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ABSTRACT 
Ridge regression estimator has been introduced as an alternative to the ordinary least 

squares estimator (OLS) in the presence of multicollinearity. Several studies concerning 

ridge regression have dealt with the choice of the ridge parameter. Many algorithms for the 

ridge parameter have been proposed in the statistical literature. In this article, a new method 

for estimating ridge parameter is proposed. A simulation study has been made to evaluate the 

performance of the proposed estimator based on the mean squared error (MSE) criterion. 

The evaluation has been done by comparing the MSEs of the proposed estimator with other 

well-known estimators. In the presence of multicollinearity, the simulation study indicates 

that under certain conditions the proposed estimator performs better than other estimators.  
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INTRODUCTION 
Consider the standard model for multiple linear regression (Draper and Smith, 1998) 
                                                       eXβy += ,                                                          (1) 
where y  is an 1×n  column vector of observations on the dependent variable, X  is an 

pn × fixed matrix of  observations on the explanatory variables and is of full rank p  
)( np ≤ , β is a 1×p  unknown column vector of regression coefficients, and e  is an 1×n  

vector of random errors; E( ) , E( ')=e 0 ee  nI2σ= , where nI  denotes the nn ×  identity matrix 

and the prime denotes the transpose of a matrix. The variables are assumed to be standardized 
so that XX′  is in the form of correlation matrix, and the vector yX′  is the vector of 
correlation coefficients of the dependent variable with each explanatory variable. The 

ordinary least squares (OLS) estimator, β̂ , of the parameters is given by (Draper and Smith, 
1998) 

                                                     yXXXβ ′′= −1)(ˆ                                                      (2) 

Clearly, β̂  is an unbiased estimator of β . Let 1 2, ,..., pλ λ λ  denotes the eigenvalues of XX′ . 

The mean squared error (MSE) of the components of β̂  is given by (Draper and Smith, 1998) 

                                        2

1

1ˆ ˆMSE( ) E( ) ( )
p

i i

σ
λ=

′= = ∑β β - β β - β                                   (3) 

In application of multiple linear regression, the matrix XX′  might be nearly singular, that is, 

iλ  is small for some value of i . This is due to some inter-relation between the explanatory 

variables. The relation is technically called multicollinearity. The OLS estimator of 
regression coefficients tends to become "unstable" in the presence of multicollinearity. More 



Al-Hassan,Y M.., Journal of the Association of Arab Universities for Basic and Applied Sciences, Vol. 9, 2010, 43-50 

 

44 
 

precisely, the variance of the estimates of some of the regression coefficients becomes large. 
This is clear from (3). 
 
 Many attempts have been made to improve the OLS estimation procedure. In general, there 
are two approaches. One approach centers on finding (biased) estimators which have smaller 
MSE than the OLS estimators. Ridge regression, as well as many shrinkage type of 
estimators (Stein, 1960; Sclove, 1968), is one example. This approach does not directly 
address itself to the issue of multicollinearity, even though multicollinearity is often the 
situation where the aforementioned procedures (or estimators) are used. 
 
Among these estimators, the ridge estimator points indirectly to the issue of multicollinearity 
by constraining the length of the coefficient estimator (Hocking, 1976). In contrast, the 
second approach deals straightforward with the dependency nature of the explanatory 
variables. The principal components regression, as well as the latent root regression and the 
factor analysis approach, is one such example. 
 
Hoerl and Kennard (1970a, 1970b) proposed the ridge estimator as an alternative to the OLS 
estimator for use in the presence of multicollinearity. The ridge estimator is given by 

                                     1ˆ ( )R k −′ ′= +β X X I X y ,                                                           (4)  

where I denotes an identity matrix and k is a positive number known as ridge parameter. The 
corresponding MSE is given by  

                                  2 2 2
2

1

ˆ( ) ( )
( )

p

i
R

i i

k k
k

λ
σ

λ
−

=

′ ′= + +
+∑MSE β β X X I β                     (5) 

Though this estimator results in bias, for a certain value of k , it yields minimum MSE 

compared to the OLS estimator (Hoerl and Kennard, 1970a). However, the MSE( ˆ
Rβ ) 

depends on unknown parameters k , β  and 2σ , which can't be calculated in practice, but 
k has to be estimated from the real data instead. 
 
Several methods for estimating k have been proposed ( Hoerl and Kennard ,1970a; Hoerl et 
al. 1975; McDonald and Galarneau ,1975; Lawless and Wang ,1976; Hocking et al. 
,1976;Wichern and Churchill ,1978, Nordberg, 1982; Saleh and Kibria ,1993; Singh and 
Tracy ,1999;, Wencheko ,2000; Kibria , 2003; Khalaf and Shukur ,2005;, Alkhamisi et al. 
,2006 and Alkhamisi and Shukur ,2007). 
 
Alkhamisi and Shukur (2007) suggested a new approach to estimate the ridge parameter. 
They also proposed some new estimators by adding max1 λ to some well-known estimators, 

where maxλ  is the largest eigenvalue of XX′ . The authors used Monte Carlo experiments and 

the MSE criterion to compare the proposed estimators with some well-known estimators. 
 
The purpose of this study is to apply the modification mentioned in Alkhamisi and Shukur 
(2007) to the estimator proposed by Hocking et al. (1976) in order to define a new estimator. 
A Monte Carlo comparison will be made using the MSE criterion to compare the 
performances of the proposed estimator with the OLS estimator and the estimators of 
Hocking et al. , 1976 and Hoerl and Kennard ,1970. 
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METHODOLOGY 
It is convenient to express the regression model (1) in the canonical form. Suppose that there 
exists an orthogonal matrix D  such that ΛCDD =′ , where XXC ′=  and 

),...,,( 21 pdiag λλλ=Λ contains the eigenvalues of the matrix C , then the canonical form of 

the model (1) is  
                                                     eαXy += ∗ ,                                                          (6) 

where XDX =∗  and βDα ′= . Then the OLS estimator is given as follows 

                                                     yXΛα
′

= ∗−1ˆ                                                           (7) 
and so we can write the ridge estimator as  

                                        1ˆ
R

∗ ∗ − ∗′ ′= +α (X X K) X y ,                                                     (8) 

where ),...,,( 21 pkkkdiag=K , 0>ik . Equation (8) is called the general form of ridge 

regression (Hoerl and Kennard, 1970a). It follows from Hoerl and Kennard (1970a) that the 
value of ik  which minimizes the MSE( ˆ

Rα ), where  

                              
2 2

2
2 2

1 1

ˆ( )
( ) ( )

p p

i i i
R

i ii i i i

k

k k

λ α
σ

λ λ= =

= +
+ +∑ ∑MSE α ,                              (9) 

is 

                                                      
2

2

i

ik
α
σ

= ,                                                             (10) 

where 2σ represents the error variance of model (1), iα is the thi element of α . 

 
Equation (10) gives a value of ik  that fully depends on the unknowns 2σ and iα , and must 

be estimated from the observed data. Hoerl and Kennard (1970a) suggested the replacement 
of 2σ  and iα  by their corresponding unbiased estimators, that is, 

                                                       
2

2

ˆ

ˆˆ
i

ik
α
σ

= ,                                                            (11) 

where pnei −= ∑ 22σ̂  is the residual mean square estimate, which is an unbiased estimator 

of 2σ , and iα̂ is the thi element of α̂ , which is an unbiased estimator of α . They found that 

the best method for achieving a better estimate ˆ
Rα  is to use ik k= for all i , and they 

suggested k to be ˆ
HKk  (or HK) where 

                                                  
2ˆˆ
ˆmax( )HK

i

k
σ

α
= .                                                     (12) 

If 2σ  and α  are known, then ˆ
HKk  is sufficient to give ridge estimators having smaller MSE 

than the OLS estimator. 
 

Hocking et al. (1976) suggested the following estimator, ˆ
HSLk  (or HSL), for k : 
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We now apply the modification mentioned in Alkhamisi and Shukur (2007) to the estimator 

proposed by Hocking et al. (1976), ˆ
HSLk , to obtain our new estimator ˆ

NHSLk  (or NHSL): 

                             

2 2 2 2
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1 1

2 2
max

1
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max

1ˆ
HSLk

λ
= +                                                                     (14) 

Since max1 0λ > , ˆ
NHSLk  is grater than ˆ

HSLk . 

 
 
The Simulation Study 
In this section, we use Monte Carlo simulation to investigate the properties of OLS, HK, HSL 
and NHSL. A comparison is then made based on the MSE criterion. Although many 
estimators can be considered in this simulation study (Kibria ,2003; Khalaf and Shukur 
,2005; Alkhamisi et al. 2006; Alkhamisi and Shukur ,2007 and Al-Hassan ,2008), we will 
only consider OLS, HK and HSL estimators and compare them with NHSL. We made these 
choices for the following reasons: 
 
1. Our interest here lies in studying the properties of NHSL as an alternative of OLS in the 
presence of multicollinearity. 
2. HK estimator is the first ridge estimator that was proposed among all other estimators. 
Moreover, most of studies concerned with proposing new ridge estimators or comparing 
ridge estimators to each other take HK estimator in consideration. 
3. By construction, NHSL is a modified version of HSL, so we thought that it is necessary to 
make a comparison between them. 
Therefore, we can say that it is convenient to make the comparison among OLS, HK, HSL 
and NHSL estimators. But, at the same time, we have to note that more investigation of 
NHSL is needed in future. This may be done by making comparisons between NHSL and 
other ridge estimators.  
Following McDonald and Galarneau (1975), Wichern and Churchill (1978), Gibbons (1981) 
and Kibria (2003), the explanatory variables were generated using the device  
 

                              pjnizzx ipijij ,...,2,1  ,,...,2,1 , )1( 2

1
2 ==+−= γγ                       (15) 

 
where ijz are independent standard normal pseudo-random numbers,γ  is specified so that the 

correlation between any two explanatory variables is given by 2γ , and p is the number of 
explanatory variables. The variables are then standardized so that XX′  and yX′  are in 
correlation forms. Different sets of correlation are considered corresponding to γ = 0.7, 0.8, 

0.9 and 0.99. Using the condition number NC , it can be shown that these values of γ  will 
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include a wide range of low, moderate and high correlations between variables. The n  
observations for the dependent variable y are determined by  
 
                          niexxxy iippiii ,...,1  ,   ...22110 =+++++= ββββ                    (16) 

 
where ie  are independent normal (0, 2σ ) pseudo-numbers and 0β  is taken to be identically 

zero, and p is defined as in (15). We used three different sample sizes: 15, 25 and 30 with 5, 
10 and 20 explanatory variables respectively. These choices of p are taken to study the 
behavior of the estimators for small, moderate and large number of explanatory variables. 
  
For each set of explanatory variables, one choice for the coefficient vectors is considered. 
The MSE function depends on the explanatory variables (through iλ ), on 2σ  and on β . It 

was noted (Newhouse and Oman ,1971)  that if MSE is regarded as a function of β with 2σ , 

k and the explanatory variables are fixed, then, subject to the constraint that 1=β , the MSE 

is minimized when β  is the normalized eigenvector corresponding to the largest eigenvalue 
of the matrix C . We didn't use normalized eigenvectors corresponding to the smallest 
eigenvalue because the conclusion about the performance of estimators in both cases will not 
change greatly (Kibria, 2003). 
 
For given values of p , n andγ , the experiment was repeated 1000 times by generating 1000 
samples. For each replicate r (r =1, 2,… , 1000), the values of k of different proposed 
estimators and the corresponding ridge estimators were calculated using  

                            1ˆˆ ( )R k − ∗′= +α Λ I X y  , ˆ ˆ ˆ ˆ,  ,  HK HSL NHSLk k k k=                                (17) 

Then the MSEs for estimators are calculated as follows  

                                  
1000

( ) ( )
1

1
ˆ ˆ ˆMSE( ) ( ) ( )

1000R r r

r

α α α α α
=

′= − −∑                                (18) 

 
 
Results of the Simulation Study 
In this section we present the results of our Monte Carlo experiments. Our primary interest 
here lies in comparing the MSEs of the considered estimators. The main results of simulation 
are summarized in Tables 1-3 below. To compare the performances of the considered 
estimators, we calculate the MSEs of each one. We consider the estimator that leads to the 
minimum MSE to be the best. It is worth mentioning here that we used the statistics package 
Minitab14 to do all calculations that were made in this article. 
 

Table 1. Estimated MSEs and the values of NC with  p = 5 and  n =15. 

 Estimators  
γ  OLS HK HSL NHSL NC  

0.99 0.0369229 0.0328831 0.0336641 0.0268559 879.62 

0.9 0.0270955 0.0248932 0.0250849 0.0213376 80.79 

0.8 0.0204500 0.0191982 0.0192228 0.0173943 35.29 

0.7 0.0159889 0.0153413 0.0153420 0.0132687 19.39 
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Table 2. Estimated MSEs and the values of NC with  p = 10 and  n =25. 

 Estimators  
γ  OLS HK HSL NHSL NC  

0.99 0.0179593 0.0173544 0.0174193 0.0156275 2743.34 

0.9 0.0123661 0.0121384 0.0121454 0.0106224 240.29 

0.8 0.0088826 0.0087805 0.0087810 0.0083277 99.86 

0.7 0.0070337 0.0069838 0.0069838 0.0066757 57.91 

 
 

Table 3. Estimated MSEs and the values of NC with  p = 20 and  n =30. 

 Estimators  
γ  OLS HK HSL NHSL NC  

0.99 0.01385120 0.01348810 0.01350310 0.00661062 23185.20 

0.9 0.00877632 0.00867149 0.00867239 0.00414520 2002.15 

0.8 0.00633292 0.00628823 0.00628828 0.00304895 830.08 

0.7 0.00481253 0.00479185 0.00479185 0.00465087 477.50 

 
Looking at tables 1-3, we can see that the HK, HSL and NHSL are better than the OLS, and 
the NHSL performs better than the HK and HSL. The results also reveal that for high 
correlations, i.e., when γ =0.9 and 0.99, the HK and HSL perform almost equivalently. 
However, the HK produces somewhat lower MSEs than the HSL for all sets of correlation. 
Moreover, it is observed that for given n  and p , the MSEs for all estimators increase as the 
correlation among the explanatory variables increases. In an opposite manner, for given γ , as 
the sample size and the number of explanatory variables increase, the MSEs of all estimators 
decrease. 
 
 
CONCLUSION 
In this article we have investigated the properties of a new proposed method for estimating 
the ridge parameter in the presence of multicollinearity. The investigation has been done 
using Monte Carlo experiments, where levels of correlation, the numbers of explanatory 
variables and the sample sizes have been varied. For each combination we have 1000 
replications. The evaluation of our estimator has been done by comparing the MSEs of our 
proposed estimator with the OLS estimator and the estimators of Hocking et al. (1976) and 
Hoerl and Kennard (1970). We found that our estimator uniformly dominates the other 
estimators.  
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