tree search in minecraft,” arXiv preprint
arXiv:1803.08456, 2018.

[52] J. Subramanian and A. Mahajan, “Renewal monte carlo: Renewal
theory-based reinforcement learning,” IEEE Transactions on Auto-
matic Control, vol. 65, no. 8, pp. 3663–3670, 2019.

[53] I. P. Pinto and L. R. Coutinho, “Hierarchical reinforcement learning
with monte carlo tree search in computer fighting game,” IEEE
transactions on games, vol. 11, no. 3, pp. 290–295, 2018.

[54] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of
temporal difference learning with linear function approximation,”
in Conference on learning theory. PMLR, 2018, pp. 1691–1692.

[55] A. M. Devraj, I. Kontoyiannis, and S. P. Meyn, “Differential
temporal difference learning,” IEEE Transactions on Automatic
Control, vol. 66, no. 10, pp. 4652–4667, 2020.

[56] Q. Lin and Q. Ling, “Decentralized td (0) with gradient tracking,”
IEEE Signal Processing Letters, vol. 28, pp. 723–727, 2021.

[57] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge comput-
ing by deep reinforcement learning based on sarsa,” IEEE Access,
vol. 8, pp. 54 074–54 084, 2020.

[58] Z.-x. Xu, L. Cao, X.-l. Chen, C.-x. Li, Y.-l. Zhang, and J. Lai,
“Deep reinforcement learning with sarsa and q-learning: a hybrid
approach,” IEICE TRANSACTIONS on Information and Systems,
vol. 101, no. 9, pp. 2315–2322, 2018.

[59] Y. Bao, Y. Zhu, and F. Qian, “A deep reinforcement learning
approach to improve the learning performance in process control,”
Industrial & Engineering Chemistry Research, vol. 60, no. 15, pp.
5504–5515, 2021.

[60] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” Artificial Intelligence, vol. 297,
p. 103500, 2021.

[61] H. S. Barjouei, H. Ghorbani, N. Mohamadian, D. A. Wood,
S. Davoodi, J. Moghadasi, and H. Saberi, “Prediction performance
advantages of deep machine learning algorithms for two-phase flow
rates through wellhead chokes,” Journal of Petroleum Exploration
and Production, vol. 11, no. 3, pp. 1233–1261, 2021.

[62] M. Sewak, “Deep q network (dqn), double dqn, and dueling dqn,”
in Deep Reinforcement Learning. Springer, 2019, pp. 95–108.

[63] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in International conference on machine learning.
PMLR, 2018, pp. 1861–1870.

[64] S. Khodadadian, T. T. Doan, J. Romberg, and S. T. Maguluri,
“Finite sample analysis of two-time-scale natural actor-critic al-
gorithm,” IEEE Transactions on Automatic Control, 2022.

[65] Y. Xiao, X. Lyu, and C. Amato, “Local advantage actor-critic for
robust multi-agent deep reinforcement learning,” in 2021 Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS).
IEEE, 2021, pp. 155–163.

[66] K. Zhou, W. Wang, T. Hu, and K. Deng, “Application of improved
asynchronous advantage actor critic reinforcement learning model
on anomaly detection,” Entropy, vol. 23, no. 3, p. 274, 2021.

[67] H. Yoo, B. Kim, J. W. Kim, and J. H. Lee, “Reinforcement learning
based optimal control of batch processes using monte-carlo deep
deterministic policy gradient with phase segmentation,” Computers
& Chemical Engineering, vol. 144, p. 107133, 2021.

[68] Q. Shi, H.-K. Lam, C. Xuan, and M. Chen, “Adaptive neuro-fuzzy
pid controller based on twin delayed deep deterministic policy
gradient algorithm,” Neurocomputing, vol. 402, pp. 183–194, 2020.

[69] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905,
2018.

[70] A. Stooke and P. Abbeel, “Accelerated methods for deep reinforce-
ment learning,” arXiv preprint arXiv:1803.02811, 2018.

[71] Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic
spectrum interaction of uav flight formation communication with
priority: A deep reinforcement learning approach,” IEEE Transac-
tions on Cognitive Communications and Networking, vol. 6, no. 3,
pp. 892–903, 2020.

[72] S. Y. Luis, D. G. Reina, and S. L. T. Marı́n, “A multiagent deep
reinforcement learning approach for path planning in autonomous
surface vehicles: The ypacaraı́ lake patrolling case,” IEEE Access,
vol. 9, pp. 17 084–17 099, 2021.

[73] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen, “Deep
reinforcement learning attitude control of fixed-wing uavs using
proximal policy optimization,” in 2019 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE, 2019, pp. 523–
533.

[74] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel,
“Model-ensemble trust-region policy optimization,” arXiv preprint
arXiv:1802.10592, 2018.

[75] Y. Chu, Z. Wei, G. Sun, H. Zang, S. Chen, and Y. Zhou, “Opti-
mal home energy management strategy: A reinforcement learning
method with actor-critic using kronecker-factored trust region,”
Electric Power Systems Research, vol. 212, p. 108617, 2022.

[76] Y. L. E. Nuin, N. G. Lopez, E. B. Moral, L. U. S. Juan, A. S.
Rueda, V. M. Vilches, and R. Kojcev, “Ros2learn: a reinforcement

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

1482 Hanae Moussaoui, et al.: Reinforcement Learning: A review...

learning framework for ros 2,” arXiv preprint arXiv:1903.06282,
2019.

[77] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge comput-
ing by deep reinforcement learning based on sarsa,” IEEE Access,
vol. 8, pp. 54 074–54 084, 2020.

[78] M. Thabet, “Imagination-augmented deep reinforcement learning
for robotic applications,” Ph.D. dissertation, University of Manch-
ester, 2022.

[79] S. Alaniz, “Deep reinforcement learning with model learn-
ing and monte carlo tree search in minecraft,” arXiv preprint
arXiv:1803.08456, 2018.

[80] J. Jia and W. Wang, “Review of reinforcement learning research,”
in 2020 35th Youth Academic Annual Conference of Chinese
Association of Automation (YAC), 2020, pp. 186–191.

[81] E. Akanksha, N. Sharma, K. Gulati et al., “Review on reinforce-
ment learning, research evolution and scope of application,” in
2021 5th International Conference on Computing Methodologies
and Communication (ICCMC). IEEE, 2021, pp. 1416–1423.

[82] A. K. Mondal and N. Jamali, “A survey of reinforcement learning
techniques: strategies, recent development, and future directions,”
arXiv preprint arXiv:2001.06921, 2020.

[83] H. Moussaoui, M. Benslimane, and N. El Akkad, “A novel brain
tumor detection approach based on fuzzy c-means and marker
watershed algorithm,” in International Conference on Digital Tech-
nologies and Applications. Springer, 2021, pp. 871–879.

[84] D. Zhang, B. Chen, and S. Li, “Sequential conditional rein-
forcement learning for simultaneous vertebral body detection and
segmentation with modeling the spine anatomy,” Medical Image
Analysis, vol. 67, p. 101861, 2021.

[85] H. Moussaoui, M. Benslimane, and N. El Akkad, “Image segmen-
tation approach based on hybridization between k-means and mask
r-cnn,” in WITS 2020. Springer, 2022, pp. 821–830.

[86] L. Khrissi, N. El Akkad, H. Satori, and K. Satori, “Clustering
method and sine cosine algorithm for image segmentation,” Evo-
lutionary Intelligence, vol. 15, no. 1, pp. 669–682, 2022.

[87] L. KHRISSI, N. EL AKKAD, H. SATORI, and K. SATORI,
“An efficient image clustering technique based on fuzzy c-means
and cuckoo search algorithm,” International Journal of Advanced
Computer Science and Applications, vol. 12, no. 6, 2021.

[88] L. Khrissi, N. E. Akkad, H. Satori, and K. Satori, “Color im-
age segmentation based on hybridization between canny and k-
means,” in 2019 7th Mediterranean Congress of Telecommunica-
tions (CMT). IEEE, 2019, pp. 1–4.

[89] L. Khrissi, N. El Akkad, H. Satori, and K. Satori, “Image segmen-
tation based on k-means and genetic algorithms,” in Embedded
Systems and Artificial Intelligence. Springer, 2020, pp. 489–497.

[90] H. Moussaoui, N. El Akkad, and M. Benslimane, “Moroccan
carpets classification based on svm classifier and orb features,”
in International Conference on Digital Technologies and Applica-
tions. Springer, 2022, pp. 446–455.

[91] L. KHRISSI, N. EL AKKAD, H. SATORI, and K. SATORI, “A

performant clustering approach based on an improved sine cosine
algorithm,” 2022.

[92] L. M. Gladence, C. Vakula, M. P. Selvan, T. Samhita et al., “A
research on application of human-robot interaction using artifical
intelligence,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp.
784–787, 2019.

[93] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-
Langley, “Deep reinforcement learning for the control of robotic
manipulation: a focussed mini-review,” Robotics, vol. 10, no. 1,
p. 22, 2021.

[94] C. Yu, J. Liu, S. Nemati, and G. Yin, “Reinforcement learning in
healthcare: A survey,” ACM Computing Surveys (CSUR), vol. 55,
no. 1, pp. 1–36, 2021.

[95] X. Wu, J. Chi, X.-Z. Jin, and C. Deng, “Reinforcement learning
approach to the control of heavy material handling manipulators for
agricultural robots,” Computers and Electrical Engineering, vol.
104, p. 108433, 2022.

[96] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey
of deep reinforcement learning in video games,” arXiv preprint
arXiv:1912.10944, 2019.

[97] T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and
D. O. Wu, “Multi-agent deep reinforcement learning for urban
traffic light control in vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 8, pp. 8243–8256, 2020.

[98] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-
free reinforcement learning for urban driving using implicit affor-
dances,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 7153–7162.

[99] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep re-
inforcement learning for large-scale traffic signal control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 3,
pp. 1086–1095, 2019.

[100] R. R. O. Al-Nima, T. Han, and T. Chen, “Road tracking using
deep reinforcement learning for self-driving car applications,”
in International Conference on Computer Recognition Systems.
Springer, 2020, pp. 106–116.

[101] A. Folkers, M. Rick, and C. Büskens, “Controlling an autonomous
vehicle with deep reinforcement learning,” in 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2019, pp. 2025–2031.

[102] J. Duan, S. Eben Li, Y. Guan, Q. Sun, and B. Cheng, “Hierarchical
reinforcement learning for self-driving decision-making without re-
liance on labelled driving data,” IET Intelligent Transport Systems,
vol. 14, no. 5, pp. 297–305, 2020.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 13, No.1, 1465-1483 (May-23) 1483

Hanae Moussaoui Is currently a Phd stu-
dent at faculty of sciences and techniques of
fes. LISA Laboratory of ENSA- FES. Her
research interests include Artificial intelli-
gence, Machine Learning, Image Process-
ing,Image classification, Deep learning

Nabil El Akkad Dr. Nabil EL AKKAD is
an Associate Professor, Department of Com-
puter Science, Sidi Mohammed Ben Abdel-
lah University - Fez - Morocco. He received
the PhD degree from Faculty of sciences,
Sidi Mohammed Ben Abdellah University -
Fez - Morocco. He is currently a professor of
computer science at National School of Ap-
plied Sciences (ENSA)of Fez,He is a mem-
ber of the LISA Laboratory. His research

interests include Artificial intelligence, Camera self-calibration,
Machine Learning, Cryptography, 3D Reconstruction, Image Pro-
cessing, Data Mining, Image Segmentation, Image classification.

Mohamed Benslimane Dr. Mohamed
Benslimane is a Professor, Department of
Computer Science, Sidi Mohammed Ben
Abdellah University - Fez - Morocco. He is
currently a professor of computer science at
the Superior School of Technology (EST)of
Fez. He is a member of the LTI Laboratory
at (EST) of Fez.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	INTRODUCTION
	Reinforcement Learning:
	History
	Reinforcement learning models
	Model-based in reinforcement learning
	Model-free in reinforcement learning
	The main two models’ differences

	The multi-armed bandits
	Markov Decision Process (MDP)
	Dynamic programming
	Monte Carlo methods
	Temporal-difference learning

	Deep Reinforcement Learning
	Deep Q-Learning
	Deep Dueling Q Network
	Actor-Critic Network
	Advantage Actor-Critic Network

	Reinforcement learning algorithms summary
	Reinforcement learning algorithms

	Discussion
	Conclusion
	References
	Biographies
	Hanae Moussaoui
	Nabil El Akkad
	Mohamed Benslimane

