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Abstract: The emergence of smart devices in the market leads to exponential growth of malware in the market posing a significant 

challenge to smart device users. These malicious programs are designed with advanced techniques to evade existing detection techniques, 

infiltrate systems, and cause harm to any platform. One such platform is Android, the open-source smartphone operating system which 

has experienced exponential growth since its inception. However, this progress has been increased by the growing threat of Android 

malware, which exploits smartphones to carry out malicious acts. These malware employs a plethora of techniques to circumvent 

detection systems, presenting novel obstacles to reliable detection. Currently, Android malware detection approaches can be broadly 

classified into two categories, signature- based detection and machine learning-based detection. Signature-based detection relies on 

patterns or signatures of malware to identify and block malicious software. Nevertheless, this approach is subject to limitations, as it 

inadequately detects novel or un- known malware variants. To address the limitations of signature-based detection, researchers and anti-

malware firms have turned to machine learning-based detection techniques. These methods harness the power of machine learning 

algorithms to analyze and categorize applications based on their behavioral patterns, intrinsic features, or other distinctive characteristics. 

By assimilating knowledge from extensive datasets comprising known malware and legitimate applications, machine learning models can 

identify previously unseen malware by identifying similarities to known malevolent behavior. This study aims to disseminate the current 

landscape of machine learning-based Android malware detection techniques and undertake a parametric comparison of their efficacy. The 

objective is to explore a large number of detection methods and elucidate prospective avenues in this domain. By scrutinizing and 

contrasting these approaches, we can gain profound insights into the strengths and limitations of various machine learning techniques, 

while identifying potential areas for further research and enhancement. 

 

Keywords:  Malicious Programs, Android, Malware, Signature Based Detection,  Machine Learning, Behavioral Patterns. 

 

1. INTRODUCTION. 

Android is an operating system designed for most of 
the smart devices like phone, smart television, smart 
watches etc. Its global market is very high and is in par 
of the rest of operating system like mac operating 
system. Its flexibility, customizability, and vast 
ecosystem of apps have contributed to its popularity 
among both users and developers. Android provides a 
rich set of features and capabilities, allowing users to 
perform various tasks, including communication, web 
browsing, multimedia consumption, gaming, and 
productivity and supports wide range of hardware 
devices. One of the key strengths of Android is its app 
ecosystem. The Google Play Store offers millions of 
applications that cater to diverse user needs and 
preferences. From social networking and entertainment 
to education and productivity, Android apps cover a 
broad spectrum of categories. This extensive app 
ecosystem has fueled innovation and transformed the 
way people interact with their mobile devices. 
Smartphones have become indispensable tools in 
modern life, providing users with a diverse array of 

functionalities and services readily available at their 
fingertips. Their portability and versatility have made 
tasks easier and more accessible, as users can seamlessly 
access communication, entertainment, productivity, and 
utility apps from a single device. Moreover, smartphones 
have replaced numerous traditional gadgets, such as 
cameras, calculators, and alarm clocks, consolidating 
multiple functions into a compact and portable form 
factor [1]. Among the various mobile operating   
systems, Android dominates the market, boasting a 
market share of 72.2 percent as of May 2021. As of the 
latest statistics, Apple's iOS holds a market share of 
approximately 26.99%, positioning it as the second-
largest mobile operating system globally. The remaining 
0.81% market share is divided among other players [2,3]     

 Widespread popularity of android worldwide makes it a 
prime attraction for cyber criminals, increasing its 
susceptibility to malware and viruses. As a result, 
numerous studies have explored different methods to 
detect these malicious attacks, with machine learning 
(ML) emerging as a prominent technique [4] which 
create classifiers from a limited training set, Figure 1 
depicts the taxonomical classification of the review. It 
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highlights the importance of addressing not only 
malware detection techniques but also the 
identification of loopholes made by Android 
developers, which can expose them to unnecessary 
risks and malware infections. This paper encompasses 
methods to identify these mistakes alongside malware 
detection. 

Figure 1. Android malware detection categorizes methods 
and techniques used. 

2 BACKGROUND. 

This basic knowledge to learn how the android smart 
phones is architectured emphasizing its security 
features, threat vectors that Android devices may face 
is introduced in this section. Additionally, it introduces 
the machine learning (ML) process in a manner 
accessible to readers without a background in ML. 

A. ANDROID ARCHITECTURE 
The architecture of Android operating system comprises 
multiple levels, starting with the Linux kernel, which 
provides essential hardware abstraction and security 
features. Above this lies the Hardware Abstraction Layer 
(HAL), facilitating interaction between the Android 
platform and various hardware components. Native 
libraries and the Android Runtime (ART or Dalvik) handle 
application execution and management. The Android 
framework offers APIs and tools for application 
development, including components like Activities and 
Services. At the top layer are the applications themselves, 
utilizing the framework to provide user functionalities [7]. 
Key components within the architecture include the System 
Server, facilitating system-level services, Binder IPC for 
secure inter-process communication, and the Android 
Debug Bridge (ADB) for developer interactions. Overall, 
the Android architecture offers a robust and flexible 
platform for building diverse mobile applications while 
abstracting hardware complexities and maintaining a 

consistent user experience. [8].   
       

B. MALWARE ATTACKS ON ANDROID. 

One of the primary threats to Android is malware attacks, 
which involve malicious applications containing harmful 
code with the intent to gain unauthorized access and engage 
in illicit activities that compromise the principles of 
security. Malware targeting smart devices can be classified 
based on attacker’s goals like fraud and misusing resources. 
They spread through places like app stores, browsers, 
networks, and devices, finding different ways to infect and 
gain access to privileges [9,10,11].  

Privilege acquisition methods involve technical exploits 
and user manipulation, like social engineering. Android 
malware, a threat to data and functionality on Android 
devices, comes in multiple ways like   Spyware, adware, 
ransomware, and backdoors [12,13,14,15]. App collusion is 
another consideration when studying malware, where 
multiple apps work together to achieve malicious objectives 
[16,17]. 

C. APPLICATIONS OF MACHINE LEARNING. 

Artificial Intelligence is a science of making intelligent 
systems in an artificial way, one such branch of this area 
is Machine Learning (ML). This technique learns from 
the data and makes machine learns without any natural 
support like human brain. It excels in scenarios where 
rigid algorithms are impractical, leveraging pattern 
recognition to automate processes. ML's adaptability and 
data-driven approach empower it to tackle complex tasks 
across various domains [9]. Machine Learning (ML) can 
be used various areas like voice assistants, self-driving 
cars. However, the field faces a challenge due to a 
shortage of skilled professionals. According to Statista, 
82% of enterprises globally demand ML skills, but only 
12% acknowledge sufficient supply. Addressing this 
talent gap requires understanding ML applications, 
empowering aspiring professionals to acquire the 
necessary skills and thrive in the field [28]. 

Machine learning can be categorized into several types, 
each serving different purposes and employing distinct 
techniques like Supervised method where the model 
learns from the labeled data, Unsupervised learning 
where the model learns from the data on its own by 
finding the  patterns in it, semi supervised learning 
where the algorithm uses labelled as well as unlabeled 
data    and then we have reinforcement learning where 
the model leans through the hit and trail method 
[18,19,20] refer Figure 3. 

Figure 2 illustrate the exact working of the machine 
learning model going through the different phases like 
data processing, training and prediction. The prediction 
done by model should be accurate with least possible 
false positives. Such models are then deployed and are 
used in real life. 
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Figure 2: Working flow diagram of Machine Learning 
Model [78] 

 

Figure 3: Machine Learning Used in different 
Literature [78]. 

 

3.METHODOLOGY. 

Android made its debut in 2008, and as its popularity 
surged, so did the accompanying concerns over 
security in Android applications [2]. Researchers have 
continuously proposed innovative ML-based 
methodologies to tackle these concerns [9]. To find the 
study’s objectives, a series of research questions were 
formulated (Section 3.1). A meticulous search 
approach was devised, establishing rigorous criteria for 
database usage and study inclusion/exclusion. The 
process involved strategic search methodologies, 
careful selection criteria definition, systematic data 
extraction, synthesis, and critical assessment of biases 
and validity threats to comprehensively address 
research questions. 

 

A. RESEARCH QUESTION. 
 
This systematic review endeavors to provide       

comprehensive insights into the below mentioned 

inquiries: 

Research Question1: What are the extant literature that 

have explored AI based models in the detection of 

malware in Android platform?  

Research Question2: Cutting-edge methodologies for 

code and APK analysis that can be harnessed in malware 

analysis. 

Research Question3: Which ML/DL- based approaches 

demonstrate efficacy in detecting malware within the 

Android ecosystem?  

Research Question4: What is the accuracy of the 

proposed models and their inherent strengths and 

limitations?  

Research Question5: Which techniques are optimal for 

scrutinizing Android source code to unveil 

vulnerabilities?  

By scrutinizing relevant studies, this review aims to 

provide profound insights and address these research 

questions, offering a comprehensive understanding of the 

existing literature. Moreover, it will shed light on the 

efficacy, accuracy, strengths, and limitations of ML/DL-

based models.  

 

B. DATA EXTRACTION. 
To answer Research Question 1 regarding the data 

collection for malware detection using machine learning, 

data was extracted from 9 relevant studies. For Research 

Question 2, exploring Android code/APK analyzing 

techniques applicable for malware analysis, data from 22 

related studies was identified and extracted. Research 

Question3, investigating ML/DL-based techniques 

suitable for malware detection, involved examination of 

18 different studies with relevant data extraction. For 

Research Question4, which delves into detection model 

accuracy, strengths, and weaknesses, data was gathered 

from 36 research studies. Lastly, to address Research 

Question5, pertaining to Android source code data from 

21 papers was utilized. By systematically extracting data 

from a total of 106 studies, comprehensive insights and 

answers were aimed to be provided for each research 

question, covering a vast area of topics related to code 

analysis, ML/DL techniques, model accuracy, strengths, 

weaknesses, and vulnerability analysis.  

 

4.   LITERATURE REVIEW. 
 

Android Permissions provides a comprehensive analysis 

of permission and its implications for security. It 

discusses the challenges and limitations of the permission 

system, including the use of overly broad permissions and 

the potential for user confusion [21]. Crowdroid highlight 

drawbacks of traditional approaches and focuses the 

importance of including the instrumentation framework, 
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system monitoring, and behavior analysis modules [22]. 

In this study [22] the issue of repackaging, where 

malicious actors modify legitimate applications to 

introduce malicious behaviors or bypass security checks. 

The authors propose a novel detection technique called 

“Kirin” to identify repackaged applications [23]. 

Focusing on the problem using machine learning 

algorithms as an effective approach to identify malware 

using artificial intelligence techniques [24]. 

 

        The DREBIN [42] based analysis used a dataset of 

over 120,000 applications; the results showed that 

DREBIN achieved high accuracy [25]. The AndroDTector 

approach leverages ensemble learning by training multiple 

base classifiers on different subsets of the dataset. They 

compared the detection accuracy of AndroDTector [43] 

with several other popular machine learning algorithms 

and observed significant improvements [26]. By 

considering multiple indicators of malicious behavior 

machine learning-based bases techniques effectively 

predicts well [27, 28]. Effective malware detection 

approach by leveraging machine learning techniques and 

focusing on the analysis of permissions requested by 

Android applications. The paper begins by first extract the 

permission requests from Android applications then used 

various machine learning algorithms, to train classification 

models based on these permissions [29]. Emphasize the 

importance of considering both the permissions made by a 

app can provide a valuable insight into its behavior and 

potential malicious activities. In their proposed method, the 

authors first get the requested permissions and API’s from 

Android applications. The study construct feature vectors 

based on these extracted in- formation. To classify 

applications and build prediction models study used 

labeled datasets [30]. The authors [31] conducted 

experiments using real world Android applications. The 

study results demonstrated that their method achieved high 

detection rates and effectively identified malicious 

applications. The analysis of permission patterns proves 

exceptionally well results in improving Android malware 

detection accuracy and reliability [32, 34]. Furthermore, 

the combined analysis of both permissions and API ‘s 

significantly enhances accuracy, compared to using either 

feature alone [33, 35]. 

5.MACHINE LEARNING   APPLICATION IN 
ANDROID PLATFORM  
In Android, we find malware mainly by checking if 

apps match known signature or by observing what they 

do (behavior-based). [39]. Signature-based detection 

quickly compares an app's binary code to known 

malware patterns in a database, making it simple, 

efficient, and with low false positives. But it struggles 

with new variants of Android malware. In contrary to 

this behavior based analysis, widely used, spots Android 

malware by analyzing how apps behave using machine 

learning and data science techniques, rather than just 

looking at specific code patterns. Within this method, 

researchers have extensively explored traditional 

machine learning [40,41]. Behavior based detection 

methods are widely preferred due to their capability to 

identify previously unknown malware by analyzing 

behavioral patterns exhibited by applications. Leveraging 

ML and DL techniques, these approaches learn and 

recognize malicious behaviors, enabling them to adapt 

and effectively detect new and evolving threats within the 

Android ecosystem [44,45]. These studies extensively 

employed various datasets to perform experiments and 

train models [42,43,46,47,48,49,50].  

 

A. ANDROID MALWARE DETECTION USING STATIC 
FEATURES 

 
Static analysis, widely used in Android malware 

detection, doesn't require installing suspicious apps or 

using the device's runtime environment, making it a 

preferred method and can identify potential indicators of 

malicious behavior. This includes analyzing permissions, 

and other static characteristics of the application [51]. 

 

Using   Manifest   Files: Manifest file analysis is 

indeed a widely used technique in malware detection. 

This approach involves analyzing the Manifest file to find 

application’s permissions, and configurations. One 

notable model that leverages this technique is SigPID 

[52]. SigPID presents an Android permission-based 

malware detection mechanism. It utilizes the Android 

Manifest file to extract and analyze the declared 

permissions. By comparing the permissions against a 

known set of malicious permission patterns, SigPID can 

identify potential instances of malware. As part of the 

process, a dataset in binary format consisting of 

permissions was utilized. This dataset was created by 

combining malware and benign apps obtained from 

Google Play. 

  

In [53], approach involved employing a static analyzer to 

extract the code-level information from APK files. The 

AndroZoo repository was utilized as the dataset for 

training the malware detection model. The proposed 

method holds promise for effective malware detection in 

Android applications by combining manifest permission 

analysis and code-level extraction. In the model 

validation process [54], the researchers explored the 

potential of employing reduced dimension vector 

generation for malware detection. The proposed work 

focused on utilizing machine learning (ML) models in 

combination with permission.  

 

In [55], a model proposed static features of Android apps 

for malware classification using permissions, intents, 

URLs, emails, and IPs. APK files were decompiled to 
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access app structure. Random Forest (RF) showed high 

precision and recall (0.98) for permissions, while Naïve 

Bayes (NB) performed well for intents. RF and 

AdaBoost (AB) exhibited comparable precision and 

recall (0.97) for network-based features. refer Table 2. 

 
Table 2: Manifest based analysis in Android Malware detection. 

 

 

Code Based Analysis: Code-based analysis in Android 

refers to the examination and evaluation of the actual 

code of Android applications (APK files) to identify 

potential security threats, vulnerabilities, or malicious 

behavior. This approach involves analyzing the 

bytecode, machine code, or source code of Android 

applications rather than focusing solely on their external 

behaviors or permissions. By examining the API’s in 

the operand sequences of these apps, the model aimed to 

identify patterns and characteristics indicative of 

malware behavior. This analysis of API calls allowed 

for the differentiation between benign and malicious 

applications [56]. 

 

In the MaMaDroid [57] model, the API calls executed 

the Android apps by converting API calls into a 

Markov chain, the model could capture the 

probabilistic relationships between consecutive API 

calls within an app. This allowed for an effective use 

of the behavior of apps and facilitated the identification 

of potential patterns and anomalies associated with 

malware. [58] by abstracting and examining the API 

calls, the model aimed to identify unique patterns and 

behaviors that could distinguish between benign and 

malicious applications as shown in Table 2. 
TFDroid model was introduced as machine learning 

based malware detection approach that combined topics 

and sensitive data flow analysis. The model achieved 

an impressive accuracy of 93.7 percent in detecting 

malware. To analyze apps, the static analysis tool 

FlowDroid was utilized, by examining the data flow, the 

model aimed to identify potential sensitive data leakage 

and other suspicious behaviors indicative of malware. 

The TFDroid model’s integration and sensitive data 

flow analysis, along with the use of SVM as the 

classifier, contributed to its high accuracy in detecting 

Android malware [59]. 

 

C. DYNAMIC ANALYSIS USING MACHINE 
LEARNING 
 

Dynamic methods are used to find maicious software 

(malware) by letting the application run in a live 

environment. In a study [60], a technique for spotting 

malware on Android devices was introduced. This 

technique looks at how the app interacts with the internet, 

like talking to remote servers or moving data around. It 

watches for anything that seems suspicious or bad. By 

using machine learning, the system can understand how 

both safe and harmful apps behave when they're running. 

This helps it spot potential malware based on how the app 

acts online while it's running 

By integrating machine learning and dynamic analysis in 

the network-based approach, the accuracy and speed of 

detecting Android malware are improved. This is because 

the system can identify new types of malware that haven't 

been seen before by analyzing how apps behave in real-

time. This means it can respond quickly to new threats as 

they emerge. This approach offers a valuable tool in 

safeguarding Android devices against evolving malware 

threats in today’s inter- connected digital landscape. In 

the network-based Android malware detection approach 

presented in [61], the features extraction module focused 

on extracting various network-related features used by the 

applications. These features were instrumental in 

analyzing the communication behavior of the apps during 

runtime 

      The extracted features included: 

 

Domain Name System (DNS) based features: These 

features captured the domain names accessed by the     

application, providing insights into the app’s 

communication with external servers. 

HyperText Transfer Protocol (HTTP) based features: 
These features examined the HTTP requests and 

responses made by the application, revealing potential 

malicious activities or data transfers. 

 

Origin destination based features: These features looked 

into the source and destination of network communication, 

Study Detection 
Approach 

Dataset Used Algorithms used  Accuracy Limitations 

[52] Developing three 
level data purring 

method 

Google Play Store NB,DT,SVM 90% Considers only permission for 
feature analysis 

[53] Permission Analysis 

using ML algorithms 

AndroZoo, 

AppChina 

RF,SVM,NB,K-means 81.5% Lacks some other static 

features 

[54] Permission based 

using Linear 
regression 

AMD, 

APKPure 

Linear Regression, Knn,  

RF 

96% Hyper parameter tuning 

missing 

[55] Manifest and intents Drebin, Google Play RF,NB,AB RF-98,NB-

92%,AB-97% 

API, opcode missing 
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providing information on the app’s interactions with 

different entities. 

Transmission Control Protocol (TCP) based 

features: These features analyzed the TCP 

connections established by the application, helping to 

identify suspicious network behavior. 

 

 

          Table 3: Code based analysis using machine learning. 

  
By integrating various network-based features, the model 

becomes adept at capturing the communication patterns 

and actions of an application while it's running. This 

comprehensive approach enables the detection of 

Android malware based on their network activities, 

thereby boosting the security of Android devices against 

potential threats. 

 

In another study [62], the 6th Sense model was 

introduced as a dynamic analysis-based method to 

identify Android malware, leveraging the sensors present 

in mobile devices. This model utilized Markov Chain, 

Naive Bayes (NB), algorithms to achieve malware 

detection by monitoring and analyzing changes in sensor 

data. The sensors in the mobile device, like the 

accelerometer, gyroscope, and GPS, provided crucial 

contextual information about the device's surroundings 

and user interactions. By employing Markov Chain, NB, 

and LMT, the model could effectively analyze and 

interpret the sensor data. The detection system learned 

from the dynamic sensor data patterns of both benign and 

malicious apps, enabling it to recognize anomalies or 

suspicious behavior associated with Android malware 

refer Table 3. 
 

The framework in [63] is designed to effectively detect 

malware on devices by monitoring and analyzing various 

system services. Service Monitor focuses on host-based 

detection, meaning it operates directly on the device 

itself, without relying on external services or cloud-based 

analysis. This approach ensures that the malware 

detection process is efficient and independent of internet 

connectivity. By continuously monitoring system 

services, Service Monitor can identify any suspicious or 

abnormal behavior indicative of malware. The framework 

leverages various techniques and algorithms to analyze the 

activities of system services in real-time, enabling it to 

swiftly recognize potential malware activities. The 

lightweight nature of Service Monitor ensures that it does 

not significantly impact the device’s performance or consume 

excessive resources, making it a practical and unobtrusive 

solution for Android malware detection. 

 
 

 
D.HYBRID ANALYSIS WITH MACHINE 
LEARNING 

 
Hybrid analysis  as the name suggest is the combination 

of two or more methods or techniques to bolster the 

effectiveness of malware detection. In hybrid analysis, the 

application undergoes examination both statically 

(without execution) and dynamically (while executing the 

app within a controlled environment) [64]. Static analysis 

concentrates on extracting features from the app's code, 

permissions, and other attributes to identify potential 

signs of malware. Dynamic analysis, monitors its 

interactions with the system, network, and other 

applications in real time. By amalgamating insights from 

both static and dynamic analyses, the hybrid approach can 

enhance the accuracy and capture a more comprehensive 

understanding of real-world behavior exhibited by 

Android apps. 

Machine learning algorithms are often applied to the 

extracted features and observed behaviors to create robust 

and adaptive models for Android malware detection. The 

hybrid analysis approach is a valuable addition to the 

arsenal of security measures used to protect Android 

devices from evolving malware threat [65] refer table 4. 

 

A novel method for scanning malware in android 

platform was introduced, employing a deep 

Convolutional Neural Network (CNN). The process 

began by disassembling Android apps to obtain their 

Smali code, from which the raw opcode sequence 

representing low-level instructions was extracted. Static 

analyzers were then used to derive meaningful features 

and patterns from this opcode sequence. These features 

served as input to the deep CNN for classification [70]. In 

Study Detection Approach Dataset 

Used 

Algorithms 

used 

Accuracy Strengths Limitations 

[39] Developing three level 

data purring method 

Drebin SVM,KNN,RF 87.5% Allows 

abstraction of 

opcode sequence 

Malware samples collected 

from few researches 

[56] Permission Analysis 

using ML algorithms 

Drebin NB,J45,DT 90.5% Trained with 

different data set 

Less malware samples used 

[57] API Calls to Markov 

Model Chains 

AMD NLP, SVM, 

KNN, NB, 

86% Efficiency Samples obtained from leas 

areas 

[58] API calls and 

Permissions, call 

graphs 

AMD RF,NB,AB 92% Analysed 

features 

individually 

Less features used 
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a related study [71], an experimental deep learning 

based using permissions achieved impressive results 

with 99.9% accuracy. The model were trained on the 

dataset to discern the nuanced differences between 

benign and malicious apps [72]. 

  

Table 4: Hybrid analysis using machine learning. 

 

       Table 2: Dynamic analysis using machine learning. 
 

 

 

D. DEEP LEARNING BASED ANDROID MALWARE 
DETECTION. 

 

Deep learning based methods have shown great 

potential for detecting Android malware. The model 

presented in [68] introduces the Deep Refiner tool, 

which utilizes a semantic-based deep learning approach 

with LSTM networks to detect Android malware. This 

two-layer detection and validation process contribute to 

a powerful and reliable malware detection system for 

enhancing the security of Android devices. The 

MOCDroid model introduced a multi objective 

evolutionary classifier that leveraged clustering and 

third-party call group behaviors to detect Android 

malware. This innovative approach offered a powerful 

and effective solution for enhancing the security of 

Android devices against evolving malware threats. The 

use of multi objective optimization enabled MOCDroid to 

explore multiple potential solutions and find the best trade-

offs among conflicting objectives, ensuring the classifier's 

robustness and adaptability to various types of Android 

malware [69]. 

 

 

 

 

 

A new and updated technique for separating malware from 

benign android application was proposed, leveraging a deep 

learning method. This method involved analyzing the 

features from the Smali program of Android apps using 

static analyzers. Initially, the Android apps were 

disassembled to obtain their Smali code. From this code, the 

raw opcode sequence, which represents the low-level 

instructions defining the app's behavior, was extracted. 

Static analyzers were then applied to this raw opcode 

sequence to derive meaningful features and patterns. These 

features were utilized as input for the deep Convolutional 

Neural Network (CNN) to classify the apps [70,71,72]. 

 

 

 

Study Detection Approach Dataset 

Used 

Algorithms 

used 

Accuracy Strengths Limitations 

[64] Extracting the DNS, HTTP, 

TCP, Origin based features of 

the network used by apps 

Genome KNN,RF,DT

,LR 

98.5% Allows 

abstraction 

of opcode 

sequence 

Malware samples 

collected from few 

researches 

[65] Manifest analysis for 

permissions and system call 

analysis 

Drebin RF, J.48, 

NB, Simple 

Logistic, 

NPolyKernel 

Static-96% 

Dynamic-

88% 

Compared 

with 

different 

ML 

algorithm 

Uses Monkey 

runner 

[66] Manifest analysis for 

permissions, code analysis for 

API calls and System call 

analysis 

MalGenome,

Kaggle 

SVM, LR, 

KNN, RF 

Static-81% 

Dynamic-

93% 

Dynamic 

Analysis 

works better 

Didn’t work better 

in hybrid. 

Study Detection 

Approach 

Dataset 

Used 

ML 

algorithms 

used 

Model 

Accuracy 

Strengths Limitations 

[60] Finds 

TCP,HTTP,DNS 

based features 

Genome KNN,RF,DT

,LR 

98.5% Allows 

abstraction 

of opcode 

sequence 

Malware samples collected from 

few researches 

[62] Using Markov 

Chain-based 

detection 

technique 

Google Play NB, LMT, 

Markov 

Chain 

95% Efficient by 

using 

Sensor data 

Battery consumption issues not 

discussed 

[63] System services on 

host based 

detection 

AndroZoo, 

Drebin 

RF,KNN,SV

M 

96.7% Works 

directly on 

device, not 

relying on 

external 

devices. 

Signature based verification was 

missing 
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6.   DETECTING CODE    VULNERABILITIES THROUGH 
MACHINE LEARNING. 
 
Hackers not only develop malware but also search for 

weaknesses in current applications to execute malicious 

activities. The discovery of vulnerabilities in Android 

source code is essential. Such vulnerabilities can arise 

from errors during the design, development, or 

configuration phases, making them susceptible to 

exploitation and compromising the security of the 

system. Code vulnerability detection can be carried out 

through two primary methods. The first approach 

involves reverse- engineering the APK files of the 

application. This entails deconstructing the compiled 

code to analyze its inner workings and potential security 

weaknesses. The second method involves identifying and 

addressing security flaws during the design and 

development stages of the application. This proactive 

approach aims to implement robust coding practices, 

security measures, and rigorous testing to prevent 

vulnerabilities from being introduced in the first place. 

By combining both these methods, developers and 

security experts can significantly enhance the overall 

security posture of Android applications, reducing the 

risk of exploitation and ensuring a safer user experience 

[72]. 

 
A. STATIC, DYNAMIC, AND HYBRID SOURCE CODE 

ANALYSIS. 
Manifest file analysis is indeed a widely used technique 

in malware detection. This approach involves analyzing 

the Manifest file to find application’s permissions, and 

configurations. Instead, the code is transformed into a 

more abstract representation [73], to identify potential 

properties and issues. Static analysis allows for early 

detection of certain vulnerabilities and can provide 

insights into the code’s structure and logic. However, it 

may not capture all runtime behaviors and interactions. 

Dynamic analysis, on the other hand, involves running 

the program and observing its behavior in real-time. This 

method allows for the detection of runtime-specific 

issues, such as memory leaks or unexpected program 

behaviors [74]. A hybrid analysis approach combines 

elements of both these methods aiming to leverage the 

strengths of each method. By using static analysis to 

catch design-level vulnerabilities and dynamic analysis to 

observe runtime behaviors, developers and security 

experts can obtain a more code’s security posture and 

potential risks [75]. 

 

The research conducted in [76] involved an online 

experiment with participation from Android developers. 

During the experiment, the developers were provided 

with vulnerable code samples that included issues like 

hard-coded credentials. After analyzing the results of the 

experiment, the researchers concluded that there is a need 

to assist developers  in developing more secure applications. 

Automated code vulnerability detection tools can act as a 

safety net, helping developers catch potential security 

issues early in the development process. By providing real-

time feedback and suggestions, these tools empower 

developers to write more secure code and reduce the 

chances of introducing vulnerabilities This study 

highlights the importance of integrating such automated 

tools into the development workflow to enhance the overall 

security of Android applications. The tools are designed 

to detect and address various coding issues and bad 

practices in Android applications include Android Linters. 

They perform static analysis on the source code, often 

based on generating Abstract Syntax Trees (AST) or 

Universal Abstract Syntax Trees (UAST) from the 

written source code [77]. The process starts with the 

Android Linter parsing the source code and creating an 

AST or UAST representation. This abstract 

representation allows the tool to analyze the code’s 

structure and identify potential problems, such as code 

smells, anti-patterns, performance bottlenecks, or security 

vulnerabilities. By leveraging Android Linters, 

developers can receive valuable feedback during the 

development process, enabling them to make 

improvements and adhere to best practices. It aids in 

maintaining code quality, enhancing the overall 

performance, and promoting secure coding practices in 

Android applications. 

 

7.   RESULTS AND DISCUSSION. 
 

The distribution of techniques used in the android 

malware detect ion revi ewed in this study is as 

follows: 

Static Analysis: Approximately 75 percent of the 

studies utilized static analysis techniques which allows 

for early detection of potential malware characteristics 

Dynamic Analysis: Around 10 percent of the studies 

reviewed employed dynamic analysis techniques for 

malware detection. This approach allows researchers to 

monitor interactions with the system, network, and other 

applications as the code runs, enabling the detection of 

suspicious or harmful behavior as it occurs. While less 

common than static analysis, dynamic analysis provides 

better results in the protected environments  of applications 

and can complement other detection methods in 

identifying and mitigating malware threats. 

   

Hybrid Analysis: Approximately 15 percent of the 

studies adopted the hybrid analysis technique. These 

numbers indicate that hybrid analysis remains at top in 

ML/DL based detection, but dynamic and hybrid analysis 

techniques are also gaining attention for their 

complementary benefits in identifying and combating 

malware threats. Researchers and security experts often 
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employ a combination of these techniques to achieve 

more robust and effective malware detection systems. 

Figure 9 illustrates the distribution of   techniques, 

with the majority of studies (75 percent) employing static 

analysis, followed by 10 percent using dynamic analysis 

and 15 percent adopting the hybrid analysis. In ML/DL 

feature extraction methods play a crucial role in preparing 

the data for analysis. Within this, the top features that are 

considered in most of the studies as impactful for their 

accuracy are show in Figure 4(for API calls), Figure 7 (for 

permissions) and Figure 8 (for system calls). Within hybrid 

analysis approaches, permissions emerge as a frequently 

chosen feature and for static analysis as well. The 

simplicity of permission analysis compared to other 

features contributes to its popularity. The prevalence of 

permissions as a commonly extracted feature could be 

attributed to several factors. Conversely, services and 

network protocols see limited usage in feature extraction, 

potentially due to their complexity, making analysis more 

challenging refer Table 5 for top features used.  

 

       
 

Figure. 4. API calls used in most of the research work. 
 

In the domain of machine learning analysis for Android 

malware detection, Random Forest (RF), Support Vector 

Machine (SVM), and Naive Bayes (NB) are extensively 

explored models. This is largely attributed to their 

favorable characteristic of requiring minimal 

computational resources. Figure 6 depicts the algorithm 

employed in machine learning and deep learning oriented 

studies for the purpose of training algorithms aimed at 

Android malware detection. Conversely, models such as 

Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM), and AdaBoost (AB) are less commonly 

used, likely due to their higher computational demands. 

Additionally, the growing interest in deep learning-based 

models has contributed to this trend. 

 

Among the reviewed studies, the Drebin (123453B,5560M 

dataset stood out as the most frequently employed dataset 

for Android malware detection, with over 3593 downloads. 

Additionally, the MalGenome with 2023 downloads 

(1260M,2539B) and AMD(10854,4354M,6500B) datasets 

also saw significant usage. Furthermore, the recently 

introduced new data set MH-100k-dataset (101975 M,) 

[79] is also used in most studies with over 226 downloads 

as of April, 2024 Figure 5. Among all these data sets Drebin 

is widely used one, the primary rationale behind Drebin’s 

popularity could be attributed to its provision of a 

comprehensive labeled dataset. Moreover, the substantial 

utilization of the Google Play dataset might be attributed to 

the fact that it originates from Android’s official app store. 
 

Table 5: Top Most features used in static and dynamic 

analysis 
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Figure 5. Datasets used in the study along with their count of 

samples. 
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hybrid analysis and static analysis techniques for 

source code examination. To achieve a high level of 

accuracy in vulnerability assessment, it is imperative 

to thoroughly scrutinize the source code through both 

analysis and execution. This rationale underscores the 

prevalence of static, dynamic and hybrid techniques as 

widely favored methods for source code examination, 

effectively enhancing the detection of vulnerabilities. 

 

            
 

  

Figure 6. Machine Learning Algorithms Used in 

Android Malware Detection. 

             
 

 

 
       

Figure 7. Top Ten Permissions Used in most Literature. 

 
 

 
 

Figure 8. Top Ten System Calls Used in Most of the 

Literature. 

 
 

                    
  

Figure 9. Android analysis used in different of 

Android Malware Detection. 

 
        8.     CONCLUSION AND FUTURE WORK. 

This research delves into the architecture and security 

model of Android devices, shedding light on their 

vulnerability to security breaches. It emphasizes Android's 

susceptibility to attacks and dominant position in the 

mobile operating system market. Drawing from recent 

literature, the paper conducts a comprehensive review of 

cutting-edge machine learning (ML) techniques for 

detecting Android malware, spanning from 2016 to 

2023.The review covers a wide range of topics, including 

the utilization of ML and deep learning (DL) models, 

analysis methods for code and APK files, as well as 

techniques for feature extraction and analysis. It provides 

a balanced assessment of the effectiveness and limitations 

of these approaches. Furthermore, the paper recognizes 

the importance of identifying coding errors that can lead 

to vulnerabilities exploited by hackers. It explores ML-
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based strategies for detecting such vulnerabilities within 

source code. Identifying gaps in current research, the 

study suggests future directions for enhancing Android 

OS security. It underscores the need for ongoing reviews 

in response to the evolving nature of Android malware 

and the strategies employed to combat it. Additionally, 

the paper advocates for specialized systematic reviews 

focusing solely on DL-based malware detection in the 

Android context, given the superior accuracy 

demonstrated by DL methods compared to traditional 

ML models. Moreover, it suggests exploring the 

potential of other learning techniques like adaptive and 

reinforcement learning as a promising avenue for future 

research and systematic reviews.    
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