تأثير محتوى الكبريتات على الخواص السطحية لحفازات أكسيد القصدير (IV)
المدعم بالكبريتات

حسين عبدالفتاح خليف، صابر السيد منصور، إيناس عبد المولي المدني
قسم الكيمياء، كلية العلوم، جامعة عمر المختار، البيضاء ص ب 919، ليبيا

الملخص:

في هذه الدراسة تم تحضير حفازات أكسيد القصدير النقية عن طريق إضافة محلول الأمونيا المخفف إلى محلول كلوريد (IV) القصدير حتى الوصول إلى رقم هيدروجيني 8.0. وبعد غسيل الراسب المكون عدة مرات والحصول على أكسيد القصدير (جل) وحرقه عند 873 كلفن لمدة 3 ساعات، ثم إضافة حمض الكبريتك ½ مولاري إلى محلول الجل المتكون قبل عمليه الحرق للحصول على حفازات أكسيد القصدير المدعم بالكبريتات وبنسب مختلفة من الكبريتات (6، 12، 18 %). بعدها تم توصيف الحفازات بعدة تقنيات منها: التحليل الحراري الوزني والتفاضلي، حيود الأشعة السينية، إمتراس المنتجين عند 77 كلفن، الأشعة تحت الحمراء، إمتزاز النتروجين عند 77 كلفن. الأشعة تحت الحمراء باستخدام أقراص بروميد البوتاسيوم بالإضافة إلى قياس الحامضية عند 40 درجة باستخدام بيبتيل الأمين العادي. وقد أظهرت النتائج أن الجل المكون قبل الحرق يحتوي على جزيئتين من الماء (SnO2.2H2O). كما أن إضافة الكبريتات لم تتسبب في حدوث تغيير لطور أكسيد القصدير (التركيب البلوري الرباعي) إلا أنها تسبب انخفاض في حجم الدقائق وبالتالي تحدث زيادة في مساحة السطح. وبزيادة محتوى الكبريتات تزداد كذلك مساحة السطح حتى تصل إلى 88م2/جم لعينة 18%. هذا بالإضافة إلى أن وجود الكبريتات على سطح الأكسيد تظهر تركيبات مختلفين من الكبريتات على السطح كما أوضح ذلك من فحص الأمتن تحت الحمراء. كما أن دراسة الحامضية قد أظهرت أن إضافة الكبريتات للأكسيد تسبب ظهور مراكز حامضية قوية جداً على السطح.

Hussein A. Khalaf et al.
The influence of sulfate contents on the surface properties of sulfate-modified tin(IV) oxide catalysts

Hussein A. Khalaf *, Saber E. Mansour, Enas A. El-Madani

Chemistry Department, Faculty of Science, Omer El-Mukhtar University, P.O. 919, El-Beida, Libya

Available online 20 July 2011

1. Introduction

Tin(IV) oxide is an active catalyst for many reactions due to its acidic, basic, oxidizing and reducing surface properties. It has become well established that the performance of a heterogeneous catalyst depends not only on the intrinsic catalytic activity of its components, but also on its texture and stability. One of the most important factors in controlling the surface properties of a catalyst involves the correct choice of the additives. The adsorption of various anions (Mekhemer, 2005), particularly sulfate or phosphate anions, onto oxide has been attempted as a means of improving their catalytic activity. The increase in activity is believed to arise from increase in the surface acidity of the modified oxide (Clearfield et al., 1994). Modification of metal oxides with sulfate anion can generate a strong acidity, even stronger than 100% sulfuric acid and hence they become superacid catalysts that are useful in reactions like isomerizations, low temperature esterification, alkylation and cracking (Jyothi et al., 2000; Song et al., 1996). Sulfated tin(IV) oxide is one of the candidates for...
having the strongest acidity on the surface. The acid strength is reported to be higher than that of sulfated zirconia (El-Sharkawy et al., 2007; Hino et al., 2007). Ceramics acid of tungstated tin(IV) oxide prepared by Arata is more active than aluminosilicates for the esterification of n-octanoic acid with methanol (Hino et al., 2006). Other application of CO oxidation over SnO2 and Pd/SnO2 catalysts was reported by (Sasikala et al., 2000), whereas organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds were reviewed (Arata, 2009).

Nevertheless, papers concerning sulfated tin(IV) oxide catalyst have been quite few because of difficulty in preparation, compared with the easy preparation of other sulfated oxides. This study aimed to prepare tin(IV) oxide catalysts acidified with sulfate anions and study the effect of sulfate amounts on the surface properties of it. Tin(IV) oxide was prepared from stannic chloride and has been sulfated using sulfuric acid with different loading levels of sulfate (6%, 12% and 18% SO42−). These sulfated catalysts were characterized using different tools to know the effect of sulfate levels on the surface properties of the SnO2 catalysts.

2. Experimental

2.1. Materials

Tin(IV) oxide gel, used as a precursor of sulfated and promoted oxide, was prepared by the method described in the literatures (Matsuhashi et al., 2001a,b). In brief, by a slow dropwise addition of a 1:1 aqueous ammonia to a 0.3 M aqueous solution of tin(IV) chloride (SnCl4·5H2O) AR grade, BDH product (England), with a continuous stirring till pH = 8 is reached. The white precipitate was left overnight before being filtered and washed thoroughly with 2% CH3COONH4 solution until all chloride was eliminated (silver nitrate test), and then dried at 383 K till constant weight is obtained. The dried material was ground to 250 mesh size and kept dry over P2O5 desiccator. The dry gel thus obtained is denoted in the text as TH and it was used as a precursor for preparation of SnO2 and modified SnO2 catalysts. Pure tin oxide, SnO2, was obtained from the dried gel as stoichiometrically approaching SnO2·2H2O to anhydrous SnO2 (Sto). Sulfated SnO2 samples were prepared by impregnation of SnO2·xH2O (TH) gel with the appropriate amount of 0.5 M H2SO4 solution to obtain 6%, 12% and 18% SO42− by weight. The resultant was dried at 383 K for 24 h, followed by calcination at 873 K for 3 h and the products were designated as xSTO (where x = 6%, 12% and 18%).

2.2. Apparatus and techniques

2.2.1. Thermal analysis

Both TGA and DTA were performed between room temperature and 1273 K in a static atmosphere of air, using V2-2A DUPONT 9900 thermal analyzer. The rate of heating was standardized at 10 K min−1, and small portions (5–15 mg) of the sample were used in TG measurements.

2.2.2. X-ray powder diffractometry

XRD diffractograms were recorded for all samples using a model JSX-60PA JEOL diffractometer (Tokyo, Japan) and CuKα radiation (λ = 1.5418 Å). The generator was operated at 35 kV and 20 mA. The samples were scanned in the range of 2θ = 10–70° at a scanning speed of 6 min−1. For identification purposes, diffraction patterns (1/θ) versus d spacing (Å) were matched with the relevant ASTM standards (Frank, 1981). The crystallite size D of the samples were calculated using the Scherrer’s relationship (Klug and Alexander, 1970):

\[D = \frac{k\lambda}{\beta\cos\theta} \]

where K is the crystallite shape constant (≈1), λ the radiation wavelength, β the line breadth (radians) and θ the Bragg angle.

2.2.3. Nitrogen sorption measurement

Full nitrogen adsorption/desorption isotherms at 77 K were obtained using a NOVA 2200 (version 6.10) high-speed gas sorption analyzer (Quantachrome Corp., Boynton Beach, FL, USA). The calcined samples were first outgassed at 470 K for 1 h. Twenty-four-point adsorption and desorption isotherms were obtained, from which BET surface areas were derived using standard and well-established methods (Sing et al., 1985; Webb and Orr, 1997).

2.2.4. FTIR measurement

A very small amount of finely ground solid sample (5–10 mg) is intimately mixed with powdered KBr (90 mg) and then pressed in a 7 mm die under high pressure. IR analyses of the catalysts were carried out over the frequency range of 4000–500 cm−1 using a Nicolet 380 FT-IR spectrophotometer with 4 cm−1 resolution.

2.2.5. Acidity measurement

The total acidity of the solid samples under investigation was measured by means of potentiometric titration (El-Sharkawy et al., 2007; Rao et al., 2006). The solid catalyst (0.1 g) was suspended in 10 ml acetonitrile (Merck), and agitated for 4 h. Then, the suspension was titrated with 0.1 N n-butylamine in acetonitrile at 0.10 ml min−1. The electrode potential (Ei) variation was measured with SevenMulti, METTLER-TOLEDO, GMHB, Switerland. Cid and Pecchi (1985) made a scale of acid strength measurement as follow: Ei > 100 mV for very strong sites; 100 < Ei < 100 mV for strong acid sites; 0 < Ei < 100 mV for medium acid sites; −100 < Ei < 0 mV for weak sites; and finally Ei < −100 mV for very weak sites.

3. Results and discussion

3.1. Thermal analysis

From the TG profile of the precursor tin gel (SnO2·xH2O), Fig. 1a, it can be seen that there are two mass loss steps in the temperature range RT-1273 K. The first step ends at 423 K with a loss of mass ~3.6% and accompanied by an endothermic peak at 380 K, is attributed to the loss of volatile materials like physisorbed water (Magnacca et al., 2003). The second one begins just after the first (680 K) bringing the mass loss to ~19.9%, is assigned to dehydroxylation processes (DTA exothermic peak at 643 K) (Mekhemer et al., 2005; Wang and Xie, 2001). Theoretical mass loss of tin gel as stoichiometrically approaching SnO2·2H2O to anhydrous SnO2 is 19.3% (Scheme 1). The experimental mass loss is
~19.9% hence this implies that the tin gel sample approaches the suggested formula. Therefore, the exhibited thermal events involve in general elimination of water of different strengths and a final formation of SnO2, which agree with the XRD data. As to sulfated sample, 6STO, there are three mass loss steps, Fig. 1(b). The first two steps, ends at 473 K (endothermic peak at 393 K) and 643 K (exothermic peak at 693 K), are attributed to removal of adsorbed water and dehydroxylation process of tin gel. The mass loss at higher temperature began at 973 K and ended at 1053 K and accompanied by an endothermic peak at 1013 K, is attributed to decomposition of sulfate groups (Khalaf, 2009; Reddy et al., 2006).

3.2. X-ray diffraction

The XRD diffractograms of the sulfated samples with different loading levels of sulfate (6STO, 12STO and 18STO) calcined at 873 K are shown in Fig. 2. The main conclusion is that all patterns are characteristic of pure SnO2 phase (ASTM card No. 41–1445) with tetragonal rutile structure at 2\(\theta\) = 26.54, 33.82 and 51.74. The intensities of the bands characteristic for SnO2 (TO) gradually decreased, while the width of the reflections is considerably broadened, indicating a small crystalline domain size (Khder et al., 2008). To know the role of sulfate content on the crystallinity of the samples quantitatively, their mean crystallite sizes were calculated from the broadening of the strongest peak of the samples and based on Scherrer equation (Table 1). The addition of sulfate into crystalline oxide resulted in a gradual increase in the surface area for the samples 6STO, 12STO and 18STO to become 35, 60 and 88 m\(^2\) g\(^{-1}\), respectively. These data agree with the data obtained from XRD results, which complied in Table 1 also, in which the sulfated samples have small crystallite size (88, 50 and 31 Å for 6STO, 12STO and 18STO, respectively) that affect on the specific surface area (Khalaf, 2009).

3.3. Surface texture

The nitrogen sorption isotherms at 77 K of pure oxide (TO) and sulfated samples (6STO, 12STO and 18STO) were shown in Fig. 3. From this figure, it is clear that all isotherms are belonging to Type IV according to BET classification (Brunauer et al., 1938) and displays hysteresis loop of Type H3 mixed with some of H2 in case of 18STO sample according to the IUPAC classification (Sing et al., 1985). All the samples have a close closure point at \(P/P_0 = 0.4\). This may infer that the monolayer is completed slowly with contribution of micropores. The more pronounced knee on the adsorption isotherm of 6STO sample is reflected on its higher \(C_{BET}\) value (Table 1). This value greatly affects the shape of the isotherm in the low-pressure region whatever is the \(V_{m}\) value. Larger hysteresis loops can be noticed for TO, 6STO and 12STO samples.

Values of \(S_{BET}\), \(S_{t}\), \(V_P\), \(r_P\) and \(C_{BET}\) for all samples are summarized in Table 1. It is apparent that \(S_{BET}\) and porosity are not similar for all samples, most likely due to variation in crystallite size. The good agreement between the \(S_{BET}\) and \(S_{t}\) values (Table 1) for all samples, reflects the higher accuracy of the BET-C determination and, consequently, the appropriateness of the reference Va-t curves (Gregg and Sing, 1982). From these data, it is clear that pure TO sample has low specific surface area (\(S_{BET} = 11 \text{ m}^2 \text{ g}^{-1}\)) which agrees with previous data (Harrison, 1989). The addition of sulfate into crystalline oxide resulted in a gradual increase in the surface area for the samples 6STO, 12STO and 18STO to become 35, 60 and 88 m\(^2\) g\(^{-1}\), respectively. These data agree with the data obtained from XRD results, which complied in Table 1 also, in which the sulfated samples have small crystallite size (88, 50 and 31 Å for 6STO, 12STO and 18STO, respectively) that affect on the specific surface area (Khalaf, 2009).

The pore size distribution (PSD) curves for the samples, Fig. 4, show that the PSD lies between micropores and mesopores range. Three main peaks at < 20 Å were observed for all samples; in addition, some peaks were shown at radius higher than 20 Å. This means that the porosity of TO is
micropores in addition to little amount of mesopores. However, sulfated samples show a mix between mesopores and micropores in agreement with the findings of the \(t \)- and \(\alpha \)-methods. Then, the incorporate of sulfates onto tin(IV) oxide can modify its porosity.

3.4. FTIR spectroscopy

Fig. 5 shows the IR spectra of sulfated tin(IV) oxide (\(x \)STO) in comparison with pure tin(IV) oxide (TO). From these spectra, the presence of sulfate groups was confirmed by the bands at 1382, 1190, 1155 and 1079 cm\(^{-1}\). The first band (at 1382 cm\(^{-1}\)) characteristic of the surface sulfate species having S=O covalent bonds (Mekhemer et al., 2005). The other bands at 1190, 1155 and 1079 cm\(^{-1}\) are due to the asymmetric and symmetric stretching frequency of the O=S=O and O=S-O group (Mekhemer et al., 2005; Clearfield et al., 1994). Thus, it is evident that the IR spectra of both types of sulfated samples show very similar spectral features in the SO stretching region. These features are in general attributed to triply bridging sulfate and bridged bidentate sulfate, as represented in structures (I) and (II).

Table 1 Nitrogen sorption analysis data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(S_{\text{BET}} \text{ m}^2\text{g}^{-1})</th>
<th>(C_{\text{BET}})</th>
<th>(S^* \text{ m}^2\text{g}^{-1})</th>
<th>(S'_b)</th>
<th>(S'_{\text{cum}})</th>
<th>(V'_{\text{cum}} \text{ cm}^3\text{g}^{-1})</th>
<th>(V'_{\text{tot}} \text{ cm}^3\text{g}^{-1})</th>
<th>Aver (r_p) Å</th>
<th>Crystallite size (\Delta) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
<td>11</td>
<td>14.7</td>
<td>10.3</td>
<td>10.8</td>
<td>6.9</td>
<td>0.016</td>
<td>0.0325</td>
<td>17.5</td>
<td>185</td>
</tr>
<tr>
<td>6STO</td>
<td>35</td>
<td>2.7</td>
<td>34</td>
<td>34.6</td>
<td>17.4</td>
<td>0.036</td>
<td>0.0387</td>
<td>18.5</td>
<td>88</td>
</tr>
<tr>
<td>12STO</td>
<td>60</td>
<td>3.5</td>
<td>59</td>
<td>58.8</td>
<td>19</td>
<td>0.035</td>
<td>0.048</td>
<td>13.5</td>
<td>50</td>
</tr>
<tr>
<td>18STO</td>
<td>88</td>
<td>4.0</td>
<td>87.7</td>
<td>86.5</td>
<td>41</td>
<td>0.066</td>
<td>0.1036</td>
<td>12.7</td>
<td>31</td>
</tr>
</tbody>
</table>

\(a \) The standard isotherm used in each case was selected according to (Sing et al., 1985).

\(b \) \(\alpha_b \) Surface area.

\(c \) Cumulative surface area.

\(d \) Cumulative pore volume.

\(e \) Total pore volume at \(P/P_0 = 0.99 \).

\(f \) Mean pore radius at the peak of the distribution curves.

\(g \) Obtained from XRD data.

Figure 3 Nitrogen sorption isotherms for \(x \)STO in comparison with TO; \(V_a \) is measured at STP.

Figure 4 Pore size distribution curves for \(x \)STO in comparison with TO catalysts; \(r_p \) true radius and \(\Delta V_p/\Delta r_p \text{ cm}^3\text{g}^{-1} \text{Å}^{-1} \) is the ratio between the volume decrease (\(\Delta V_p \)) in \text{cm}^3\text{g}^{-1} \text{Å}^{-1} and the decrease in pore radius (\(\Delta r_p \)) in \text{Å}^{-1}.
The only effect of sulfate loading resulted in an increase in the band intensities of sulfate group.

3.5. Acidity of the catalysts

Total number of acid sites and their relative strength, for the catalysts under investigation, can be measured by means of a potentiometric titration with 0.1 N n-butylamine. To explain the obtained results, it was suggested that the initial electrode potential (Ei) indicates the maximum acid strength of the sites. The value of meq amine/g solid, where the plateau is reached in titration curves (Fig. 6), indicates the total number of acid sites (El-Sharkawy et al., 2007; Cid and Pecci, 1985). Table 2 shows the potentiometric titration results for all samples. From these results one can conclude that the TO sample has weak acid sites and its maximum strength is equal to −65 mV. The addition of sulfate to SnO₂ can increase the acidic strength and create strong and very strong acid sites on the surface of SnO₂ to become +47, 112 and 144 mV for the samples 6STO, 12STO and 18STO, respectively.

4. Conclusion

The obtained results show that the SnO₂ gel has at least two molecules of water to give the formula SnO₂·2H₂O and the addition of sulfate has no effect on the crystalline phase of SnO₂ (tetragonal phase) but decreases the crystallite size and, consequently, increase the specific surface area. The specific surface area is increased by increasing the loading of sulfate. FT-IR spectra expose that sulfated SnO₂ has two different structures of sulfates. Moreover, the incorporation of sulfate onto SnO₂ can increase its acidity and creates strong acidic sites.

References

