
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  
11	
  
12	
  
13	
  
14	
  
15	
  
16	
  
17	
  
18	
  
19	
  
20	
  
21	
  
22	
  
23	
  
24	
  
25	
  
26	
  
27	
  
28	
  
29	
  
30	
  
31	
  
32	
  
33	
  
34	
  
35	
  
36	
  
37	
  
38	
  
39	
  
40	
  
41	
  
42	
  
43	
  
44	
  
45	
  
46	
  
47	
  
48	
  
49	
  
50	
  
51	
  
52	
  
53	
  
54	
  
55	
  
56	
  
57	
  
60	
  
61	
  
62	
  
63	
  
64	
  
65	
  

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. , No. (Mon-20..)

http://dx.doi.org/10.12785/ijcds/XXXXXX

An Ensemble Neural Architecture for Lung Diseases Prediction
Using Chest X-rays

Abeer Abdelhamid1, Oluwatunmise Akinniyi2, Gehad A. Saleh3, Wael Deabes4 and Fahmi Khalifa1,2

1Electronics and Communications Engineering Dept., Mansoura University, Mansoura 35516, Egypt
2Department of Electrical and Computer Engineering, Morgan State University, Baltimore MD 21251, USA

3Department of Diagnostic and Interventional Radiology, Mansoura University, Mansoura, Egypt
4Computational, Engineering, Mathematical Sciences Dept., Texas A&M University SA, TX 78224, USA

Received Mon. 20, Revised Mon. 2024, Accepted Mon. 20, Published Mon. 20

Abstract: Accurate diagnostic tools for disease control and treatment options is of immense importance, specially during pandemics,
Coronavirus (or COVID) that drew global attention in late 2019. Early detection and seclusion are the cornerstone effective ways to
prevent virus spread. Artificial intelligence (AI)-based diagnostic tools for COVID detection have surged dramatically using various
diagnostic imaging techniques, among which Chest X-ray (CXR) have been extensively investigated due to its fast acquisition coupled
with its superior results. We propose a hybrid, automated, and efficient approach to detect COVID-19 at an early stage using CXRs.
One of the main advantages of the proposed analysis is the development of a learnable input scaling module, which accommodates
various CXR with different sizes with the ability to keep prominent CXRs features while filtering out noise. Additionally, the suggested
method ensembles several learning modules to extract more discriminative representation of texture and appearance cues of CXRs,
thereby facilitating more accurate classification. Particularly, we integrated two sets of features (texture descriptors and deeper features)
representing a rich concentration of local and global features. In addition to learnable scaling and information-rich features, an
ensemble classifier using various machine learning models is used for classification. Our classification module included support vector
machine, XGBoost and extra trees modules. Extensive evaluation, supported by ablation and comparison studies, is conducted using
two benchmark datasets to evaluate the model’s performance in a cross-validation strategy. Using various metrics, the results document
the robustness of our ensemble classification system with higher accuracy of 98.20% and 97.85% for the two data sets, respectively.

Keywords: Ensemble Classifier; Autoencoder; Artificial Intelligence; Feature Fusion

1. INTRODUCTION
Coronavirus (COVID-19) has spread at breakneck speed

around the world since its discovery in late 2019. The
worldwide pandemic caused by COVID-19 has resulted in
a string of catastrophic losses, infecting over 287 million
people and killing 5.4 million people. Since then, medical
specialists from all over the world have been employed
hard to find vaccines and medications for COVID-19 [1].
COVID-19 could be recognized in two distinct manners.
The primary one is a real-time polymerase chain reac-
tion (RT-PCR) nucleic identification testing. RT-PCR has
aided in diagnostics, discharge evaluation, and recovery
monitoring. Nevertheless, the RT-PCR sample sensitivity
is restricted, and this may result in an increased false
negatives. Medical imaging, i.e., chest X-ray (CXR) or
computed tomography (CT), is the second technique for
detecting COVID-19 [2]. CT scans have multiple cross
sections, making diagnosis time-consuming and costly.
Technicians must make numerous adjustments during the
process. Inadequate disinfection between CT technicians

and patients can cause cross-contamination. Furthermore, in
some areas, a shortage of radiologists poses a challenge [3].
Given the enormous impact of artificial intelligence (AI)
methods for health-related imagery, a number of scientists
have turned to these resources in the recent COVID-19
scenario more accurately, quickly, and affordably [4]. Deep
learning (DL) is highly effective and produces better re-
sults for CXR image classification. It has made significant
progress in feature learning and representing features [5].
In summary, early, accurate, and fast COVID-19 diagnosis
is critical for timely quarantine and medical care. This is
also important for patient diagnosis, epidemic prevention,
and public preventive care.

In applications that use image-based data, AI approaches
have consistently produced accurate and dependable re-
sults. In recent years, researchers have investigated and
analyzed CXR images to identify COVID-19 using DL-
based techniques (e.g., [6]–[12]). An automated technique
for detecting COVID-19 was developed using extended
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segmentation-based fractal texture analysis and the discrete
wavelets [13]. The optimal features were selected and com-
bined with an entropy-controlled genetic algorithm and a
serial approach. To detect the chosen features, different ML
classifiers were used. The naive Bayes classifier achieved
92.6% accuracy, compared to other ML algorithms. A
hybrid shape-based (HOG-based) and convolutional neural
network (CNN)-derived features was proposed by [14]. In-
tegrated features improved overall performance by allowing
classifiers to learn from the combined data. They used three
CT datasets with three classes: 328 common pneumonia,
1,972 COVID-19, and 1,608 normal individuals. VGG-16
+ HOG accomplished 99.4% accuracy using SVM. This
suggests that the proposed combined feature can improve
SVM accuracy in COVID19 diagnosis. Pre-trained CNNs
were combined by [15] with a pyramid MLP-mixer mod-
ule to classify 4,099 CXR images which contained 1,464
COVID-19, 1,294 pneumonia, and 1,341 normal patients.
Their model achieved an accuracy of 98.3%. Singh et
al. [6] utilized a modified stacked ensemble model with
four CNN base-learners and Naive Bayes algorithm as
meta-learner to classify CXR images. Their method scored
an accuracy of 98.67%. Waisy et al. [16] applied a pre-
processing step fusing 800 CXRs. They combined the
weighted decisions of the two trained proposed models and
achieved extremely high accuracy of 98%. The performance
of seven different DL architectures for detecting COVID-
19 in CXR images was introduced by El Asnaoui et
al. [17]. In their study, Inception-ResNetV2 achieved an
accuracy of 92.18%. A DL-based accurate and efficient
ensemble model based on CNN for binary and multi-calss
classification was proposed by Bhardwaj et al [9]. Their
method provided 98.33% accuracy for binary class and
92.36% for multiclass. A similar approach was proposed
in [10], where the experimental results showed that their
model achieved an accuracy of 91.2% for the three-class
problem. Although the used dataset was large and TL
concept was applied, the overall accuracy wasn’t high.
A modified COVIDnet model for COVID-19 diagnosis,
called EDL-net, was proposed by Tang et al. [12]. The
proposed model achieved a detection accuracy of 95%.
Balasubramaniam et al. [18] proposed a model based on
ensemble learning technique for COVID-19 detection. They
applied their method on a dataset consisted of 5000 CXR
images. Their approach achieved an accuracy of 92.3%.
COVID-19 identification was carried out using multiclass
and hierarchical classification tasks in [19]. In the classifica-
tion schema, both early- and late-fusion methods were used
using texture features and CNN-extracted features. They
used a dataset consisted seven classes with a total 1,144
CXR images. The evaluation results showed that the pro-
posed approach was effective, with an F1-score of 0.89 for
COVID-19 recognition. Hossain et al. [20] presented an AI-
based solution for an fast and effective COVID-19 infection
identifying technique. Their proposed method accomplished
this by integrated a weighted CNN fusion strategy with
an attention module. The former combined multiple base
pretrained CNN models, such as ResNet50V3, VGG-16,

and InceptionV3 models. The attention module was utilized
to extract important features resistant to overfitting and
exploit an LC layer. The dataset used includes 1,848 CXR
images with equal counts from the COVID-19, healthy, and
pneumonia classes. The results of the experiments revealed
that the fusion model scored an accuracy of 96.75%.

In sum, various studies have been conducted and demon-
strated promising results. Most of the methods employed
DL-based approaches; however, the overall accuracy still
need improvement. Also, some studies have a small number
of subjects to test. Traditionally, the original image is used
as the input to the CNN, that might not be sufficient to give
a high accuracy score. Furthermore, various studies have
integrated CXR and CT data sets; however, higher-order
texture features were not deeply investigated in addition
to the deep features. This work aims to present a robust
ensemble pipeline based on the feature fusion of higher-
order texture feature and CNN-derived deep features in
order to get high accuracy with minimum loss. Additional,
our design is based on an ensemble classifier that integrates
three ML algorithms with five fold cross-validation for
evaluation. Our proposed model is hybrid and has been
evaluated using two data sets and compared against of
the shelf networks as well as recent COVID-19 detection
methods.

2. ANALYSIS PIPELINE
Figure 1 illustrates the proposed analysis pipeline, com-

prising multiple analysis blocks: data preprocessing, the
proposed deep feature extraction model, feature fusion, and
ensemble classification. All stages are further detailed next.

A. Preprocessing and Learnable Input-Scaling
Before data analysis, a preprocessing stage is conducted,

which is essential to improve the input data for subsequent
processing operations. This stage is crucial as it ensures that
a given model is generalizable, particularly when evaluated
on data sets outside of the training cohort. Preprocess-
ing step also minimizes data noises and/or deformations,
allowing the deep architectures or hand-crafted features
extraction to perform its tasks effectively and quickly.

Since data collected from different sites and machines
have different sizes, images have to be rescalled to fit
a designed model’s input. In our design the learnable
input scaling module resize the CXRs to a fixed size
of 224 × 224 using an auto-encoder structure with the
block diagram depicted in Figure 2. The encoding path
comprises successive convolutional and pooling layers to
produce the feature map, AEm. The latter has the size of
224×224, which subsequently undergoes convolution, trans-
posed convolution, and reshaping to achieve dimensions
of 224 × 224 × 4. Both original and processed AEms are
then combined via concatenation, generating high and low-
resolution images. The former is utilized for preprocessing
and feature extraction, while the latter aids in module
training to minimize reconstruction error and learn crucial
features while discarding redundancy and noise. Training
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Figure 1. Schematic of the developed pipeline for lung disease detection.

employs a hybrid loss function that incorporates pseudo-
Huber and log-cosh loss functions [21], [22].

After resizing, multiple image preprocessing are con-
ducted on the resized images. Image pre-processing is a
vital process in the analysis of medical images tasks. This
step range from simple task, such as noisy removal to more
complicated tasks like, histogram equalization and data
augmentation, which are for vital for enhanced and right
classification. In this study, we used data normalization, in
which all pixel values were rescalled to [−1, 1] using

(
1

255

)
as the pixel-wise multiplication. Given a grayscale image
I with maximum (Imax) and minimum (Imin) values, the
normalized image, R = I−Imin

Imax−Imin
. After data normalization,

we applied histogram equalization in order to increase the
global contrast. This allows areas with low local contrast to
gain contrast. Histogram equalization frequently produces
artificial appearances in images; however, it is extremely
useful for scientific images in nature such as thermal,
satellite, or X-ray images [23].

B. Feature Extraction
In medical image classification problems, feature extrac-

tion and selection are critical. A number of images may be
classified based on its primary distinguishing features, that
are found using a suitable feature extraction technique [24].
To enhance the accuracy of CXR classification, in the
proposed pipeline we integrated two types of CXR-derived
information-rich features: deep CNN–derived along with
texture, radiomic features. These feature-driving algorithms
are well-known for their proficiency in medical image clas-
sification tasks. The extracted features are then integrated
where the layers of these models are combined using the
stacking method to create an ensemble classifier, resulting
in a more robust classification.

Firstly, deep features are extracted from the prepro-
cessed image using pretrained neural network architecture.
The goal of this stage is to diagnose COVID-19 (i.e.,
categorize an input CXR image to one of the three classes).

To attain the goal, we utilized ResNet50 pretrained on the
ImageNet dataset [25]. ResNet is cutting-edge CNN archi-
tecture that presented an improvement over traditional CNN
architectures due its ability to address the vanishing gradient
problem often encountered by CNN modules, which is
circumvented using the residual layers. The latter enable
direct transfer of data from one layer to another, skipping
some layers. By doing so, the network (with very deep
architecture) to develop residual functions, that represent
basically the variations between the desired output and the
present result at the current layer. Thus, through intrgerating
a pretrained ResNet50 into our ensemble architecture, we
utilize its ability to learn detailed features and patterns
from CXR images. The CXRs are resized to 224×224
using the learnable input scaling module and then we
removed the final fully connected layer to get the feature
vector. Obtaining these feature vectors required minimal
computational capacity. We deployed pre-trained ImageNet
dataset weights instead of fine-tuning ResNet50 for the data
set, as it is able to offer features for most images.

Secondly, a set of texture features from the CXRs are
also included to enhance disease differentiation by helping
the proposed architecture to harness the spatial interactions
between pixels’ intensities. The features are computed using
two higher-order texture feature descriptors. This set of
features are derived from using GLCM based Haralick
features and the gray-level run length matrix (GLRLM)
features. GLCM produces a square matrix with the same
dimension as the number of grey levels in the image. Each
GLCM cell represents the total number of co-occurring
associated grey levels in the image. The matrix must have a
reasonably high occupancy level in order for the statistical
estimate to be reliable. Thus, either the number of grey level
values is reduced or a larger window should be used [26].
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Figure 2. A schematic showing the structure of the learnable input scaling module.

The GLCM matrix, G, can be calculated as follows [27]:

G∆x,∆y(i, j) =
K∑

x=1

M∑
y=1

{
1, Ri(x, y) = i,Ri(x + ∆x, y + ∆y) = j
0, otherwise

(1)
where Ri(x, y), and {∆x, ∆y} are pre-processed data with
K×M dimension at the spatial position {x, y}; and the spatial
offset in the image I, respectively. The GLCM matrix’s
second-order statistical analysis yields various parameters
that are widely used as texture features in medical data
classification research [28]. In our work, we extracted the
five most commonly used GLCM features from each image:
energy, contrast, correlation, homogeneity and dissimilar-
ity [29]. We statistically evaluated the GLCM features to
select the most informative and distinctive ones.

Furthermore, the GLRLM texture features are utilized in
the method we employ as a higher-order statistical texture
feature set. GLRLM investigation, like GLCM, commonly
herbal extracts the spatial plane features of pixels based on
the high-order statistics of their immediate neighbors [30].
Thus, GLRLM features texture patterns assessment deliver
discriminative power for image classification and supple-
ment other features such as color, shape, and intensity
for comprehensive representations and better performance.
The technique generates a normalized 2D feature matrix,
with each component representing the overall number of
occurrences of the graylevel in the given direction [31].
Typically, GLRLM extractor captured information of pixel
pairs at angels 0, 45, 90, and 135o. Mathematically, each
element L(i, j|θ) of the run length matrix L, represents
the number of runs with pixels of graylevel intensity and
length of run equal to i and j,respectively along a specific
orientation, i, j ∈ [0, 255], θ ∈ {0, 45, 90, 135}. From L for
an input image of size N × M, many features including
short/long run emphasis (SRE/LRE), greyLevel/run Length
non-uniformity (GLN/RLN), run percentage (RP), low/high
gray level run emphasis (LGRE/HGRE) for a given θ can

be calculated using the number of greylevel (g) and number
of discrete run lengths (r) of a given image as as follows:

S RE =
g∑

i=1

r∑
j=1

L(i, j)
j2 (2)

LRE =
g∑

i=1

r∑
j=1

j2L(i, j) (3)

GLN =
g∑

i=1

 r∑
j=1

L(i, j)

2 (4)

RLN =
r∑

i=1

 g∑
j=1

L(i, j)

2 (5)

RP =
1

N × M

g∑
i=1

r∑
j=1

P(i, j) (6)

LGRE =
g∑

i=1

r∑
j=1

L(i, j)
i2

(7)

HGRE =
g∑

i=1

r∑
j=1

i2L(i, j) (8)

C. Feature Fusion and Ensemble Classification
Following feature extraction, we used a feature fusion

approach for combining derived CXR features for classi-
fication. This technique usually enhances the discrimina-
tive classification power of a given system by delivering
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comprehensive representations of information-rich features.
Finally, the fused CXR features are provided as input to
a ML classifier for prediction. Our design is based on
an ensemble classifier that integrates three ML algorithms:
SVM, XGBoost, extra trees. Also, five fold cross-validation
technique was used for training the ensemble models on the
CXRs datasets. The SVM is the first ML algorithm that is
employed in our design. SVM is a supervised ML technique
that creates a hyperplane that separates two input classes
with the largest margin. The margin indicates the difference
between the support vectors and the hyperplane [32]. The
main advantage of SVM lies in the fact that it powerfulness
ability to handle high-dimensional data and non-linear clas-
sification using kernel functions, while being effective with
limited training samples. In addition to SVM, XGBoost
is also included in our ensemble model. It has gradient
boosting at its core. The XGBoost algorithm differs from
simple gradient boosting in that it uses a multi-threaded
approach to add weak learners, rather than adding them
sequentially. The XGBoost algorithm differs from simple
gradient boosting in that it adds weak learners in a multi-
threaded approach, utilizing the machine’s CPU cores for
faster and better performance. Sparse aware implementation
includes automatic handling of missing data values, a block
structure for parallel tree design, and ongoing training
to improve an existing model on new data [33]. Finally,
Extra tree, an extremely randomized classifier, is integrated
in our ensemble model [34]. It is built differently than
traditional decision trees. Random splits are utilized to
determine the best way to divide a node’s samples into
two separate sets. The best split will be determined based
on randomly selected features, specifically max features.
Its averages out the variance problems of a single decision
tree method, making it suitable for multiple sub samples of
a dataset. This improves predictive accuracy and prevents
overfitting [35].

3. EXPERIMENTAL RESULTS
The primary objective for developing the proposed AI-

pipeline is to create a robust classification model that will
perform well regardless of the domain in which it can be
used. System evaluation and assessment is based on two
publicly-available chest x-ray datasets with compromising
a total CXRs of 13,830 images [36]–[40]. The datasets
consist of three classes: normal, pneumonia, and COVID-
19 and are summarized in Table I. For experimental and
training settings, the system was built with the TensorFlow
framework and Keras as the backend using the Python pro-
gramming language. All experiments are conducted using
a windows machine with 32GB of RAM, 4GB NIVIDIA
graphics card, and a 12 core i7-processor. we employed
Adam optimizer [41] and set the learning rate at 10−4 due
to its effective hyperparameters’ selection. Furthermore, the
batch size was fine-tuned to 32, epochs are tuned at 50, and
categorical loss function was used.

The overall accuracy for the proposed method is sum-
marized in Table II. Quantitative performance evaluation is

TABLE I. Per-class distribution for the public datasets.

Dataset
First Second Total

Normal 4,200 1,751 5,951
Pneumonia 4,273 4,273 8,546
COVID-19 4,195 1,371 5,566
Total 12,668 7,395 20,063

conducted mainly using accuracy, recall, precision, and F1-
Score indexes. The accuracy (AC) represents the ratio of
correctly categorized labels to the total number of tested
ones. Recall (RC, specificity) is a representation of the
fraction of correctly identified positive (or negative) class.
Further, correctly predicted positive samples out of the total
predicted patterns in the positive class is referred to as
precision (PR). Finally, the F1-Score indicates the harmonic
mean between RC and PR. At first, we investigated the
importance of the ensemble classifier on the overall system
performance. Thus, we evaluated the classification process
using different single ML models and Table II represents the
summary of the accuracy of the tested models. It observed
that most of the single classifier have lower performance and
the extra tress achieved the highest accuracy when tested on
the extracted features. However, individual classifiers are all
less than the ensemble model of the fused features.

TABLE II. Multi-class accuracy of comparing the ensemble clas-
sifier against various machine learning models. AC: accuracy, PR:
precision, RC: recall.

Evaluation Metrics (%)
Classifier AC PR RC F1-Score
XGBoost 78.23 80.64 76.51 77.15

RF 81.13 82.36 82.56 82.42
SVM 85.39 83.03 84.25 83.87

Extra Trees 88.10 87.18 86.08 86.73
Our (dataset1) 98.20 97.91 98.18 96.43
Our (dataset2) 97.85 97.33 95.67 96.67

Besides quantitative indexes, the architecture perfor-
mance is investigated using the confusion matrices (CM)
and the receiver operating characteristics (ROC) curve,
which are powerful tools for the evaluation and comparison
of classification models. On the first hand, CM is an
extremely useful tool for determining which classes, if any,
were misclassified the most. On the other hand, the ROC of
analysis tool is used to validate/support the reliability (and
accuracy) of classification pipelines by analyzing models’
output based on the relation between false and true positive
rates assessed at various thresholds. The area under the
curve (AUC) of a ROC can be utilized in quantitative
classification models to demonstrate how well the model
discriminates between classes. The last column of Figures 3
and 4, demonstrates the CM and the ROC curve for the
proposed ensemble model evelaued on the first data set,
respectively. Additionally, Figures 5 shows CM and the
ROC curve for the proposed ensemble model tested on the
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(a) (b) (c)

Figure 3. Visualization of confusion matrices of individual feature sets and the proposed method: (a) higher-order features; (b) CNN-derived features,
and (c) their fusion (the proposed) on the first data set.

(a) (b) (c)

Figure 4. Visualization of the ROC curves of individual feature sets and the proposed method: (a) higher-order features; (b) CNN-derived features,
and (c) their fusion (the proposed) on the first data set.

second data set.

For the second evaluation phase, we investigated the
importance of features fusion. Thus, we conducted an
ablation study where we test the system accuracy using
each type of the features separately. Table III represents
the summary of the obtained accuracy. As demonstrated, the
proposed model’s performance is highly enhanced using the
fused features compared to individual features and reached
to an accuracy of 98.20% and 97.85% for the first and
second data sets, respectively.

TABLE III. Overall performance for the proposed model. HaC:
Handcrafted Features; CNN: convolutional neural network.

Metrics, (%)
Method AC PR RC F1-score

HaC Features 90.15 88.63 89.28 89.46
CNN Features 93.29 91.33 90.00 90.67

Proposed (dataset1) 98.20 97.91 98.18 96.43
Proposed (dataset2) 97.85 97.33 95.67 96.67

Moreover, evaluation of well-known pretrained back-
bone CNNs and recent literature work developed for
COVID-19 detection are also conducted. For pretrained

CNNs, we tested various architectures including VGG19,
Inception, DenseNet121, and Xception and the average
accuracies were 71.36%, 78.50% , 80.00%, and 86.92%,
respectively. Table IV summarizes the results of other
literature work compared with the proposed model, which
have been applied on the employed datasets. From the
table, its readily seen that the proposed model scored higher
accuracy accuracy compared to others. The reported results
emphasis the idea that feature fusion coupled with ensemble
ML classifier enhances the overall performance.

TABLE IV. Multi-class accuracy of recent work for COVID-19
detection. AC: Accuracy, PR: Precision, RC: Recall.

Evaluation Metrics (%)
Model AC PR RC F1-Score

Ismael et al. [42] 94.7 91.0 98.9 94.8
Horry et al. [43] — 83.0 81.0 81.0
Abbas et al. [44] 95.1 97.9 91.87 93.36

Li et al. [45] 99.6 — 99.4 —
Medeiros et al. [46] 95.47 94.71 96.18 95.44

4. CONCLUSIONS AND FUTURE WORK
A hybrid pipeline incorporating ensemble feature fusion

concept has been developed for distinguishing COVID-19
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(a)

(b)

Figure 5. Visualization of confusion matrices and ROC curve of our
ensemble model for the second data set.

from normal and pneumonia cases CXRs images through
multi-classification. Particularly, an AI-based combining
high-level features with higher-order texture ones has been
developed. The potentials of the developed feature fusion
architecture is supported by the presented results using
two cohorts of CXR images. The experimental findings
reveal in which the improved fusion approach combined
with ensemble classifier outperformed the single predic-
tion models and achieved overall accuracy of 98.20% and
97.85%. The suggested method has a high potential for
clinical application and has the possibility to reduce both
pollutants and hospital burden by preventing unnecessary
hospital visits. In future work, we will create a multi-level
classification framework that mimic physicians diagnosis
of separating groups by providing global screening then
performing micro classification of the potential instances.
We will also investigate ensemble learning of multi-scale
images. Although we have introduced a feature fusion
approach, our future work will be dedicated to multi-modal
features fusion. Integration between CXR-based features
and CT in conjunction with using transformer-based archi-
tectures will be another research venue.
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