
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 5, No.3 (May-2016) 

 

 

E-mail: falbalooshi@uob.edu.bh 

  http://journals.uob.edu.bh 

 

Hyperspectral Image Segmentation by Self Organized 

Learning-Based Active Contour Model 
 

Fatema A. Albalooshi 
 

  Department of Computer Engineering, College of Information Technology, University of Bahrain,  

P.O. Box 32038, Sakheer - Kingdom of Bahrain  

 

Received 8 Feb. 2016, Revised 8  Mar. 2016, Accepted 1 Apr. 2016, Published 1  May  2016 

 

Abstract:The growing attention to the hyperspectral sensors is driven by their special ability to provide rich information about 

various objects in a scene like surface minerals, water, snow, vegetation, pollution, man-made objects, etc.; enabling effective object 

segmentation. In this paper, we present a hyperspectral image segmentation methodology that incorporates the local hyperspectral 

information into a learning-based active contour level-set function for an accurate object region and boundary extraction. The 

segmentation process is achieved by utilizing self-organized lattice Boltzmann active contour (SOLBAC) technique that is based on 

constructing a self-organized Local Image Fitting (LIF) level-set cost function, for accurate and fast boundary extraction. The 

proposed algorithm starts with feature extraction from raw hyperspectral images that leverages the principal component analysis 

(PCA) transformation to reduce dimensionality and select the best sets of the significant spectral bands. Then, the SOLBAC 

approach is applied on the optimal number of spectral bands determined by the PCA. By using the properties of the collective 

computational ability and energy convergence capability of the Lattice Boltzmann Method (LBM), our proposed segmentation is 

capable of producing faster segmentation by more than 30% when compared to the state-of-the-art segmentation methods. The LBM 

is adopted for faster curve evolution of the level-set function and to stop the evolution of the curve at the most optimum object 

region. Experiments performed on our test dataset show promising results in terms of time and quality of the segmentation when 

compared to other state-of-the-art learning-based active contour model approaches. 

 

Keywords: Hyperspectral Image, Object Segmentation, principal Component Analysis, Self Organizing map, Lattice Boltzmann 

Method. 

1. INTRODUCTION  

Boundary extraction for object region segmentation is 
one of the most challenging tasks in image processing and 
computer vision areas. The complexity of large variations 
in the appearance of the object and the background in a 
typical image causes the performance degradation of 
existing segmentation algorithms. One of the goals of 
computer vision studies is to produce algorithms that 
segment object regions to produce accurate object 
boundaries that can be utilized in feature extraction and 
classification. Thus, the performance of segmentation is 
critical in most applications that immediately depend on 
the accuracy of segmentation like object interpretation, 
scene understanding, and image analysis [1-3]. 

The increasing attention to the hyperspectral sensors is 
motivated by great interests in developing techniques for 
object detection and segmentation applications [4-7]. The 
interest in hyperspectral technology has been sparked 
because it allows an opportunity for more detailed image 
analysis by providing different spectral signatures that 

indicate rich information about the different objects in the 
scene like surface minerals, water, snow, vegetation, 
pollution, manmade objects, etc.; which can facilitate 
effective object segmentation. In many applications, 
dimensionality reduction that can be defined as the 
process of reducing the number of bands of a 
hyperspectral image, is being utilized in order to map 
higher dimensional data into lower dimension while 
preserving the main features of the original data [8, 9]. 
Some popular techniques, such as Principal Component 
Analysis (PCA), Locally Linear Embedding (LLE), and 
Independent Component Analysis (ICA), may be used for 
efficient hyperspectral image analysis. 

In recent years, different hyperspectral image 
segmentation techniques have been proposed in the 
literature. Some popular methods are Multinomial 
Logistic Regression (MLR), Markov Random Fields 
(MRF), Maximum Likelihood (ML), Support Vector 
Machines (SVM), Bayesian segmentation, Active Contour 
Model (ACM) and level-set methods [10-12]. Active 
contours approach introduced by Kass et al. [13], provides 
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powerful segmentation for objects of various shapes and 
sizes, and maintains continuous closed boundaries in the 
resulting segmentation. Later on, the level-set function 
segmentation has been introduced by Osher and Sethian 
[14,15], providing a methodology for tracking curves, and 
resulting in accurate object boundaries. The level-set 
method implicitly represents the evolution of contours by 
embedding them as the zero level of a level-set function. 
Region based active contour method can be implicitly 
implemented using the level-set technique by leveraging 
the regional statistics of an input image, and it is now a 
reasonably familiar concept in the world of image 
segmentation [2, 16]. 

In this paper, we present a new hyperspectral image 
segmentation formulation using the SOLBAC technique 
[1] to integrate the local hyperspectral image information 
with the level-set function for accurate object region and 
boundary extraction. One advantage of this method is that 
the convergence of the optimum object boundary curve is 
simplified and speeded-up using the Lattice Boltzmann 
Method (LBM) [17] as an alternative approach for solving 
the Level-Set Function (LSF) [18, 19]. Thus, this paper 
utilizes a self-organized learning based active contour 
model with a lattice Boltzmann convergence criteria for 
fast and effective hyperspectral image segmentation. 

The rest of the paper is organized as follows. Related 
work is presented in section 2. Section 3 describes the 
proposed methodology with detailed mathematical 
formulation. In section 4, experimental results are 
presented and discussed. Finally, section 5 outlines 
concluding remarks and future research direction in this 
technology. 

2. RELAED WORK  

A. Active Contour Segmentation with Prior Information 

Constructing boundaries of objects using neural 
networks has been introduced in the literature. Leventon 
et al. [20, 21] first introduced the concept of incorporating 
prior shape information into the level-set evolution 
function. They provided a portrayal for the deformable 
shapes and defined a probability distribution over the 
variances of a set of training shapes. In their method, prior 
shape information and image information are utilized to 
estimate the Maximum a Posteriori (MAP) position that 
shapes the object in the image at every iteration of curve 
evolution. They used both global and local surface 
evolutions towards the MAP estimate and image gradients 
respectively. 

Chen et al. [22] provide a variational level-set based 
segmentation that uses both shape and intensity prior 
information that are learned from a training set. They 
utilized an energy function that consists of shape and 
image energy parts. Image information is specified using 
regional intensity distributions to get rid of the heuristic 
weighting factor that balances image energy and shape 
energy terms. The learned intensity information is 

integrated into image model using a non-parametric 
density estimation method in order to yield segmentation 
for inhomogeneous objects. 

Cremers et al. [23] present a segmentation method that 
combines the non-linear shape statistics with a Mumford-
Shah based segmentation process. In their method, 
training silhouettes are utilized to drive the non-linear 
shape statistics by a method of density estimation. They 
implemented a probabilistic framework that is based on 
kernel Principal Component Analysis (PCA). 

Sun et al. [24] developed a level-set method with 
shape prior to implement a shape-driven image 
segmentation. They utilize image moments to strip the 
shape priors of position, scale and angle information to 
obtain the aligned shape priors. Furthermore, they 
employed the Locality Preserving Projections (LPP) to 
map shape priors into a low dimensional subspace, in 
which the probability distribution is predicted by using 
kernel density estimation. The segmentation process is 
handled using an energy function with shape priors that 
combine the negative log-probability of shape priors with 
other data-driven energy items. 

Magee and Leibe [25] proposed a framework for the 
combination of statistical prior information with level-set 
for object tracking. The level-set evolution is based on the 
maximization of a set of likelihoods on mesh values at 
features, which are located using a stochastic sampling 
process. Curve evolution is based on the interpolation of 
likelihood gradients using kernels centered at the features 
that are based on moments of color histogram. 

Rousson and Paragios [26] provide an energetic form 
to integrate shape constraints to level-set representations. 
The shape prior construction is done using a variational 
approach that is based on a shape-to-area principle. They 
developed a shape-driven propagation energy function 
that incorporates level-set function with the prior shape 
information. The minimization of the energy function is 
done using calculus of variations and motion parameters. 

Oktay et al. [27] present a level-set based 
segmentation method with shape priors that guide the 
level-set contortions so that the contour extraction process 
is excited by both the local image properties and the 
expert knowledge in the form of manual contours. Their 
system uses manual expert contours to produce new level-
set surfaces which are corrupted into the surface from the 
level-set process. The prior information is incorporated 
into the level-sets by re-initializing these corrupted 
surfaces as new level-set surfaces. 

Tabb et al. [28] proposed a framework for 
incorporating active contours with neural networks to 
produce and track the shape of a moving object in the 
visual field. The first stage of this method starts with 
tracing the boundary using Edge-Based snake ACM (EB-
ACM). Then, a feed-forward error-back propagation 
neural network is used in the second phase of this method 
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as a classifier for the tracked boundary. The method starts 
with Sobel edge detection as a pre-processing stage 
followed by motion detection and blob removal 
procedures to produce the edges of moving objects in the 
image. In addition, this method used neural network with 
various input units and two output units, where one output 
unit is trained to identify human shapes, and the other for 
non-human shapes. 

Abdelsamea et al. [29] demonstrated a segmentation 
method that utilizes Concurrent Self Organizing Map 
based on Chan-Vese model (CSOM-CV) to associate the 
pixel information extracted by a concurrent SOM with the 
level-set approach of the Chan-Vese (C-V) model [30] to 
construct an ACM segmentation technique. 

Venkatesh et al. [31] presented a spatial isomorphism 
based self-organizing neural networks for active contour 
modeling. This method employs spatial isomorphism and 
self-organization in order to produce flexible boundaries 
that illustrate different shapes in the scene. Their 
implemented model is semi-automatic, in the sense that a 
user-interface is needed for initializing the process. In 
their method, a neural network isomorphic to an initial 
contour is constructed, and subjected to deformation in 
order to map onto the nearest salient contour in the image. 
The correspondence between the salient contour and the 
network is established by mapping the latter onto the 
former by using the self-organization scheme. Their 
method starts by computing the edge map of the test 
image; then, the initial contour points are set using an 
initialization scheme. For static images, the initialization 
is done using generalized Hough transform, while optical 
flow analysis or image differencing techniques are used 
for the initialization of video sequences. After that, the 
region of interest is chosen according to the location of 
the initial contour. Then, a SOM network is constructed 
isomorphic to the initial contour. Due to the reason that 
this contour model starts with edge detection, it yields a 
continuous set of points that makes it hard to distinguish 
an object when it is placed in a complex background. 

B. The Lattice Boltzmann Method (LBM) 

The Lattice Boltzmann Method (LBM) is a 
mathematical approach that is based on the Boltzmann 
equation, originally established for fluid systems 
simulation [17]. The application of LBM in boundary 
conditions has sparked from the fact that fluid dynamics 
particularly depend on the neighboring environment, 
which is mathematically characterized through the 
depiction of boundary conditions. The LBM method has 
been broadly used as an alternative to traditional fluid 
solvers because it can model the behavior of fluids in an 
approximated discrete form of space and time. This 
approach is efficient to solve complex non-linear Partial 
Differential Equations (PDEs) by discretizing space in 
grids (lattices) and discretizing time in time steps. 
Therefore, the physical space of an LBM consists of a set 
of uniformly spaced nodes in a lattice that describe the 

particles, and a corresponding set of discrete microscopic 
velocities of particles along with the particle distributions. 
The LBM can characterize Boltzmann particle dynamics 
using various lattice structures in 1D, 2D, or 3D. A D1Q3 
lattice consists of a one dimensional lattice and three 
lattice speeds, while a D2Q9 lattice is a two dimensional 
lattice with nine lattice speeds, and a D3Q19 lattice is a 
three dimensional lattice with nineteen lattice speeds as 
shown in Fig. 1. Every link in the LBM lattice consists of 
a velocity vector ei and a particle distribution     ⃗    that 
moves along that link, where  ⃗ is the position of the cell, t 
is time, and i is the number of the link. The general 
evolution equation of LBM [32] is characterized as:  

    ⃗     ⃗⃗ ⃗          ⃗   
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Where   is the relaxation time which is essential for 
stabilizing the LBM, and it controls the fluid's kinematic 
viscosity  , given by: 
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 is a simplified local equilibrium particle distribution 

given by the Bhatnager, Gross, Krook (BGK) model [33] 
as: 
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Where                 are constant scalar 

coefficients that are specific to the chosen lattice 

geometry,   is mass, and    is the momentum. In 

classical LBMs, Equation (3) is facilitated by eliminating 

the momentum dependency [32] as: 

   
             (4) 

Where   ∑     . In Equation (1), the equilibrium and 
the forcing terms are the key to recover a specific PDE. 

In classical level-set active contours, a level-set equation 
is employed to describe the curve evolution leading to 
solve a PDE [14, 34-37]. The LBM approach became a 
recent trend for solving the level-set evolving function 
due to its capability to resolve the complex terms 
indirectly, producing a fast and effective alternative of the 
classical PDE solvers. Balla-Arabé et al. [18] illustrated a 
lattice Boltzmann based level-set image segmentation 
approach. They proposed a Signed Pressure Stopping 
Function (SPF) scheme that is based on the region based 
Chan-Vese ACM model [30]. The LBM is applied to 
solve the SPF and accomplish the convergence of the  
evolving contour with a higher speed. Their method 
accomplishes pleasing results but lacks the property of 
incorporating image information within the active contour 
model, thus resulting in over-segmentation in the cases 
where there is large intensity variations in the input 
image. 
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(a)  

(b) (c) 

Figure 1: Illustration of lattice structure; (a) 1D structure (D1Q3); (b) 2D 
structure (D2Q9); (c) 3D structure (D3Q19). 

3. THE PROPOSED SEGMENTATION METHOD 

Our hyperspectral image segmentation methodology is 
based on the SOLBAC approach [1]. It starts with 
normalizing the row hyperspectral image in order to bring 
it into a computationally friendly form, then Principal 
Component Analysis (PCA) is utilized to reduce the 
dimensionality of the 240 spectral channels into 20 bands. 
PCA analysis shows that the resulting PCA bands are of 
linear combination of the original input bands. Therefore, 
most of the original features can be retrieved from few 
PCA projections [38]. We choose the first three PCA 
output bands to train and test our input images because 
information content of PCA bands decreases with an 
increasing number of PCA bands, thus, most of the 
features are constrained within the first few PCA bands 
[39]. Moreover, it will be more compatible with the 
segmentation framework. Finally, the SOLBAC approach 
[1] is applied for the optimum object region and boundary 
extraction. 

A. The Self-Organizing Map 

Self-organizing maps (Kohonen maps) [40], provide 
unsupervised spatial representations of feature vectors of 
input data in significantly lower dimensional output 
vectors known as Best Matching Units (BMUs). The 
BMU is determined by calculating the minimum 
Euclidean distance between each node's weight vector and 
the current input vector. Thus for an input pattern u and 
node's weight vector   , one can define BMU as: 

         
 

{‖       ‖
 
}   (5) 

Each node in the BMU's proximity (as well as the 
BMU) has its weight vector modified as: 

                        ‖           ‖  (6) 

Where t is time step, L(t) is learning rate, and      is the 
amount of influence a node's distance has from the BMU 
on its learning. L(t) is defined as: 
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Where    is learning rate at time   , and      is defined 
as: 
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Where   is the radius of the neighborhood function. 
Thus, SOMs reduce dimensions and display similarities, 
they have been used in numerous applications such as 
speech and pattern recognition, meteorology, robotics, 
oceanography, and process control [40]. 

B. Learning a Level-Set Function by Self Organization 

We employ a modified framework of a level-set prior- 
based segmentation methodology that incorporates neural 
networks with the level-set active contour models for 
accurate boundary extraction of objects in hyperspectral 
imagery [1]. One advantage of this method is that small 
seed patches from the object of interest region and other 
small seed patches from the background region of one 
single reference image are sufficiently enough to achieve 
the training process. The outcome of the algorithm is 
accurate object region boundaries. Thus, two SOM maps 
are employed; one SOM network to represent the object 
of interest, and another SOM network represents the 
background region. The trained networks are integrated 
into the next phase of the segmentation approach in which 
mapping of an input hyperspectral testing image is 
achieved. The mapped testing neurons are then exploited 
into the evolving curve energy function of a level-set 
protocol. The segmentation is accomplished by 
constructing a cost function that employs local image 
information in order to obtain the optimum boundary and 
region depiction of the object of interest, which holds the 
complete region of object of interest even if it has diverse 
intensity/color variations. 

We utilize SOLBAC approach that employs a level-set 
function based on the Local Image Fitting (LIF) energy 
function [1, 16] defined as: 

        
 

 
∫                                
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Where   is the image domain,   is the level-set function 
and      is the self-organizing map fitted image, defined 
as follows: 

                  (        )  (10) 

      is the regularized Heaviside function given by: 
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Where   is a positive real number that controls the 
width of regularization,    and    are the level-set 
foreground and background parameters, respectively, 
defined as: 
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(13) 

Where Wo and Wb are the best matching neurons of the 
foreground object region and background region 
respectively, and Gk(x, y) is a rectangular Gaussian 
window with width k. 

Equation (9) is minimized with respect to   to get the 
corresponding gradient descent flow using the lattice 
Boltzmann method. 

C. Applying the Lattice BoltzmannMethod 

According to the SOLBAC approach, the optimization 
of the level-set function is achieved by integrating the LIF 
level-set function with the LBM general equation that is 
defined in Equation (1), thus the improved LBM 
evolution equation becomes: 

            ⃗⃗ ⃗     

          (         

  
 

 
[  

                    ]

    )                       

(14) 

Where    is the convection coefficient. In this paper, a 
D2Q5 lattice is used (Fig.2), in which,        for the 
zero central link, and        for the axial links. 

 

Figure 2 D2Q5 lattice structure. 

Thus, a functional framework of the segmentation 
process is summarized in Fig.3, and the main steps for the 
proposed hyperspectral image segmentation are as 
follows: 

1. Normalize the input hyperspectral image. 

2. Utilize PCA for dimensionality reduction. 

3. Train the object of interest SOM. 

4. Train the background SOM. 

5. Map the input images using the trained SOMs. 

6. Apply the LIF level-set function on the mapped 
image. 

7. Utilize LBM for fast convergence. 

8. Check whether the evolution is stationary, otherwise 
go to step 6. 

 

Figure 3 The functional framework of the proposed hyperspectral image 

segmentation system. 
 

4. EXPERIMENTAL RESULTS 

To verify the effectiveness of the proposed 
segmentation, we use the Resonon Pika II hyperspectral 
camera, which provides 240 spectral channels that range 
from 400-900nm with 2.1nm spectral resolution, to 
capture real-life images and test our algorithm in various 
textural regions. Our experimental set consists of eight 
hyperspectral outdoor images, three of them were used to 
train our system for vegetation, cars, and vehicles, and 
five were used for testing. Proper evaluation of the 
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proposed hyperspectral image segmentation is a critical 
step to asses the segmentation performance; thus, in order 
to have fair findings, we had compared our segmentation  
results with other state-of-the art learning-based 
segmentation techniques viz. the Edge-Based Self 
Organizing Map ACM (EB-SOM-ACM) [28] and the 
Concurrent Self Organizing Map based Chen-Vese 
method (CSOM-CV) [29]. All experiments were 
conducted on a personal computer with an Intel Core I5, 
2.53GHz processor, 64-bit operating system having 4.00 
GB of RAM and running MATLAB R2014a. 

Fig. 4(a) shows an outdoor hyperspectral image. The 
object of interest in this image is vegetation, therefore, the 
foreground SOM network is trained with a patch from 
vegetation and the background SOM is trained with a 
patch from the background (non-vegetation) region. Fig. 
4(b) shows the result obtained using EB-SOM-ACM 
approach in which the active contours stopped at the clear 
gradients of the image resulting in undesirable outcome. 
Fig. 4(c) shows the result of the CSOM-CV method 
giving more accurate segmentation result illustrated by the 
red contours around the objects of interest. Fig. 4(d) 
shows the result obtained using our proposed SOLBAC 
approach which gives even more accurate results of the 
objects of interest, which is the vegetation, and excluding 
the windows of the background buildings. All methods 
introduce some false positives. 

We illustrate the results of segmenting another 
vegetation image (trees) in Fig. 5, in which the input 
hyperspectral image is shown in Fig. 5(a). The SOMs 
were trained according to the criteria that vegetation is the 
object of interest and anything else to be the background 
region. Fig. 5(b) shows the result obtained using EB-
SOM-ACM approach which provides quite good results 
but without obtaining complete indication of the object of 
interest since the output contour is not fully surrounding 
the vegetation area. Fig. 5(c) shows the result of the 
CSOMCV method giving a more accurate segmentation 
result illustrated by the red contours around the objects of 
interest. Fig. 5(d) shows the result obtained using our 
proposed segmentation approach giving even more 
accurate and precise result of the object of interest which 
is the vegetation, and excluding the sky in the background 
of the upper right corner of the image. All methods 
introduce some false positives. 

We demonstrate the results obtained in segmenting 
vehicles in Fig. 6. The result obtained using the EB-SOM-
ACM approach is presented in Fig. 6(b), in which the 
active contours stopped at the clear gradients of the image 
without giving good indication of the boundaries of 
objects of interest. Fig. 6(c) shows the result of the 
CSOM-CV method giving more accurate segmentation 
result illustrated by the red contours around the objects of 
interest, however, it produces some false negatives by 
missing a portion of the rear widow of the van and some 
metallic parts of the motorcycle. Fig. 6(d) shows the result 
obtained using our proposed segmentation approach 

which is quite similar to the result obtained by CSOM-CV 
method. All methods introduce some false positives. 

The objects of interest in Fig. 7(a) are cars, therefore, 
the SOMs in this case were trained according to this 
criteria. Fig. 7(b) shows the result obtained using the EB-
SOM-ACM which provides a quite good result. Fig. 7(c) 
shows the result of the CSOM-CV illustrated by the red 
contours around the objects of interest. Fig. 7(d) shows 
the result obtained using our proposed approach. Almost 
all methods produce similar results in this case and all of 
them introduce some false positives. 

Similarly, we illustrate the results obtained in 
segmenting a single car in Fig. 8. The result obtained 
using the EB-SOM-ACM is demonstrated in Fig. 8(b). 
Fig. 8(c) shows the result of the CSOM-CV illustrated by 
the red contours around the objects of interest. Fig. 8(d) 
shows the outcome obtained using our proposed approach. 

When comparing a segmentation method outputs to 
the ground truth images, there are five possible outcomes 
that need to be identified. The segmentation method can 
either (a) correctly segment a region, (b) over-segment a 
region, (c) under-segment a region, (d) miss a region, or 
(e) incorrectly segment a noise region. Therefore, it is an 
essential task to calculate true positives, true negatives, 
false positives, and false negatives - also known as 
confusion matrix – to evaluate segmentation performance. 
These are defined as follows: True Positive (TP): a pixel 
that belongs to the expert segmented region and was 
detected as  “object-of-interest” by the algorithm; True 
Negative (TN): a pixel that does not belong to the expert 
segmented region and was detected as “non object-of-
interest” by the algorithm; False Positive (FP): a pixel that 
does not belong to the expert segmented region and was 
detected as “object-of-interest” by the algorithm; False 
Negative (FN): a pixel that belongs to the expert 
segmented region and was detected as “non object-of-
interest” by the algorithm. In addition, for evaluating 
segmentation methods, the following factors are also 
considered: Recall (RE), measures the accuracy of the 
system to recognize positive cases; Specificity (SP) 
measures the accuracy of the system to recognize negative 
cases; Precision(P), is the proportion of the predicted 
positive cases that were correct; False Positive Rate 
(FPR), and the False Negative Rate (FNR). An accurate 
segmentation system usually has high values of recall 
(RE) specificity (SP) and precision (P), on contrary, FPR 
and FNR should be small. Table 1 illustrates segmentation 
metrics produced after applying different learning-based 
segmentation techniques on our hyperspectral image 
dataset. The table shows better performance of our 
proposed hyperspectral SOLBAC segmentation approach 
compared to the state-of-the art approaches. Fig.9 shows a 
graphical representation of Table 1. 
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Figure  4-8 Illustration of segmentation results; (a) RGB bands of the input hyperspectral image; (b) segmentation result using EB-SOM-ACM; (c) 

segmentation result using CSOM-CV; (d) segmentation result using proposed approach. 

 

Time consumption is measured for all methods. Our 
method performed segmentation with reduced processing 
time compared to processing time of the CSOM-CV and 
EB-SOM-ACM. Fig. 10 shows the average time 
consumption comparison for all methods when applied to 
our hyperspectral imagery dataset. 

 

 

 

 

 

 

 

 

 

It can be observed that the proposed approach 
performs the segmentation process faster by more than 
30% when compared to the state-of-the art learning-based 
segmentation methods. Because the proposed approach 
leverages LMB in the convergence process of the evolved 
contour, it can minimize the problem of time 
consumption. More specifically, the LBM approach is 
capable of solving the complex parts of the evolving curve 
implicitly because it discretizes space and time as 
described earlier in section 2, and this helps in reduction 
of processing time. 
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Figure 9 Graphical representation of the average segmentation statistical results. 

 

TABLE 1 AVERAGE SEGMENTATION STATISTICAL RESULTS 

Method RE% SP% P% FPR% FNR% 

Proposed approach 0.89 0.65 0.10 0.34 0.10 

EB-SOM-ACM 
[28] 

0.58 0.48 0.12 0.51 0.41 

CSOM-ACM [29] 0.44 0.63 0.12 0.37 0.55 

 

Figure 10 Average time consumption comparison for different learning-

based segmentation techniques. 

5. CONCLUSION 

In this paper, a new fast learning-based hyperspectral 
image segmentation that exploits Principal Component 
Analysis (PCA), self-Organizing Map (SOM), Active 
contour Model (ACM), and Lattice Boltzmann Method 
(LBM) was introduced. Our method starts with PCA 
dimensionality reduction of raw hyperspectral imagery, 
then seed patches from objects of interest and other seed 
patches from the background were extracted to learn a 
dual SOMs. The learned SOMs are utilized to retrieve the 
prior information and integrate it in the ACM cost 
function in order to harvest accurate segmentation 
outcomes. The convergence of the ACM is achieved using 
LBM approach. The proposed framework was shown to 

effectively segment objects with lower computation time 
compared to other state-of-the art learning based active 
contour techniques. Research is in progress to employ 
Time Adaptive Self-Organizing Map (TASOM) for 
improved segmentation. In addition, the parallelization 
property of the LBM approach is being studied to achieve 
real-time segmentation. 
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