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Abstract: The vision depends greatly on the retina, unfortunately, it may be exposed to many diseases that lead to poor vision or 

blindness. This research aims to diagnose retinal diseases through OCT images, focusing on Drusen, diabetic macular edema (DME), 

and choroidal neovascularization (CNV). A new ensemble model is proposed that proposes new methods and combines them with soft 

and hard voting methods, it is based on three sub-models (Custom-model, Xception, and MobileNet). Because we noticed that some 

sub-models are better than others at classifying a particular category, each sub-model was assigned to the category it classifies best. 

We also used a way to correct final misclassification through a list of negative predictions created to contain categories to which the 

sub-model is somewhat certain that an image does not belong. The proposed ensemble model achieved a state-of-the-art accuracy of 

100%, and the Custom model obtained an accuracy of 99.79% on the UCSD-v2 dataset.  The Duke dataset was also employed to verify 

the performance efficiency of the model, with the ensemble model also achieving an accuracy of 100%, and the Custom model 

recording an accuracy of 99.69%. In the first dataset, the custom model specializes in Drusen and Normal, Xception in DME, and 

MobileNet in CNV. While the custom model in AMD, Xception in DME, and MobileNet in Normal in the second dataset. The results 

of this research emphasize the effectiveness of ensemble learning techniques in analyzing medical images, especially in diagnosing 

retinal diseases. 
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1. INTRODUCTION 

The retina is an important component of the human eye 
due to its location near the optic nerve and its sensitivity to 
light. Its role is to transform light into neural signals, a 
fundamental process for sight [1]. The macula is an 
extremely important part of the retina, as it is responsible 
for central vision and detects the color and intensity of light  
[2]. The retina processes light and sends it to the brain via 
the optic nerve, enabling vision [3]. Several retinal diseases 
can weaken the macula, posing major health concerns that 
often develop over time, including CNV, DME, and 
Drusen [2] (as shown in Figure 1). 

Optical coherence tomography (OCT), since its 
introduction in 1991, has revolutionized ophthalmology 
because it is a non-invasive way to perform a detailed 
examination of the retina and choroid [4]. High-resolution 
OCT imaging is pivotal in diagnosing various retinal 
diseases [2].  It is essential for detecting and assessing 
macular lesions within the retina's layered structure, 

offering sensitive and quantitative analysis [5]. OCT 
effectively identifies early-stage cystic and sub-retinal 
swelling, often undetectable in standard retinal fundus 
photographs [4]. 

The introduction of Deep Learning (DL) techniques, 
especially Convolutional Neural Networks (CNNs), has 
initiated a new era in healthcare, revolutionizing medical 
diagnostics with precise and rapid decision-making [1]. In 
ophthalmology, these technologies have been particularly 
impactful, transforming automated diagnosis systems with 
their robust algorithms for fast and accurate disease 
classification [6]. The use of CNNs for retinal OCT image 
processing has been extensively explored, enabling these 
models to learn hierarchical abstract features from large 
training datasets [2]. Research has focused on applications 
such as the segmentation of retinal layers [7] and the 
classification of OCT images [8], [9], with some studies 
utilizing ensemble models for enhanced performance [10]. 
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CNN models are preferred in many scenarios for their 
accuracy and efficiency in processing complex image data. 

Figure 1.  OCT Retina Diseases Images 

The motivation for this research is driven by the 
alarming statistics on retinal diseases impacting millions 
worldwide annually [6] : over 2.2 billion people worldwide 
suffer from eye illnesses, leading to significant visual 
impairment and, in extreme cases, complete blindness  [11], 
with approximately 2 million CNV cases [12], 7.5 million 
DME cases in those over 40  [13], and more than 7 million 
Drusen cases annually in the USA [11]. 

The key contributions of this study are 

enumerated below: 

• It can be observed models, depending on their 

structure, are better than each other in classifying 

certain categories so, this study adopts a 

specialized strategy: when every model achieves 

higher accuracy for a specific category being 

solely responsible for its classification. 

• A novel mechanism has been proposed to correct 

misclassification. This ensures that when a model 

is dedicated to a specific category, the 

contributions of other models are not ignored. 

Rather, they help supplement the negative 

prediction list (NP list) of categories, as these 

models somewhat confidently a given image does 

not belong to the categories in this list. 

• Achieving optimal accuracy: This study presents 

a new level of accuracy, reaching 100% for the 

first time in the UCSD-v2 dataset. 

• This study introduces a novel approach within the 

ensemble learning framework, underscoring the 

significance of this approach and the need to 

highlight it further to maximize the utilization of 

multiple models as much as possible. 

This paper is structured as follows: Section 2 related 
works. Section 3 elaborates on the detailed methodologies 
used to build our ensemble framework, the proposed 
Custom sub-model, and the preprocessing steps used. 
Experimental results, showing the unprecedented accuracy 
levels achieved by our approach, are discussed in Section 
4. Finally, the conclusions in Section 5. 

2. RELATED WORKS 

In 2020, D. Paul et al. [3] Obtained refined and high-
quality images in the pre-processing, and they developed a 
novel framework, called OCTx, that utilized an ensemble 
of four models: VGG16, InceptionV3, DenseNet, and a 

custom model. This ensemble approach effectively 
addressed overfitting and achieved 98.53% accuracy on the 
UCSD-V2 dataset. However, the study used a large number 
of epochs (250). 

Also In 2020, M. Berrimi and A. Moussaoui [14] 
proposed a new DL classification framework with transfer 
learning (TL), comparing a custom CNN architecture 
against pre-trained models like Inception-V3 and VGG-16. 
Using the UCSD-V2 dataset over 15 epochs, their custom 
CNN achieved 98.5% accuracy, while Inception-V3 
reached 99.27%. Enhancements to the VGG-16 model, 
including additional convolution layers and regularization, 
increased its accuracy from 53% to 93.5%. This study did 
not balance the dataset, and image enhancement and noise 
removal techniques were absent. 

In 2021, H. A. Nugroho and R. Nurfauzi [15] utilized 
several models (MnasNet0.5, Inception-V3, SuffleNet-v2, 
ResNet18, ResNet50, GoogleNet, MobileNet-v2, and 
DenseNet121) to diagnose retinal diseases in OCT images. 
MobileNet-V2 emerged as the most effective, with an 
accuracy of 0.9964 on the UCSD-V2 dataset. However, the 
study did not address the dataset's imbalance. 

Also in 2021, P. Barua et al.[16] Suggested a new 
framework that employed TL, extracting deep features 
from 18 sub-models, achieving accuracies of 97.40% with 
the subset of the UCSD-v3 dataset and 100% with the Duke 
dataset. 

In 2022, S. Asif et al. [17] Employed TL in the pre-
trained ResNet50 CNN, to improve the model's precision, 
incorporated a new block “fully connected” and over 20 
epochs achieved an accuracy of 99.48% on the UCSD-V2 
dataset. The study overlooked the imbalance in the dataset. 

In 2023, V. Latha et al. [18] Presented a method for 
detecting macular diseases in OCT images by merging the 
feature vectors of VGG16 and InceptionV3 models, using 
TL for enhanced local and global feature recognition. Their 
model, applied to the UCSD dataset (versions 2 and 3), 
with 50 epochs achieved accuracies of 99.7% and 98.1%, 
respectively, with image augmentation as a pre-processing 
step. 

Also in 2023, P. Elena-Anca [19] evaluated five DL 
models, including a 12-layer convolutional model, 
InceptionResNet, DenseNet201, DenseNet121, and 
DenseNet169. The study highlighted the pre-trained 
DenseNet169 model's superior performance, achieving a 
97% accuracy rate on the UCSD-V2 dataset for retinal 
disease diagnosis in 25 epochs. Notably, this study did not 
incorporate any pre-processing procedures. 

Furthermore, in 2023, İ. Kayadibi and G. Güraksın [20] 
suggested using FD-CNN with dual pre-processing for 
retinal disease identification. D-D-KNN and SVM were 
used to reclassify, D-SVM outperformed both in the 
UCSD-v2 dataset, recording an accuracy of 99.60%, 
whereas accuracy was 97.50% in the Duke dataset. Number 
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of epochs was 5. However, the imbalanced dataset issue 
was overlooked. 

Moreover, in 2023, O. Akinniyi et al. [21] Proposed a 
multi-stage classification network built on a pyramidal 
feature ensemble framework, using the pre-trained 
DenseNet model as the foundational network. The system 
demonstrated an accuracy of 94.26% for the 
comprehensive four-class classification by using the 
UCSD-V3 dataset, and 99.69% on the Duke dataset, over 
50 epochs. there isn't noise removal in images that could 
result in misclassification accuracy. 

Continuing in 2023, P. Jayanthi et al. [22] Applied a 
transfer learning approach with VGG19, ResNet50, and a 
custom-built sequential model. They reported classification 
accuracies of 0.972, 0.958, and 0.996 on the UCSD-V2 
dataset over 25 epochs. The custom model demonstrated 
superior accuracy compared to the pre-trained models. 
Despite the high accuracy, the dataset required balancing. 

In this paper, we propose an innovative approach for 
ensemble learning, emphasizing a novel approach to model 
specialization and misclassification correction. To add 
further challenge to our approach, we have trained all 
models from scratch, deliberately avoiding using transfer 
learning techniques. Moreover, we not only used the 
UCSD-v2 dataset  [23] but also applied our model to the 
Duke dataset [24]. We also have implemented multi-step 
pre-processing to eliminate noise and accurately delineate 
the area of interest in the data. 

3. PROPOSED METHODOLOGY 

The proposed study will be detailed from pre-
processing to classification below. 

A. Image pre-processing 

The OCT images used suffer from many problems, 
such as differences in size and quality, shapes (square or 
rectangular), and zoom ratios. They also contain noise such 
as salt and pepper noise, and white background pixels, 
affecting the image analysis process to train CNN 
networks. 

The following steps, as shown in Figure 2, are 
performed to solve the most important problems mentioned 
above. First, the white background pixels of the image are 
colored black. In the second step, the pixel values in the 
image are normalized to enhance contrast and detail. In the 
third step, Gaussian filtering and adaptive thresholding are 
applied to the image to identify and extract the contour 
coordinates in a rectangular shape of the largest object, 
which represents the retina, and then used to crop the region 
of interest (ROI) from the OCT image. In the fourth step, 
the image contrast is intensified, binary thresholding is 
applied, and median blurring is used to isolate and extract 
the largest contour, replacing points outside the object with 
black points. In the final step, the image is resized to 
(200*80) pixels, while maintaining its height ratio, centring 
it within the new dimensions, because the retina is 

rectangular, the weights of models are not used so, 
rectangular images are accepted.   

Figure 2.  OCT Retina Diseases Images 

B. Chosen Algorithms 

The proposed ensemble model is composed of three 
distinct algorithms: 

1) Custom model. The proposed CNN sub-model was 

created by using the Keras toolbox. There are (703,821) 

parameters that can be learned, while those that can't be 

learned are (1,152). The model comprises 61 layers, 

starting with a separable convolution, batch normalization 

and a “Relu” activation layer, and it ends at the  “Softmax” 

activation function layer that gives the probability of each 

class. The whole architecture is depicted in Table Ⅰ. 

2) Pre-trained models. The models used are Xception 

and MobileNet, with some layers, that include: several 

dense layers with L2 regularization set at 0.001 with some 

dropout layers to reduce overfitting, batch normalization 

layers to enhance performance, and activation layers that 

facilitate the learning of complex patterns by introducing 

non-linearity, also in the end the “Softmax” activation 

function layer is used. These additions bolster the overall 

effectiveness of the models, which are trained from scratch 

without using transfer learning. 

These algorithms were carefully selected for their 
efficiency in extracting features from retinal OCT images, 
and their diversity in the number of trainable parameters 
(Custom model: 704,973, MobileNet: 16,509,444, 
Xception: 65,599,340) that are particularly effective for our 
ensemble model. Their combination ensures robustness 
and enhances the ensemble model's overall performance. 
As a result of an extensive evaluation process that included 
many deep neural network algorithms, this was the choice, 
as it showed superior performance compared to others. 
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TABLE I.  ARCHITECTURE OF CUSTOM-MODEL 

 

C. Proposed Ensemble Learning Model 

Ensemble learning in machine learning integrates 
outcomes from multiple algorithms, thereby enhancing 
performance beyond what individual algorithms can 
achieve [25].  The three main ensemble learning techniques 
are noteworthy: stacking, boosting, and bagging. Bagging, 
which stands for Bootstrap Aggregating, combines the 

predictions of several models trained on different subsets 
of data. A series of models known as  “boosting” are 
trained to gradually improve performance by fixing the 
mistakes of the previous model. In stacking, referred to as 
stacked generalization, multiple models' predictions are 
combined, and a meta-learner model is used to generate a 
final prediction. In addition, there is, the hard voting 
method, which aggregates predictions by majority or 
average votes to derive the final decision, and the soft 
voting method, which selects the vote with the highest 
probability from among the sub-models. Voting methods 
can be used independently or as a component of main 
methods.  

In this research, we introduce a novel ensemble model 
(as shown in Figures 3, 4, and 5, in addition to Algorithm 
1), that can be called the  “Negative Prediction-Based 
Specialized Ensemble Model”. This model integrates the 
strengths of multiple sub-models to enhance classification 
accuracy. It is noted that in most research utilizing 
ensemble learning for diagnosing retinal diseases, there 
has been a reliance either on the highest accuracy classifier 
(soft voting) or majority voting (hard voting), thus 
neglecting less fortunate models. This issue is addressed 
by the proposed model that incorporates two key elements: 

• Firstly, determining the best sub-model in 
classifying each category in the training dataset. 
The model that achieves the highest accuracy for a 
particular class becomes specialized in that class 
and is given priority in the final data classification.  
In the absence of a specialized model, the hard 
voting method is used, or the soft voting is used in 
the event of a tie. 

• Secondly, create a negative prediction list, 
supplemented with categories by each sub-model 
to identify categories to which it is somewhat 
confident that a given image does not belong. This 
means that not only high-accuracy sub-models 
have strengths, but less successful models also 
have strengths that can be exploited: the certainty 
that an image does not belong to certain categories. 
Thus, correcting misclassifications. 

D. Specializing each sub-model 

We noticed that sub-models may be better than each 
other in classifying a particular category, and this feature 
was not exploited in previous studies in diagnosing retina 
diseases, so we added the character of specialization to the 
models, so after the training process, weights are used to 
predict each class of training data separately. This approach 
ensures that each sub-model specializes in the category or 
categories that it classifies better than other sub-models, 
thus enhancing the overall accuracy of the ensemble model, 
thus enhancing the overall accuracy of the ensemble model. 

 

 

Layers (type) 
Param

# 
Layers (type) 

Param

# 

Input Layer (1, 200*80) 0 Dropout (32, 8*3) 0 

SeparableConv2D (32, 

200*80) 
73 

MaxPooling2D (32, 

3*1) 
0 

BatchNormalization (32, 

200*80) 
128 Conv2D (64, 3*1) 2112 

Activation (32, 200*80) 0 Conv2D (64, 3*1) 2112 

SeparableConv2D (32, 
200*80) 

1344 Conv2D (64, 3*1) 2112 

BatchNormalization (32, 

200*80) 
128 Conv2D (64, 3*1) 36928 

Activation (32, 200*80) 0 Conv2D (64, 3*1) 102464 

MaxPooling2D (32, 
67*27) 

0 
Concatenate (192, 
3*1) 

0 

SeparableConv2D (64, 

67*27) 
2400 Conv2D (64, 3*1) 12352 

BatchNormalization (64, 
67*27) 

256 
BatchNormalization 
(64, 3*1) 

256 

Activation (64, 67*27) 0 Activation (64, 3*1)| 0 

SeparableConv2D (64, 

67*27) 
4736 Dropout (64, 3*1) 0 

BatchNormalization (64, 

67*27) 
256 

MaxPooling2D (64, 

1*1) 
0 

Activation (64, 67*27) 0 Conv2D (96, 1*1) 6240 

MaxPooling2D (64, 
23*9) 

0 Conv2D (96, 1*1) 6240 

SeparableConv2D (96, 

23*9) 
6816 Conv2D (96, 1*1) 6240 

BatchNormalization (96, 
23*9) 

384 Conv2D (96, 1*1) 83040 

Activation (96, 23*9) 0 Conv2D (96, 1*1) 230496 

SeparableConv2D (96, 

23*9) 
10176 

Concatenate (288, 

1*1) 
0 

BatchNormalization (96, 

23*9)| 
384 Conv2D (96, 1*1) 27744 

Activation (96, 23*9) 0 
BatchNormalization 

(96, 1*1) 
384 

MaxPooling2D (96, 8*3) 0 Activation (96, 1*1) 0 

Conv2D (32, 8*3) 3104 Dropout (96, 1*1) 0 

Conv2D (32, 8*3) 3104 
MaxPooling2D (96, 

1*1) 
0 

Conv2D (32, 8*3) 3104 Conv2D (128, 1*1) 110720 

Conv2D (32, 8*3) 9248 Attention (128, 1*1) 0 

Conv2D (32, 8*3) 25632 
Concatenate (256, 

1*1) 
0 

Concatenate (96, 8*3) 0 

Conv2D (4, 1*1) // 
classes are 4 in 

UCSD-v2, and 3 in 

Duke (771 Param#) 

1028 

Conv2D (32, 8*3) 3104 
GlobalAveragePoolin
g2D (4) 

0 

BatchNormalization (32, 

8*3) 
128 Activation (4) 0 

Activation (32, 8*3) 0   
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Figure 3.  Specialize the sub-models 

Note that this approach is somewhat like the idea of 
dividing the multi-class into more than one binary class. but 
we allocate each model to one or more classes (as shown in 
Figure 3), instead of using the model (models) multiple 
times, each time choosing one class in a one-vs-rest 
approach as is common to improve accuracy as in [26]. 
Furthermore, when a particular model specializes in a 
specific category, its predictions are not limited to that 
category alone, but it assumes priority. When predicting 
categories outside its specialization, such predictions may 
also be considered significant in some cases. 

If the top prediction of each sub-model is for a class not 
specialized in it, we use the majority voting method. but if 
the votes are equal or the majority voting category belongs 
to an NP list, the prediction with the highest probability is 
adopted (soft voting method). If the highest probability 
class also belongs to the NP list, we choose the next highest 
probability prediction, and so on (as shown in Figure 4) . 
Suppose the final prediction, whether from a specialized or 
non-specialized model, is less than two-thirds of the highest 
probability prediction. The prediction with the most votes 
or the highest probability is chosen in this case.  

Figure 4.  The prediction from a specialized or unspecialized sub-

model, with correcting misclassification 

E. Negative Predictions List (NP-list) 

The proposed ensemble model amalgamates the 
advantages of all sub-models, where each one specializes 
in the category it classifies most effectively, the rest of the 
models are not neglected but contribute by identifying 
categories that they are somewhat certain the specific 
image does not belong to (as shown in Figure 5). This 
strategy enhances the accuracy by enabling models to 
correct each other’s misclassification. 

Figure 5.  Negative predictions list. (created by each sub-model) 

 

In all models, the “Softmax” activation function layer 
was used to perform the final classification, and since it 
gives the probabilities of all classes, we took advantage of 
this feature. The class whose probability is less than one in 
a thousand from the highest probability in that model, 
where satisfies the condition in the following equation (1), 
is added to the NP list. 

prob. (class I) < (0.001 * highest-prob.)   (1) 

This list helps by correcting any misclassification of the 
specialized model, if any, or the misclassification of the 
majority voting method and the soft voting method, which 
are used in the absence of a specialized model among the 
highest predictions of the three models. The process of 
calculating the final prediction in this ensemble model is 
summarized in the following pseudo-code: 

ALGORITHM 1: ALGORITHM TO CALCULATE FINAL PREDICTION  

1  Initializing the required variables. 

2  FOR each model in models: 

3   Training the model on training data. 

4   
Using weights of the current model to compute its accuracy 

on each class in training data separately. 

5  END 

6  
Specializing each model to a specific class (or classes) in which it 

outperforms other models in accuracy. 

7  
FOR each image in the testing dataset:   // Forming the Negative 

Prediction list (NP-list) 

8   

Computing the predicted probability (prob.) for each class 

by each model for that image and identifying the max 

predicted probability (max-prob.). 

9   Appending the prob. and its class to the predictions list. 
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10   

Identifying classes that have very low probabilities for each 

model if the condition is met: 

prob.< (0.001 * max-prob.)  // less than one in a thousand 

from the max-prob. in that model. 

11   Appending these low-probability classes to the NP-list. 

12  END 

13  
FOR all max-prob. from all models of each image in the test 

dataset:   // Final Classification 

14   

Determine which class has the majority of votes and which 

class has the highest-probability among all models for the 

current image. 

15   
Calculating the number of models that show specialization 

in their max-prob., when the classes ∉ NP-list. 

16   IF there is one specialized model: 

17    
Final prediction = predicted  class of specialized 

model. 

18   
ELSE IF there are more than one 

specialized model: 

19    
Final prediction = majority voting 

class if it ∉ NP-list. 

20   

ELSE IF there is no specialized model: // 

Each max-prob. class, its predicted model 

did not specialize in. 

21    

IF the majority voting class exist and ∉ 

NP-list: //There is a clear majority 

voting without a tie. 

22     
Final prediction = majority voting 

class. 

23    
ELSE IF the highest-probability class 

∉ NP-list: 

24     
Final prediction = highest-

probability class. 

25    

ELSE: Choose the next highest-

probability class that is ∉ NP-list, and 

so on. 

26   
END 

27   

// Note: (max-prob.) refers to the highest 

predicted probability between all classes of 

the specific model, while (highest-

probability) refers to the highest predicted 

probability between all max-prob. of all 

models. 

28   

IF the prob. of the final prediction < (2/3 * 

highest-probability)    

// When the final prediction probability is less 

than two-thirds of the highest probability.  

29    
IF (majority voting class ∉ NP-list)  & 
(its prob. > 2/3 * highest-probability): 

30     
Final prediction = majority voting 

class. 

31    
ELSE IF highest-probability class ∉ 

NP-list: 

32     
Final prediction = highest-

probability class. 

33    

ELSE: Final prediction = next 

highest-probability class if was ∉ NP-

list, and so on. 

34    END 

35   END 

36   IF Final prediction == None: 

37    
Final prediction = majority voting 

class. 

38   END 

39  END  

4.  RESULTS AND DISCUSSION 

The experimental results obtained are detailed in this 
section. 

A. Datasets used 

 The UCSD-v2 dataset used for training consists of four 
categories: Normal, CNV, DME, and DRUSEN, with a 
total number of (84,484) OCT images (83,484 train, 968 
test, 32 validation), which exhibited an imbalance, and the 
verification data has very few of images, which impacting 
the training of CNNs. To address this issue, we employed 
an oversampling technique to equalize the distribution. 
Then split training data into 80% training and 20% 
validation, resulting in (29,771) in training and (7,442) in 
validation for each category, as illustrated in Table Ⅱ.  

TABLE II.  UCSD-V2 DATASET BEFORE AND AFTER BALANCING 

 To ensure the success of our ensemble model, we 
applied it to another dataset, Duke, according to the 
division detailed in Table Ⅲ, where 80% for training, 20% 
for testing, and from training data split to 10% for 
validation and 90% for training. 

TABLE III.   DUKE DATASET BEFORE AND AFTER BALANCING 
 

State 
UCSD-v2 Dataset 

Total 
Data CNV DME Drusen Normal 

Before  

Train 37,205 11,348 8,616 26,315 83,484 

Test 242 242 242 242 968 

Val 8 8 8 8 32 

After 

Train 29,771 29,771 29,771 29,771 119,084 

Test 242 242 242 242 968 

Val 7442 7442 7442 7442 29,768 

State 
Duke Dataset 

Total 
Data AMD DME NORMAL 

Before All data 723 1,101 1407 3,231 

After 

Train 1,013 1,013 1,013 3,039 

Test 145 221 282 648 

Val 112 112 112 336 
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B.  Implementation 

We used Python to implement the software using Keras 
to develop the CNN models, with a batch size of 32, opting 
for Adam as the optimizer with a learning rate of 0.001. 
The software was implemented by using PyCharm on an 
ASUS TUF Dash F15 equipped with a 12th Gen Intel(R) 
Core (TM) i7-12650H, a ten-core CPU operating at 2.30 
GHz, 40 GB RAM, and 8GB NVIDIA GeForce RTX 3070 
Laptop GPU. NVIDIA's CUDA Toolkit 11.8 and cuDNN 
8.6.0 are used for their ability to improve training speed. 

C. Model evaluation 

The performance of the three models across (8) training 
epochs on the UCSD-v2 dataset is detailed in Table Ⅳ, 
where our ensemble model reached 100% accuracy. This 
100% accuracy was also attained on the Duke dataset, as 
indicated in the previously mentioned table, albeit after 
(17) epochs. To the authors' knowledge, achieved results 
demonstrate state-of-the-art accuracy and outperform any 
other model trained and tested on the UCSD-v2 dataset. 

TABLE IV.  ACCURACY OF PROPOSED MODEL AND SUB-MODELS 

Datasets 

Custom-

model 

accuracy  

Xception 

accuracy 

MobileNet 

accuracy 

Ensemble 

model 

accuracy 

UCSD-

v2 
99.79% 99.59% 99.59% 100% 

Duke 99.69% 95.37% 95.22% 100% 

D. Proposed Ensemble Learning 

 The accuracy of each sub-model is depicted in Table 
Ⅳ. On the testing data of the UCSD-v2 dataset, the Custom 
model, Xception, and MobileNet achieved 99.79%, 
99.59%, and 99.59% respectively. The specialization of 
these models, detailed in Table Ⅴ, reveals that the Custom 
model has superior performance in identifying Class 2 
(Drusen) and Class 3 (Normal), Xception in Classes 1 
(DME), and MobileNet in Class 0 (CNV), that illustrating 
the unique strengths of each model within their respective 
domains. On the testing data of the Duke dataset, the 
models registered accuracies of 99.69%, 95.37%, and 
95.22%, respectively. Here, the Custom model specializes 
in class 0 (AMD), the Xception in class 1 (DME), and the 
MobileNet in class 2 (Normal). All sub-models play a 
crucial role in correcting misclassifications by identifying 
classes that a given image is somewhat certain not to 
belong to, these classes form the NP-list. The proposed 
ensemble model achieved a final accuracy of 100% on both 
datasets, with the Custom model performing best in both 
datasets. The confusion matrixes are illustrated in Figure 6-
A, and Figure. 6-B. 

 

 

 

                                           (A) 

                                  (B) 

Figure 6.  The confusion matrix. ((A) for the UCSD-v2 dataset after 8 

epochs; (B) for the Duke dataset after 17 epochs) 

TABLE V.  SPECIALIZATION OF MODELS 

Some images have one specialized model, others have 
more than one, or there is no specialist. All these cases are 
mentioned in Algorithm 1 and illustrated in Table Ⅵ which 
gives an example for each of these cases based on the Duke 
dataset, note that in the first example, there is no specialist, 
but the correct class is the one with the highest probability. 
In the second example, there is one specialist who is the 
one with the correct class. In the third example, there are 

UCSD-v2 dataset 

Classes 
Class 0 

(CNV) 

Class 1 

(DME) 

Class 2 

(Drusen) 

Class3 

(Normal) 

Specialized sub-

model 
MobileNet Xception 

Custom 
model 

Custom 
model 

Acc. on test data 0.996 0.996 1.0 0.996 

Duke dataset 

Classes 
Class 0 

(AMD) 

Class 1 

(DME) 

Class 2 

(Normal) 

Specialized sub-

model 
Custom model  Xception MobileNet 

Acc. on test data 0.993 0.991 0.997 
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two specialists, and class 2 has the majority of votes but 
belongs to the NP-list, which helps correct the 
misclassification and select the correct class. 

TABLE VI.  EXAMPLES OF APPLYING THE PROPOSED MODEL 

specialist 
predictions 

NP 

list 

Final 

predic

tion 

True 

label 
Custo

m 

Xcepti

on 

Mobile

Net 

None 
Class 1 2 0 

[1] 2 2 
Prob. 0.469 0.977 0.699 

One 
Class 1 1 0 [0,

2] 
1 1 

Prob. 0.999 0.988 0.782 

Two 
Class 0 2 2 [1,

2] 
0 0 

Prob. 0.999 0.989 0.996 

E. Comparison 

Compared with models developed by other researchers 
using the UCSD-v2 and Duke datasets, our ensemble 
model achieves superior accuracy on the first dataset. As 
for the second dataset, our model is exactly equal to one of 
the research papers in accuracy. but our model is 
characterized by a smaller number of sub-models used. 
Table Ⅶ presents the comparative analysis for the UCSD-
v2 dataset, highlighting the performance of the proposed 
Custom model (99.79% accuracy, 99.69% sensitivity, 
100% specificity, and 99.79% precision) concerning its 
counterparts. Moreover, the ensemble learning approach 
introduced at the table's conclusion exhibits enhanced 
performance, boasting 100% (accuracy, sensitivity, 
specificity, and precision). Likewise, Table Ⅷ delineates 
the comparative outcomes for the Duke dataset. Here, the 
Custom model delivers notable results (99.69% accuracy, 
99.69% sensitivity, 100% specificity, and 99.69% 
precision). The ensemble learning method, detailed in the 
last of the table, achieved a complete accuracy, sensitivity, 
specificity, and precision of 100%. The comparison in the 
indicated tables includes the number of epochs and the 
number of sub-models, if any, in addition to the various 
metrics. 

TABLE VII.  COMPARISON WITH PREVIOUS STUDIES (UCSD-V2) 

Method Year 
Accura

cy 

Sensit

ivity 

Spec

ificit

y 

Preci

sion 

epoc

hs 

No. 

of 

mod

els 

[3] 2020 98.53% 97.5 % - 
97.02

% 
250 4 

[14] 2020 99.27% - - - 15 5 

[15] 2021 99.64 % 
99.28
% 

- 
99.29
% 

- 8 

[17] 2022 99.48% 99 % - 99 % 20 1 

[18] 2023 99.7 % 99.7 % 
99.9

% 

99.7

% 
50 2 

[19] 2023 97% - - - 25 5 

[20] 2023 99.6% 99.6% 
99.8

7% 

99.6

% 
5 1 

[22] 2023 0.996% - - - 5 3 

Proposed 

Custom 
model 

2024 99.79% 
99.69

% 

100

% 

99.79

% 
8 1 

Proposed

ensemble 

model 

2024 100% 100% 
100
% 

100
% 

8 3 

TABLE VIII.  COMPARISON WITH PREVIOUS STUDIES (DUKE) 

Method Year 
Accu

racy 

Sensi

tivity 

Speci

ficity 

Preci

sion 

epoc

hs 

No. of 

model

s 

[16] 2021 
100

% 

100

% 

100

% 

100

% 
- 18 

[20] 2023 
97.5

% 

97.64

% 

98.91

% 

96.61

% 
5 1 

[21] 2023 
99.69

% 

99.71

% 

99.87

% 
- 50 1 

Proposed 

Custom 

model 

2024 
99.69
% 

99.69
% 

100
% 

99.69
% 

17 1 

Proposed 

ensemble 

model 

2024 
100
% 

100
% 

100
% 

100
% 

17 3 

5. CONCLUSION 

This research demonstrates the efficacy of the proposed 
novel ensemble model in the classification of retinal 
diseases, specifically CNV, DME, and Drusen, in addition 
to AMD from the second dataset. This study attempts to 
benefit as much as possible from the capabilities of all the 
models used (Custom, Xception, and MobileNet) to 
improve classification accuracy. This is achieved through a 
strategic exclusion list (NP-list) that mitigates 
misclassifications by identifying non-relevant classes for 
each image.  

In this approach, each sub-model specializes in the 
category in which it achieves higher accuracy than others, 
one of the most prominent benefits of this method is that if 
a certain sub-model achieves low accuracy and the rest of 
the models are higher than it, then it will not be specialized 
in a specific category, which reduces the risk of 
misclassification. 

Pre-processing had an important role in improving the 
image, reducing noise, and identifying the region of 
interest.  

The proposed ensemble model achieved a state-of-the-
art accuracy of 100% on the UCSD-v2 dataset and 
similarly high performance on the Duke dataset. In the first 
dataset, the custom model was the best sub-model, where 
its accuracy reached 99.79%, a precision of 99.79%, a 
specificity of 100%, and a sensitivity of 99.69%. In the 
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second dataset, the best was also the Custom model, with 
an accuracy of 99.69%, a precision of 99.69%, a specificity 
of 100%, and a sensitivity of 99.69%.  

These results emphasize the importance of ensemble 
learning techniques in medical image analysis, especially 
in the early detection and diagnosis of retinal diseases 
accurately. This study emphasizes the necessity of 
cooperation between different specialities and 
technological progress, especially in health care, to shorten 
the time and reduce diagnostic errors. 

In future work, researchers could aim to develop this 
study, especially in exploring the generalizability of the 
model to other datasets from other medical imaging 
modalities and for various diseases or to classification tasks 
in general. In particular, NP-list can be used to correct 
misclassification with different ensemble learning methods 
The ideas presented in this research can be promising to 
improve diagnostic procedures and patient follow-up, 
whether in ophthalmology or outside. 
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