
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

E-mail address: bilalbbashir136@gmail.com

Static, Dynamic and Intrinsic Feature Based Android

Malware Detection Using Machine Learning: A Technical

Review
Bilal Ahmad Mantoo1

, Zafar Ali Khan N2

1,2Department of Computer Science and Engineering, Presidency University, Yelahanka, Bangalore, India.

Abstract: The emergence of smart devices in the market leads to exponential growth of malware in the market posing a significant

challenge to smart device users. These malicious programs are designed with advanced techniques to evade existing detection techniques,

infiltrate systems, and cause harm to any platform. One such platform is Android, the open-source smartphone operating system which

has experienced exponential growth since its inception. However, this progress has been increased by the growing threat of Android

malware, which exploits smartphones to carry out malicious acts. These malware employs a plethora of techniques to circumvent

detection systems, presenting novel obstacles to reliable detection. Currently, Android malware detection approaches can be broadly

classified into two categories, signature- based detection and machine learning-based detection. Signature-based detection relies on

patterns or signatures of malware to identify and block malicious software. Nevertheless, this approach is subject to limitations, as it

inadequately detects novel or un- known malware variants. To address the limitations of signature-based detection, researchers and anti-

malware firms have turned to machine learning-based detection techniques. These methods harness the power of machine learning

algorithms to analyze and categorize applications based on their behavioral patterns, intrinsic features, or other distinctive characteristics.

By assimilating knowledge from extensive datasets comprising known malware and legitimate applications, machine learning models can

identify previously unseen malware by identifying similarities to known malevolent behavior. This study aims to disseminate the current

landscape of machine learning-based Android malware detection techniques and undertake a parametric comparison of their efficacy. The

objective is to explore a large number of detection methods and elucidate prospective avenues in this domain. By scrutinizing and

contrasting these approaches, we can gain profound insights into the strengths and limitations of various machine learning techniques,

while identifying potential areas for further research and enhancement.

Keywords: Malicious Programs, Android, Malware, Signature Based Detection, Machine Learning, Behavioral Patterns.

1. INTRODUCTION.

Android is an operating system designed for most of
the smart devices like phone, smart television, smart
watches etc. Its global market is very high and is in par
of the rest of operating system like mac operating
system. Its flexibility, customizability, and vast
ecosystem of apps have contributed to its popularity
among both users and developers. Android provides a
rich set of features and capabilities, allowing users to
perform various tasks, including communication, web
browsing, multimedia consumption, gaming, and
productivity and supports wide range of hardware
devices. One of the key strengths of Android is its app
ecosystem. The Google Play Store offers millions of
applications that cater to diverse user needs and
preferences. From social networking and entertainment
to education and productivity, Android apps cover a
broad spectrum of categories. This extensive app
ecosystem has fueled innovation and transformed the
way people interact with their mobile devices.
Smartphones have become indispensable tools in
modern life, providing users with a diverse array of

functionalities and services readily available at their
fingertips. Their portability and versatility have made
tasks easier and more accessible, as users can seamlessly
access communication, entertainment, productivity, and
utility apps from a single device. Moreover, smartphones
have replaced numerous traditional gadgets, such as
cameras, calculators, and alarm clocks, consolidating
multiple functions into a compact and portable form
factor [1]. Among the various mobile operating
systems, Android dominates the market, boasting a
market share of 72.2 percent as of May 2021. As of the
latest statistics, Apple's iOS holds a market share of
approximately 26.99%, positioning it as the second-
largest mobile operating system globally. The remaining
0.81% market share is divided among other players [2,3]

 Widespread popularity of android worldwide makes it a
prime attraction for cyber criminals, increasing its
susceptibility to malware and viruses. As a result,
numerous studies have explored different methods to
detect these malicious attacks, with machine learning
(ML) emerging as a prominent technique [4] which
create classifiers from a limited training set, Figure 1
depicts the taxonomical classification of the review. It

IJCDS 1571018353

1

highlights the importance of addressing not only
malware detection techniques but also the
identification of loopholes made by Android
developers, which can expose them to unnecessary
risks and malware infections. This paper encompasses
methods to identify these mistakes alongside malware
detection.

Figure 1. Android malware detection categorizes methods
and techniques used.

2 BACKGROUND.

This basic knowledge to learn how the android smart
phones is architectured emphasizing its security
features, threat vectors that Android devices may face
is introduced in this section. Additionally, it introduces
the machine learning (ML) process in a manner
accessible to readers without a background in ML.

A. ANDROID ARCHITECTURE
The architecture of Android operating system comprises
multiple levels, starting with the Linux kernel, which
provides essential hardware abstraction and security
features. Above this lies the Hardware Abstraction Layer
(HAL), facilitating interaction between the Android
platform and various hardware components. Native
libraries and the Android Runtime (ART or Dalvik) handle
application execution and management. The Android
framework offers APIs and tools for application
development, including components like Activities and
Services. At the top layer are the applications themselves,
utilizing the framework to provide user functionalities [7].
Key components within the architecture include the System
Server, facilitating system-level services, Binder IPC for
secure inter-process communication, and the Android
Debug Bridge (ADB) for developer interactions. Overall,
the Android architecture offers a robust and flexible
platform for building diverse mobile applications while
abstracting hardware complexities and maintaining a

consistent user experience. [8].

B. MALWARE ATTACKS ON ANDROID.

One of the primary threats to Android is malware attacks,
which involve malicious applications containing harmful
code with the intent to gain unauthorized access and engage
in illicit activities that compromise the principles of
security. Malware targeting smart devices can be classified
based on attacker’s goals like fraud and misusing resources.
They spread through places like app stores, browsers,
networks, and devices, finding different ways to infect and
gain access to privileges [9,10,11].

Privilege acquisition methods involve technical exploits
and user manipulation, like social engineering. Android
malware, a threat to data and functionality on Android
devices, comes in multiple ways like Spyware, adware,
ransomware, and backdoors [12,13,14,15]. App collusion is
another consideration when studying malware, where
multiple apps work together to achieve malicious objectives
[16,17].

C. APPLICATIONS OF MACHINE LEARNING.

Artificial Intelligence is a science of making intelligent
systems in an artificial way, one such branch of this area
is Machine Learning (ML). This technique learns from
the data and makes machine learns without any natural
support like human brain. It excels in scenarios where
rigid algorithms are impractical, leveraging pattern
recognition to automate processes. ML's adaptability and
data-driven approach empower it to tackle complex tasks
across various domains [9]. Machine Learning (ML) can
be used various areas like voice assistants, self-driving
cars. However, the field faces a challenge due to a
shortage of skilled professionals. According to Statista,
82% of enterprises globally demand ML skills, but only
12% acknowledge sufficient supply. Addressing this
talent gap requires understanding ML applications,
empowering aspiring professionals to acquire the
necessary skills and thrive in the field [28].

Machine learning can be categorized into several types,
each serving different purposes and employing distinct
techniques like Supervised method where the model
learns from the labeled data, Unsupervised learning
where the model learns from the data on its own by
finding the patterns in it, semi supervised learning
where the algorithm uses labelled as well as unlabeled
data and then we have reinforcement learning where
the model leans through the hit and trail method
[18,19,20] refer Figure 3.

Figure 2 illustrate the exact working of the machine
learning model going through the different phases like
data processing, training and prediction. The prediction
done by model should be accurate with least possible
false positives. Such models are then deployed and are
used in real life.

2

Figure 2: Working flow diagram of Machine Learning
Model [78]

Figure 3: Machine Learning Used in different
Literature [78].

3.METHODOLOGY.

Android made its debut in 2008, and as its popularity
surged, so did the accompanying concerns over
security in Android applications [2]. Researchers have
continuously proposed innovative ML-based
methodologies to tackle these concerns [9]. To find the
study’s objectives, a series of research questions were
formulated (Section 3.1). A meticulous search
approach was devised, establishing rigorous criteria for
database usage and study inclusion/exclusion. The
process involved strategic search methodologies,
careful selection criteria definition, systematic data
extraction, synthesis, and critical assessment of biases
and validity threats to comprehensively address
research questions.

A. RESEARCH QUESTION.

This systematic review endeavors to provide

comprehensive insights into the below mentioned

inquiries:

Research Question1: What are the extant literature that

have explored AI based models in the detection of

malware in Android platform?

Research Question2: Cutting-edge methodologies for

code and APK analysis that can be harnessed in malware

analysis.

Research Question3: Which ML/DL- based approaches

demonstrate efficacy in detecting malware within the

Android ecosystem?

Research Question4: What is the accuracy of the

proposed models and their inherent strengths and

limitations?

Research Question5: Which techniques are optimal for

scrutinizing Android source code to unveil

vulnerabilities?

By scrutinizing relevant studies, this review aims to

provide profound insights and address these research

questions, offering a comprehensive understanding of the

existing literature. Moreover, it will shed light on the

efficacy, accuracy, strengths, and limitations of ML/DL-

based models.

B. DATA EXTRACTION.
To answer Research Question 1 regarding the data

collection for malware detection using machine learning,

data was extracted from 9 relevant studies. For Research

Question 2, exploring Android code/APK analyzing

techniques applicable for malware analysis, data from 22

related studies was identified and extracted. Research

Question3, investigating ML/DL-based techniques

suitable for malware detection, involved examination of

18 different studies with relevant data extraction. For

Research Question4, which delves into detection model

accuracy, strengths, and weaknesses, data was gathered

from 36 research studies. Lastly, to address Research

Question5, pertaining to Android source code data from

21 papers was utilized. By systematically extracting data

from a total of 106 studies, comprehensive insights and

answers were aimed to be provided for each research

question, covering a vast area of topics related to code

analysis, ML/DL techniques, model accuracy, strengths,

weaknesses, and vulnerability analysis.

4. LITERATURE REVIEW.

Android Permissions provides a comprehensive analysis

of permission and its implications for security. It

discusses the challenges and limitations of the permission

system, including the use of overly broad permissions and

the potential for user confusion [21]. Crowdroid highlight

drawbacks of traditional approaches and focuses the

importance of including the instrumentation framework,

3

system monitoring, and behavior analysis modules [22].

In this study [22] the issue of repackaging, where

malicious actors modify legitimate applications to

introduce malicious behaviors or bypass security checks.

The authors propose a novel detection technique called

“Kirin” to identify repackaged applications [23].

Focusing on the problem using machine learning

algorithms as an effective approach to identify malware

using artificial intelligence techniques [24].

 The DREBIN [42] based analysis used a dataset of

over 120,000 applications; the results showed that

DREBIN achieved high accuracy [25]. The AndroDTector

approach leverages ensemble learning by training multiple

base classifiers on different subsets of the dataset. They

compared the detection accuracy of AndroDTector [43]

with several other popular machine learning algorithms

and observed significant improvements [26]. By

considering multiple indicators of malicious behavior

machine learning-based bases techniques effectively

predicts well [27, 28]. Effective malware detection

approach by leveraging machine learning techniques and

focusing on the analysis of permissions requested by

Android applications. The paper begins by first extract the

permission requests from Android applications then used

various machine learning algorithms, to train classification

models based on these permissions [29]. Emphasize the

importance of considering both the permissions made by a

app can provide a valuable insight into its behavior and

potential malicious activities. In their proposed method, the

authors first get the requested permissions and API’s from

Android applications. The study construct feature vectors

based on these extracted in- formation. To classify

applications and build prediction models study used

labeled datasets [30]. The authors [31] conducted

experiments using real world Android applications. The

study results demonstrated that their method achieved high

detection rates and effectively identified malicious

applications. The analysis of permission patterns proves

exceptionally well results in improving Android malware

detection accuracy and reliability [32, 34]. Furthermore,

the combined analysis of both permissions and API ‘s

significantly enhances accuracy, compared to using either

feature alone [33, 35].

5.MACHINE LEARNING APPLICATION IN
ANDROID PLATFORM
In Android, we find malware mainly by checking if

apps match known signature or by observing what they

do (behavior-based). [39]. Signature-based detection

quickly compares an app's binary code to known

malware patterns in a database, making it simple,

efficient, and with low false positives. But it struggles

with new variants of Android malware. In contrary to

this behavior based analysis, widely used, spots Android

malware by analyzing how apps behave using machine

learning and data science techniques, rather than just

looking at specific code patterns. Within this method,

researchers have extensively explored traditional

machine learning [40,41]. Behavior based detection

methods are widely preferred due to their capability to

identify previously unknown malware by analyzing

behavioral patterns exhibited by applications. Leveraging

ML and DL techniques, these approaches learn and

recognize malicious behaviors, enabling them to adapt

and effectively detect new and evolving threats within the

Android ecosystem [44,45]. These studies extensively

employed various datasets to perform experiments and

train models [42,43,46,47,48,49,50].

A. ANDROID MALWARE DETECTION USING STATIC
FEATURES

Static analysis, widely used in Android malware

detection, doesn't require installing suspicious apps or

using the device's runtime environment, making it a

preferred method and can identify potential indicators of

malicious behavior. This includes analyzing permissions,

and other static characteristics of the application [51].

Using Manifest Files: Manifest file analysis is

indeed a widely used technique in malware detection.

This approach involves analyzing the Manifest file to find

application’s permissions, and configurations. One

notable model that leverages this technique is SigPID

[52]. SigPID presents an Android permission-based

malware detection mechanism. It utilizes the Android

Manifest file to extract and analyze the declared

permissions. By comparing the permissions against a

known set of malicious permission patterns, SigPID can

identify potential instances of malware. As part of the

process, a dataset in binary format consisting of

permissions was utilized. This dataset was created by

combining malware and benign apps obtained from

Google Play.

In [53], approach involved employing a static analyzer to

extract the code-level information from APK files. The

AndroZoo repository was utilized as the dataset for

training the malware detection model. The proposed

method holds promise for effective malware detection in

Android applications by combining manifest permission

analysis and code-level extraction. In the model

validation process [54], the researchers explored the

potential of employing reduced dimension vector

generation for malware detection. The proposed work

focused on utilizing machine learning (ML) models in

combination with permission.

In [55], a model proposed static features of Android apps

for malware classification using permissions, intents,

URLs, emails, and IPs. APK files were decompiled to

4

access app structure. Random Forest (RF) showed high

precision and recall (0.98) for permissions, while Naïve

Bayes (NB) performed well for intents. RF and

AdaBoost (AB) exhibited comparable precision and

recall (0.97) for network-based features. refer Table 2.

Table 2: Manifest based analysis in Android Malware detection.

Code Based Analysis: Code-based analysis in Android

refers to the examination and evaluation of the actual

code of Android applications (APK files) to identify

potential security threats, vulnerabilities, or malicious

behavior. This approach involves analyzing the

bytecode, machine code, or source code of Android

applications rather than focusing solely on their external

behaviors or permissions. By examining the API’s in

the operand sequences of these apps, the model aimed to

identify patterns and characteristics indicative of

malware behavior. This analysis of API calls allowed

for the differentiation between benign and malicious

applications [56].

In the MaMaDroid [57] model, the API calls executed

the Android apps by converting API calls into a

Markov chain, the model could capture the

probabilistic relationships between consecutive API

calls within an app. This allowed for an effective use

of the behavior of apps and facilitated the identification

of potential patterns and anomalies associated with

malware. [58] by abstracting and examining the API

calls, the model aimed to identify unique patterns and

behaviors that could distinguish between benign and

malicious applications as shown in Table 2.
TFDroid model was introduced as machine learning

based malware detection approach that combined topics

and sensitive data flow analysis. The model achieved

an impressive accuracy of 93.7 percent in detecting

malware. To analyze apps, the static analysis tool

FlowDroid was utilized, by examining the data flow, the

model aimed to identify potential sensitive data leakage

and other suspicious behaviors indicative of malware.

The TFDroid model’s integration and sensitive data

flow analysis, along with the use of SVM as the

classifier, contributed to its high accuracy in detecting

Android malware [59].

C. DYNAMIC ANALYSIS USING MACHINE
LEARNING

Dynamic methods are used to find maicious software

(malware) by letting the application run in a live

environment. In a study [60], a technique for spotting

malware on Android devices was introduced. This

technique looks at how the app interacts with the internet,

like talking to remote servers or moving data around. It

watches for anything that seems suspicious or bad. By

using machine learning, the system can understand how

both safe and harmful apps behave when they're running.

This helps it spot potential malware based on how the app

acts online while it's running

By integrating machine learning and dynamic analysis in

the network-based approach, the accuracy and speed of

detecting Android malware are improved. This is because

the system can identify new types of malware that haven't

been seen before by analyzing how apps behave in real-

time. This means it can respond quickly to new threats as

they emerge. This approach offers a valuable tool in

safeguarding Android devices against evolving malware

threats in today’s inter- connected digital landscape. In

the network-based Android malware detection approach

presented in [61], the features extraction module focused

on extracting various network-related features used by the

applications. These features were instrumental in

analyzing the communication behavior of the apps during

runtime

 The extracted features included:

Domain Name System (DNS) based features: These

features captured the domain names accessed by the

application, providing insights into the app’s

communication with external servers.

HyperText Transfer Protocol (HTTP) based features:
These features examined the HTTP requests and

responses made by the application, revealing potential

malicious activities or data transfers.

Origin destination based features: These features looked

into the source and destination of network communication,

Study Detection
Approach

Dataset Used Algorithms used Accuracy Limitations

[52] Developing three
level data purring

method

Google Play Store NB,DT,SVM 90% Considers only permission for
feature analysis

[53] Permission Analysis

using ML algorithms

AndroZoo,

AppChina

RF,SVM,NB,K-means 81.5% Lacks some other static

features

[54] Permission based

using Linear
regression

AMD,

APKPure

Linear Regression, Knn,

RF

96% Hyper parameter tuning

missing

[55] Manifest and intents Drebin, Google Play RF,NB,AB RF-98,NB-

92%,AB-97%

API, opcode missing

5

providing information on the app’s interactions with

different entities.

Transmission Control Protocol (TCP) based

features: These features analyzed the TCP

connections established by the application, helping to

identify suspicious network behavior.

 Table 3: Code based analysis using machine learning.

By integrating various network-based features, the model

becomes adept at capturing the communication patterns

and actions of an application while it's running. This

comprehensive approach enables the detection of

Android malware based on their network activities,

thereby boosting the security of Android devices against

potential threats.

In another study [62], the 6th Sense model was

introduced as a dynamic analysis-based method to

identify Android malware, leveraging the sensors present

in mobile devices. This model utilized Markov Chain,

Naive Bayes (NB), algorithms to achieve malware

detection by monitoring and analyzing changes in sensor

data. The sensors in the mobile device, like the

accelerometer, gyroscope, and GPS, provided crucial

contextual information about the device's surroundings

and user interactions. By employing Markov Chain, NB,

and LMT, the model could effectively analyze and

interpret the sensor data. The detection system learned

from the dynamic sensor data patterns of both benign and

malicious apps, enabling it to recognize anomalies or

suspicious behavior associated with Android malware

refer Table 3.

The framework in [63] is designed to effectively detect

malware on devices by monitoring and analyzing various

system services. Service Monitor focuses on host-based

detection, meaning it operates directly on the device

itself, without relying on external services or cloud-based

analysis. This approach ensures that the malware

detection process is efficient and independent of internet

connectivity. By continuously monitoring system

services, Service Monitor can identify any suspicious or

abnormal behavior indicative of malware. The framework

leverages various techniques and algorithms to analyze the

activities of system services in real-time, enabling it to

swiftly recognize potential malware activities. The

lightweight nature of Service Monitor ensures that it does

not significantly impact the device’s performance or consume

excessive resources, making it a practical and unobtrusive

solution for Android malware detection.

D.HYBRID ANALYSIS WITH MACHINE
LEARNING

Hybrid analysis as the name suggest is the combination

of two or more methods or techniques to bolster the

effectiveness of malware detection. In hybrid analysis, the

application undergoes examination both statically

(without execution) and dynamically (while executing the

app within a controlled environment) [64]. Static analysis

concentrates on extracting features from the app's code,

permissions, and other attributes to identify potential

signs of malware. Dynamic analysis, monitors its

interactions with the system, network, and other

applications in real time. By amalgamating insights from

both static and dynamic analyses, the hybrid approach can

enhance the accuracy and capture a more comprehensive

understanding of real-world behavior exhibited by

Android apps.

Machine learning algorithms are often applied to the

extracted features and observed behaviors to create robust

and adaptive models for Android malware detection. The

hybrid analysis approach is a valuable addition to the

arsenal of security measures used to protect Android

devices from evolving malware threat [65] refer table 4.

A novel method for scanning malware in android

platform was introduced, employing a deep

Convolutional Neural Network (CNN). The process

began by disassembling Android apps to obtain their

Smali code, from which the raw opcode sequence

representing low-level instructions was extracted. Static

analyzers were then used to derive meaningful features

and patterns from this opcode sequence. These features

served as input to the deep CNN for classification [70]. In

Study Detection Approach Dataset

Used

Algorithms

used

Accuracy Strengths Limitations

[39] Developing three level

data purring method

Drebin SVM,KNN,RF 87.5% Allows

abstraction of

opcode sequence

Malware samples collected

from few researches

[56] Permission Analysis

using ML algorithms

Drebin NB,J45,DT 90.5% Trained with

different data set

Less malware samples used

[57] API Calls to Markov

Model Chains

AMD NLP, SVM,

KNN, NB,

86% Efficiency Samples obtained from leas

areas

[58] API calls and

Permissions, call

graphs

AMD RF,NB,AB 92% Analysed

features

individually

Less features used

6

a related study [71], an experimental deep learning

based using permissions achieved impressive results

with 99.9% accuracy. The model were trained on the

dataset to discern the nuanced differences between

benign and malicious apps [72].

Table 4: Hybrid analysis using machine learning.

 Table 2: Dynamic analysis using machine learning.

D. DEEP LEARNING BASED ANDROID MALWARE
DETECTION.

Deep learning based methods have shown great

potential for detecting Android malware. The model

presented in [68] introduces the Deep Refiner tool,

which utilizes a semantic-based deep learning approach

with LSTM networks to detect Android malware. This

two-layer detection and validation process contribute to

a powerful and reliable malware detection system for

enhancing the security of Android devices. The

MOCDroid model introduced a multi objective

evolutionary classifier that leveraged clustering and

third-party call group behaviors to detect Android

malware. This innovative approach offered a powerful

and effective solution for enhancing the security of

Android devices against evolving malware threats. The

use of multi objective optimization enabled MOCDroid to

explore multiple potential solutions and find the best trade-

offs among conflicting objectives, ensuring the classifier's

robustness and adaptability to various types of Android

malware [69].

A new and updated technique for separating malware from

benign android application was proposed, leveraging a deep

learning method. This method involved analyzing the

features from the Smali program of Android apps using

static analyzers. Initially, the Android apps were

disassembled to obtain their Smali code. From this code, the

raw opcode sequence, which represents the low-level

instructions defining the app's behavior, was extracted.

Static analyzers were then applied to this raw opcode

sequence to derive meaningful features and patterns. These

features were utilized as input for the deep Convolutional

Neural Network (CNN) to classify the apps [70,71,72].

Study Detection Approach Dataset

Used

Algorithms

used

Accuracy Strengths Limitations

[64] Extracting the DNS, HTTP,

TCP, Origin based features of

the network used by apps

Genome KNN,RF,DT

,LR

98.5% Allows

abstraction

of opcode

sequence

Malware samples

collected from few

researches

[65] Manifest analysis for

permissions and system call

analysis

Drebin RF, J.48,

NB, Simple

Logistic,

NPolyKernel

Static-96%

Dynamic-

88%

Compared

with

different

ML

algorithm

Uses Monkey

runner

[66] Manifest analysis for

permissions, code analysis for

API calls and System call

analysis

MalGenome,

Kaggle

SVM, LR,

KNN, RF

Static-81%

Dynamic-

93%

Dynamic

Analysis

works better

Didn’t work better

in hybrid.

Study Detection

Approach

Dataset

Used

ML

algorithms

used

Model

Accuracy

Strengths Limitations

[60] Finds

TCP,HTTP,DNS

based features

Genome KNN,RF,DT

,LR

98.5% Allows

abstraction

of opcode

sequence

Malware samples collected from

few researches

[62] Using Markov

Chain-based

detection

technique

Google Play NB, LMT,

Markov

Chain

95% Efficient by

using

Sensor data

Battery consumption issues not

discussed

[63] System services on

host based

detection

AndroZoo,

Drebin

RF,KNN,SV

M

96.7% Works

directly on

device, not

relying on

external

devices.

Signature based verification was

missing

7

6. DETECTING CODE VULNERABILITIES THROUGH
MACHINE LEARNING.

Hackers not only develop malware but also search for

weaknesses in current applications to execute malicious

activities. The discovery of vulnerabilities in Android

source code is essential. Such vulnerabilities can arise

from errors during the design, development, or

configuration phases, making them susceptible to

exploitation and compromising the security of the

system. Code vulnerability detection can be carried out

through two primary methods. The first approach

involves reverse- engineering the APK files of the

application. This entails deconstructing the compiled

code to analyze its inner workings and potential security

weaknesses. The second method involves identifying and

addressing security flaws during the design and

development stages of the application. This proactive

approach aims to implement robust coding practices,

security measures, and rigorous testing to prevent

vulnerabilities from being introduced in the first place.

By combining both these methods, developers and

security experts can significantly enhance the overall

security posture of Android applications, reducing the

risk of exploitation and ensuring a safer user experience

[72].

A. STATIC, DYNAMIC, AND HYBRID SOURCE CODE

ANALYSIS.
Manifest file analysis is indeed a widely used technique

in malware detection. This approach involves analyzing

the Manifest file to find application’s permissions, and

configurations. Instead, the code is transformed into a

more abstract representation [73], to identify potential

properties and issues. Static analysis allows for early

detection of certain vulnerabilities and can provide

insights into the code’s structure and logic. However, it

may not capture all runtime behaviors and interactions.

Dynamic analysis, on the other hand, involves running

the program and observing its behavior in real-time. This

method allows for the detection of runtime-specific

issues, such as memory leaks or unexpected program

behaviors [74]. A hybrid analysis approach combines

elements of both these methods aiming to leverage the

strengths of each method. By using static analysis to

catch design-level vulnerabilities and dynamic analysis to

observe runtime behaviors, developers and security

experts can obtain a more code’s security posture and

potential risks [75].

The research conducted in [76] involved an online

experiment with participation from Android developers.

During the experiment, the developers were provided

with vulnerable code samples that included issues like

hard-coded credentials. After analyzing the results of the

experiment, the researchers concluded that there is a need

to assist developers in developing more secure applications.

Automated code vulnerability detection tools can act as a

safety net, helping developers catch potential security

issues early in the development process. By providing real-

time feedback and suggestions, these tools empower

developers to write more secure code and reduce the

chances of introducing vulnerabilities This study

highlights the importance of integrating such automated

tools into the development workflow to enhance the overall

security of Android applications. The tools are designed

to detect and address various coding issues and bad

practices in Android applications include Android Linters.

They perform static analysis on the source code, often

based on generating Abstract Syntax Trees (AST) or

Universal Abstract Syntax Trees (UAST) from the

written source code [77]. The process starts with the

Android Linter parsing the source code and creating an

AST or UAST representation. This abstract

representation allows the tool to analyze the code’s

structure and identify potential problems, such as code

smells, anti-patterns, performance bottlenecks, or security

vulnerabilities. By leveraging Android Linters,

developers can receive valuable feedback during the

development process, enabling them to make

improvements and adhere to best practices. It aids in

maintaining code quality, enhancing the overall

performance, and promoting secure coding practices in

Android applications.

7. RESULTS AND DISCUSSION.

The distribution of techniques used in the android

malware detect ion revi ewed in this study is as

follows:

Static Analysis: Approximately 75 percent of the

studies utilized static analysis techniques which allows

for early detection of potential malware characteristics

Dynamic Analysis: Around 10 percent of the studies

reviewed employed dynamic analysis techniques for

malware detection. This approach allows researchers to

monitor interactions with the system, network, and other

applications as the code runs, enabling the detection of

suspicious or harmful behavior as it occurs. While less

common than static analysis, dynamic analysis provides

better results in the protected environments of applications

and can complement other detection methods in

identifying and mitigating malware threats.

Hybrid Analysis: Approximately 15 percent of the

studies adopted the hybrid analysis technique. These

numbers indicate that hybrid analysis remains at top in

ML/DL based detection, but dynamic and hybrid analysis

techniques are also gaining attention for their

complementary benefits in identifying and combating

malware threats. Researchers and security experts often

8

employ a combination of these techniques to achieve

more robust and effective malware detection systems.

Figure 9 illustrates the distribution of techniques,

with the majority of studies (75 percent) employing static

analysis, followed by 10 percent using dynamic analysis

and 15 percent adopting the hybrid analysis. In ML/DL

feature extraction methods play a crucial role in preparing

the data for analysis. Within this, the top features that are

considered in most of the studies as impactful for their

accuracy are show in Figure 4(for API calls), Figure 7 (for

permissions) and Figure 8 (for system calls). Within hybrid

analysis approaches, permissions emerge as a frequently

chosen feature and for static analysis as well. The

simplicity of permission analysis compared to other

features contributes to its popularity. The prevalence of

permissions as a commonly extracted feature could be

attributed to several factors. Conversely, services and

network protocols see limited usage in feature extraction,

potentially due to their complexity, making analysis more

challenging refer Table 5 for top features used.

Figure. 4. API calls used in most of the research work.

In the domain of machine learning analysis for Android

malware detection, Random Forest (RF), Support Vector

Machine (SVM), and Naive Bayes (NB) are extensively

explored models. This is largely attributed to their

favorable characteristic of requiring minimal

computational resources. Figure 6 depicts the algorithm

employed in machine learning and deep learning oriented

studies for the purpose of training algorithms aimed at

Android malware detection. Conversely, models such as

Convolutional Neural Networks (CNN), Long Short-Term

Memory (LSTM), and AdaBoost (AB) are less commonly

used, likely due to their higher computational demands.

Additionally, the growing interest in deep learning-based

models has contributed to this trend.

Among the reviewed studies, the Drebin (123453B,5560M

dataset stood out as the most frequently employed dataset

for Android malware detection, with over 3593 downloads.

Additionally, the MalGenome with 2023 downloads

(1260M,2539B) and AMD(10854,4354M,6500B) datasets

also saw significant usage. Furthermore, the recently

introduced new data set MH-100k-dataset (101975 M,)

[79] is also used in most studies with over 226 downloads

as of April, 2024 Figure 5. Among all these data sets Drebin

is widely used one, the primary rationale behind Drebin’s

popularity could be attributed to its provision of a

comprehensive labeled dataset. Moreover, the substantial

utilization of the Google Play dataset might be attributed to

the fact that it originates from Android’s official app store.

Table 5: Top Most features used in static and dynamic

analysis

.

C

o

n

Figure 5. Datasets used in the study along with their count of

samples.

Regarding vulnerability detection within Android

systems, a predominant number of studies tend to favor

10%

6%
8% 9%

7%
5%

9%

4%

8%

3%

 API
call 1

 API
call 2

 API
call 3

 API
call 4

 API
call 5

 API
call 6

 API
call 7

 API
call 8

 API
call 9

 API
call
10

5560

4354

101975

1260

123453

6500

0

2539

Drebin

AMD

MH-100K

MalGenome

Benign Malware

Permissi

on

API calls System

calls

Internet Ljava/lang/String Builder;.:()V api

call 1

Clock_g

et_time

Read_ph

one_stat

e

Ljava/lang/StringBuilder;.append:(I)

Ljava/lang/StringBuilder; API call 2

Read

Send_sm

s

Ljava/util/ArrayList;.:()V API call 3 Ioct

Write_ex

ternal_st

orage

Ljava/util/Iterator;.hasNext:()Z API

call 4

Epoll_p

wait

Access_

network

_state

Ljava/util/Iterator;.next:()Ljava/lang/

Object; API call 5

Rt_sigpr

ocmask

Recieve_

SMS

Landroid/content/BroadcastReceiver

;.:()V API call 6

Getuid3

2

Recieve_

boot_co

mpleted

Landroid/content/Context;.getSystem

Service:(Ljava/langt; API call 7

Recvfro

m

Read_sm

s

Landroid/content/Intent;.(Landroid/c

ontent/Context;Ljava/V API call 8

Futex

Write_W

IFI

Landroid/net/Uri;.parse:(Ljava/lang/S

tring;)Landroid/net/Uri; API call 9

Gettime

ofday

Access_

Location

Ljava/lang/System;.currentTimeMilli

s:()J API call 10

write

9

hybrid analysis and static analysis techniques for

source code examination. To achieve a high level of

accuracy in vulnerability assessment, it is imperative

to thoroughly scrutinize the source code through both

analysis and execution. This rationale underscores the

prevalence of static, dynamic and hybrid techniques as

widely favored methods for source code examination,

effectively enhancing the detection of vulnerabilities.

Figure 6. Machine Learning Algorithms Used in

Android Malware Detection.

Figure 7. Top Ten Permissions Used in most Literature.

Figure 8. Top Ten System Calls Used in Most of the

Literature.

Figure 9. Android analysis used in different of

Android Malware Detection.

 8. CONCLUSION AND FUTURE WORK.

This research delves into the architecture and security

model of Android devices, shedding light on their

vulnerability to security breaches. It emphasizes Android's

susceptibility to attacks and dominant position in the

mobile operating system market. Drawing from recent

literature, the paper conducts a comprehensive review of

cutting-edge machine learning (ML) techniques for

detecting Android malware, spanning from 2016 to

2023.The review covers a wide range of topics, including

the utilization of ML and deep learning (DL) models,

analysis methods for code and APK files, as well as

techniques for feature extraction and analysis. It provides

a balanced assessment of the effectiveness and limitations

of these approaches. Furthermore, the paper recognizes

the importance of identifying coding errors that can lead

to vulnerabilities exploited by hackers. It explores ML-

9%

14%

14%

15%

13%

13%

20%

17%

13%

13%

29%

18%

16%

Genetic Algorithm

Neural Network

Regression Model

Ensemble Learning

K-Mean Clustring

LSTM

SVM

KNN

RNN

NLP

RF

NB

DT

Internet

Read_phone_state

Send_sms

Write_external_storage

Access_network_state

Recieve_SMS

Recieve_boot_completed

Read_sms

Write_WIFI

Access_Location

Clock_get_time

Read

Ioct

Epoll_pwait

Rt_sigprocmask

Getuid32

Recvfrom

Futex

Gettimeofday

write

75%

10%
15%

Static Analysis Dynamic
Analysis

Hybrid Analysis

10

based strategies for detecting such vulnerabilities within

source code. Identifying gaps in current research, the

study suggests future directions for enhancing Android

OS security. It underscores the need for ongoing reviews

in response to the evolving nature of Android malware

and the strategies employed to combat it. Additionally,

the paper advocates for specialized systematic reviews

focusing solely on DL-based malware detection in the

Android context, given the superior accuracy

demonstrated by DL methods compared to traditional

ML models. Moreover, it suggests exploring the

potential of other learning techniques like adaptive and

reinforcement learning as a promising avenue for future

research and systematic reviews.

 REFERENCES.
[1] Number of Mobile Phone Users Worldwide from 2016 to

2023 (In Billions Available on

https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/

[2] Number of Android Applications on the Google Play Store.
Available online: https://www.appbrain.com/stats/number-of-

android-apps/ (accessed on 19 May 2021).

[3] Khan, J.; Shahzad, S. Android Architecture and Related
Security Risks. Asian J. Technol. Manag. Res. [ISSN: 2249–

0892] 2015, 5, 14–18. Available online:

http://www.ajtmr.com/papers/Vol5Issue2/Vol5Iss2_P4.pdf
(accessed on 19 May 2021

[4] Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning
for detection and classification of malware: Research

developments, trends and challenges. J. Netw. Comput. Appl.

2020, 153, 102526.
[5] 5. Khan, J.; Shahzad, S. Android Architecture and Related

Security Risks. Asian J. Technol. Manag. Res. [ISSN: 2249–

0892] 2015, 5, 14–18. Available online:
http://www.ajtmr.com/papers/Vol5Issue2/Vol5Iss2_P4.pdf

(accessed on 19 May 2021).

[6] Platfrom Architecture Available online:
https://developer.android.com/guide/platform (accessed on 7

July 2023).

[7] 7. Android Runrimw (ART) and Dalvik Available online:
https://source.android.com/devices/tech/dalvik accessed (on 7

July 2023).

[8] 8. Cai, H.; Ryder, B.G. Understanding Android application
programming and security: A dynamic study. In Proceedings

of the 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Shanghai, China, 17–
22 September 2017; pp. 364–375.

[9] 9. Li, L.; Li, D.; Bissyandé, T.F.; Klein, J.; Le Traon, Y.;

Lo, D.; Cavallaro, L. Understanding android app
piggybacking: A systematic study of malicious code grafting.

IEEE Trans. Inf. Forensics Secure. 2017, 12, 1269–1284.

[10] 10. Ashawa, M.A.; Morris, S. Analysis of Android malware
detection techniques: A systematic review. Int. J. Cyber-

Secure. Digit. Forensics 2019, 8, 177–187.

[11] Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Ribagorda,
A. Evolution, detection and analysis of malware for smart

devices. IEEE Commun. Surv. Tutor. 2013, 16, 961–987.

[12] Mos, A.; Chowdhury, M.M. Mobile Security: A Look into
Android. In Proceedings of the 2020 IEEE International

Conference on Electro Information Technology (EIT),

Chicago, IL, USA, 31 July–1 August 2020; pp. 638–642.
[13] Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.;

Conti, M.; Rajarajan, M. Android security: A survey of issues,

malware penetration, and defenses. IEEE Commun. Surv.
Tutor. 2014, 17, 998–1022.

[14] Android Security & Privacy 2018 Year in Review. Available

online:

https://source.android.com/security/reports/Google_Android_Se

curity_2018_Report_Final.pdf (accessed on 19 May 2021)

[15] Kalutarage, H.K.; Nguyen, H.N.; Shaikh, S.A. Towards a threat
assessment framework for apps collusion. Telecommun. Syst.

2017, 66, 417–430.

[16] Asavoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage, H.K.;
Muttik, I.; Nguyen, H.N.; Roggenbach, M.; Shaikh, S.A.

Towards automated android app collusion detection. arXiv

2016, arXiv:1603.02308.
[17] Asăvoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage, H.K.;

Muttik, I.; Nguyen, H.N.; Roggenbach, M.; Shaikh, S.A.

Detecting malicious collusion between mobile software
applications: The Android case. In Data Analytics and Decision

Support for Cybersecurity; Springer: Cham, Switzerland, 2017;

pp. 55–97.
[18] Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised

learning. Mach. Learn. 2020, 109, 373–440.

[19] Alauthman, M.; Aslam, N.; Al-Kasassbeh, M.; Khan, S.; Al-

Qerem, A.; Choo, K.K.R. An efficient reinforcement learning-

based Botnet detection approach. J. Netw. Comput. Appl. 2020,

150, 102479.
[20] Shrestha, A.; Mahmood, A. Review of deep learning algorithms

and architectures. IEEE Access 2019, 7, 53040–53065.

[21] Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011).
Android permissions demystified. In Proceedings of the 18th

ACM conference on Computer and communications security
(CCS).

[22] Burguera, I., Zurutuza, U., &Nadjm-Tehrani, S. (2011).

Crowdroid: behavior-based malware detection system for
android. In Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices (SPSM)

[23] Zhou, Y., Zhou, W., Jiang, X., &Ning, P. (2012). Detecting
repackaged smartphone applications in third-party android

marketplaces. In Proceedings of the 19th Annual Network &

Distributed System Security Symposium (NDSS).
[24] Wang, Y., Zhang, K., & Jin, H. (2013). Effective android

malware detection through machine learning techniques. In

Proceedings of the 2013 IEEE 11th International Conference on
Dependable, Autonomic and Secure Computing (DASC).

[25] Arp, D., Spreitzen barth, M., Hübner, M., Gascon, H., & Rieck,

K. (2014). DREBIN: Effective and explainable detection of
android malware in your pocket. In Proceedings of the 2014

Network and Distributed System Security Symposium (NDSS).

[26] Chakraborty, T., & Das, D. (2015). AndroDTector: An efficient
android malware detection technique using ensemble learning

methods. Journal of Information Security and Applications, 24,

45-60.
[27] Hsiao, Hsiu-Yu, et al. "Android malware detection based on

permission and API calls." International Conference on

Information Networking (ICOIN). IEEE, 2015.
[28] Zhou, Yajin, et al. "Permission-based android malware

detection using machine learning techniques." International

Journal of Information Security. Springer, 2015.
[29] Zeki, Sahar, and Adel Ammar. "A novel permission-based

approach for android malware detection." International Journal

of Advanced Computer Science and Applications (IJACSA) 6.1
(2015).

[30] Deng, L., & Yang, Y. (2017). An Android malware detection

method based on permissions and API calls. In Proceedings of
the 2017 International Conference on Progress in Informatics

and Computing (PIC).

[31] Zhang, Xinjie, et al. "Android malware detection based on
permission and system call analysis." International Conference

on Cloud Computing and Security (ICCCS). IEEE, 2015.

[32] Araujo, Mario, et al. "Malware detection in android
applications using permission patterns." International

Symposium on Engineering Secure Software and Systems.

Springer, 2015.
[33] Zou, Deqing, et al. "A hybrid approach for android malware

detection using permissions and api calls." Proceedings of the

11

13th International Conference on Security and Privacy in

Communication Systems. ACM, 2016.

[34] Zhang, Yiming, et al. "Android malware detection based on

permission patterns." IEEE International Conference on Web
Services (ICWS). IEEE, 2016.

[35] Wang, Shuai, et al. "Detecting android malware using

permission and api calls." International Conference on
Information Security Practice and Experience. Springer, 2016.

[36] Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. Tiny Droid: A

lightweight and efficient model for Android malware
detection and classification. Mob. Inf. Syst. 2018, 2018.

[37] Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.;

Damaševičius, R.; Blažauskas, T. Hybrid malware
classification method using segmentation-based fractal texture

analysis and deep convolution neural network features. Appl.

Sci. 2020, 10, 4966.
[38] Amin, M.; Shah, B.; Sharif, A.; Ali, T.; Kim, K.l.; Anwar, S.

Android malware detection through generative adversarial

networks. Trans. Emerg. Telecommun. Technol. 2019, e3675.

[39] Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck,

K.; Siemens, C. Drebin: Effective and explainable detection

of android malware in your pocket. In Proceedings of the
2014 Network and Distributed System Security Symposium,

San Diego, CA, USA, 23–26 February 2014.

[40] Google Play. Available online: https://play.google.com/
(accessed on 13 May 2023).

[41] AndroZoo. Available online: https://androzoo.uni.lu/
(accessed on 19 May 2023).

[42] AppChina. Available online:

https://tracxn.com/d/companies/appchina.com (accessed on 19
May 2023).

[43] Tencent. Available online: https://www.pcmgr-global.com/

(accessed on 20 May 2023).
[44] Zhou, Y.; Jiang, X. Dissecting android malware:

Characterization and evolution. In Proceedings of the 2012

IEEE Symposium on Security and Privacy, San Francisco,
CA, USA, 20–23 May 2012; pp. 95–109.

[45] VirusShare. Available online: https://virusshare.com/

(accessed on 19 May 2023).
[46] Intel Security/MacAfee. Available online:

https://steppa.ca/portfolio-view/malware-threat-intel-datasets/

(accessed on 19 May 2023).
[47] Chen, K.; Wang, P.; Lee, Y.; Wang, X.; Zhang, N.; Huang,

H.; Zou, W.; Liu, P. Finding unknown malice in 10 s: Mass

vetting for new threats at the google-play scale. In
Proceedings of the 24th USENIX Security Symposium

(USENIX Security 15), Redmond, WA, USA, 7–8 May 2015;

pp. 659–674.
[48] Android Malware Dataset. Available online:

http://amd.arguslab.org/ (accessed on 11 May 2023).

[49] Maggi, F.; Valdi, A.; Zanero, S. Andrototal: A flexible,
scalable toolbox and service for testing mobile malware

detectors. In Proceedings of the Third ACM Workshop on

Security and Privacy in Smartphones & Mobile Devices,
Berlin, Germany, 8 November 2013; pp. 49–54.

[50] Wandoujia App Market. Available online:

https://www.wandoujia.com/apps (accessed on 19 May 2021).
[51] Lubuva, H.; Huang, Q.; Msonde, G.C. A review of static

malware detection for Android apps permission based on deep

learning. Int. J. Computer. Network. Appl. 2019, 6, 80–91.
[52] Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H.

Significant permission identification for machine-learning-

based android malware detection. IEEE Trans. Ind. Inform.
2018, 14, 3216–3225.

[53] Mcdonald, J.; Herron, N.; Glisson, W.; Benton, R. Machine

Learning-Based Android Malware Detection Using Manifest
Permissions. In Proceedings of the 54th Hawaii International

Conference on System Sciences, Maui, HI, USA, 5–8 January

2021; p. 6976.
[54] Şahin, D.Ö.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel

permission-based Android malware detection system using

feature selection based on linear regression. Neural Computer.

Appl. 2021, 1–16.

[55] Nawaz, A. Feature Engineering based on Hybrid Features for

Malware Detection over Android Framework. Turk. J.
Computer. Math. Educ. (TURCOMAT) 2021, 12, 2856–2864.

[56] Zhang, P.; Cheng, S.; Lou, S.; Jiang, F. A novel Android

malware detection approach using operand sequences. In
Proceedings of the 2018 Third International Conference on

Security of Smart Cities, Industrial Control System and

Communications (SSIC), Shanghai, China, 18–19 October
2018; pp. 1–5.

[57] Onwuzurike, L.; Mariconti, E.; Androids, P.; Cristofaro, E.D.;

Ross, G.; Stringhini, G. MaMaDroid: Detecting Android
malware by building Markov chains of behavioral models

(extended version). ACM Trans. Priv. Secure. (TOPS) 2019, 22,

1–34.
[58] Zhang, H.; Luo, S.; Zhang, Y.; Pan, L. An efficient Android

malware detection system based on method-level behavioral

semantic analysis. IEEE Access 2019, 7, 69246–69256.

[59] Lou, S.; Cheng, S.; Huang, J.; Jiang, F. TFDroid: Android

malware detection by topics and sensitive data flows using

machine learning techniques. In Proceedings of the 2019 IEEE
2nd International Conference on Information and Computer

Technologies (ICICT), Kahului, HI, USA, 14–17 March 2019;

pp. 30–36.
[60] Garg, S.; Peddoju, S.K.; Sarje, A.K. Network-based detection of

Android malicious apps. Int. J. Inf. Secure. 2017, 16, 385–400.
[61] Salehi, M.; Amini, M.; Crispo, B. Detecting malicious

applications using system services request behavior. In

Proceedings of the 16th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and

Services, Houston, TX, USA, 12–14 November 2019; pp. 200–

209.
[62] Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S.

Analysis and detection of malware in Android applications

using machine learning. In Proceedings of the 2019
International Conference on Electrical, Computer and

Communication Engineering (ECCE), Cox’s Bazar,

Bangladesh, 7–9 February 2019; pp. 1–7.
[63] Salehi, M.; Amini, M.; Crispo, B. Detecting malicious

applications using system services request behavior. In

Proceedings of the 16th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and

Services, Houston, TX, USA, 12–14 November 2019; pp. 200–

209.
[64] Leeds, M.; Keffeler, M.; Atkison, T. A comparison of features

for android malware detection. In Proceedings of the SouthEast

Conference, Kennesaw, GA, USA, 13–15 April 2017; pp. 63–
68.

[65] Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S.

Analysis and detection of malware in Android applications
using machine learning. In Proceedings of the 2019

International Conference on Electrical, Computer and

Communication Engineering (ECCE), Cox’sBazar, Bangladesh,
7–9 February 2019; pp. 1–7.

[66] Kapratwar, A.; Di Troia, F.; Stamp, M. Static and Dynamic

Analysis of Android Malware; ICISSP: Porto, Portugal, 2017;
pp. 653–662.

[67] Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S.

Analysis and detection of malware in Android applications
using machine learning. In Proceedings of the 2019

International Conference on Electrical, Computer and

Communication Engineering (ECCE), Cox’sBazar, Bangladesh,
7–9 February 2019; pp. 1–7.

[68] Mahindru, A.; Sangal, A. MLDroid—Framework for Android

malware detection using machine learning techniques. Neural
Comput. Appl. 2021, 33, 5183–5240.

[69] Xu, K.; Li, Y.; Deng, R.H.; Chen, K. Deeprefiner: Multi-layer

android malware detection system applying deep neural
networks. In Proceedings of the 2018 IEEE European

Symposium on Security and Privacy (EuroS&P), London, UK,

12

24–26 April 2018; pp. 473–487.

[70] Vu, L.N.; Jung, S. AdMat: A CNN-on-Matrix Approach to

Android Malware Detection and Classification. IEEE Access

2021, 9, 39680–39694. McLaughlin, N.; Martinez del
Rincon, J.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei,

Y.; Trickel, E.; Zhao, Z.; Doupé, A.; et al. Deep android

malware detection. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy,

Scottsdale, AZ, USA, 22–24 March 2017; pp. 301–308.

[71] Amin, M.; Tanveer, T.A.; Tehseen, M.; Khan, M.; Khan,
F.A.; Anwar, S. Static malware detection and attribution in

android byte-code through an end-to-end deep system. Future

Gener. Comput. Syst. 2020, 102, 112–126.
[72] Acar, Y.; Stransky, C.; Wermke, D.; Weir, C.; Mazurek,

M.L.; Fahl, S. Developers need support, too: A survey of

security advice for software developers. In Proceedings of the
2017 IEEE Cyber security Development (SecDev),

Cambridge, MA, USA, 24–26 September 2017; pp. 22–26.

[73] Palomba, F.; Di Nucci, D.; Panichella, A.; Zaidman, A.; De

Lucia, A. Lightweight detection of android-specific code

smells: The adoctor project. In Proceedings of the 2017 IEEE

24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Klagenfurt, Austria,

20–24 February 2017; pp. 487–491.

[74] Pustogarov, I.; Wu, Q.; Lie, D. Ex-vivo dynamic analysis
framework for Android device drivers. In Proceedings of the

2020 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 18–21 May 2020; pp. 1088–1105.

[75] Amin, A.; Eldessouki, A.; Magdy, M.T.; Abdeen, N.; Hindy,

H.; Hegazy, I. AndroShield: Automated android applications
vulnerability detection, a hybrid static and dynamic analysis

approach. Information 2019, 10, 326.

[76] Tahaei, M.; Vaniea, K.; Beznosov, K.; Wolters, M.K. Security
Notifications in Static Analysis Tools: Developers’ Attitudes,

Comprehension, and Ability to Act on Them. In Proceedings

of the 2021 CHI Conference on Human Factors in Computing
Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–17.

[77] Goaër, O.L. Enforcing green code with Android lint. In

Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering Workshops, Melbourne,

VIC, Australia, 21–25 September 2020; pp. 85–90.

[78] https://www.spiceworks.com/tech/artificialintelligence/article
s/what-is-ml/ accessed online on 5 april,2024.

[79] Hendrio B, Vanderson R, Lucas B, Eduardo S, Diego K,

Eduardo F, Android malware detection with MH-100K: An
innovative dataset for advanced research. Data in Brief 51

2023

 Bilal Ahmad Mantoo has received

his B Tech Degree from department

of computer Science and

Engineering University of Kashmir

Jammu and Kashmir, India in

Dec.2015 and M Tech Degree

from University of Punjab in 2019

and is Perusing his Ph. D degree from Presidency

University, Bangalore, India. His research area is Data

Science, Cyber Security related cutting edge topic

13

14

