Leads to multiple Riordan polynomials through Fermat's inequality. K. Boubaker and L. Zhang
Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis

Karem Boubaker a, Lin Zhang b, *

a ESSTT/ 63 Rue Sidi Jabeur 5100, Mahdia, Tunisia
b Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310037, PR China

Available online 2 July 2012

Abstract The Boubaker polynomials are investigated in this paper. Using a Riordan matrices analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials has been obtained. The obtained expressions are a meaningful supplement to recent applied physics studies using the Boubaker polynomials expansion scheme (BPES).

1. Introduction

Polynomial expansion methods are extensively used in many mathematical and engineering fields to yield meaningful results for both numerical and analytical analysis (Alvareza et al., 2005; Bender and Dunne, 1988; Choi et al., 2004; Guertz et al., 2000; Koelink, 1994; Okada et al., 2006; Philippou and Georgiou, 1989; Sloan and Womersley, 2002). Among the most frequently used polynomials, the Boubaker polynomials are one of the interesting tools which were associated to several applied physics problems as well as the related polynomials such as the Boubaker–Turki polynomials (Boubaker, 2007, 2008; Bagula and Adamson, 2008; Sloane, 2008), the 4q Boubaker polynomials (Zhao et al., 2009) and the Boubaker–Zhao polynomials (Zhao et al., xxxx). For example, for some resolution purposes, a function \(f(r) \) is expressed as an infinite nonlinear expansion of Boubaker–Zhao polynomials

\[
\begin{align*}
 f(r) &= \lim_{N \to \infty} \left[\frac{1}{2N} \sum_{n=1}^{N} \zeta_{n} B_{4n} \left(\frac{r z_{n}}{R} \right) \right], \\
 B_{4n}(r)_{|_{r=0}} &= -2, \\
 \frac{\partial B_{4n}(r)}{\partial r} = 0, \\
 \partial^{2} B_{4n}(r)_{|_{r=0}} = 4n(n-1).
\end{align*}
\]

where \(z_{n} \) are the minimal positive roots of the Boubaker 4-order polynomials \(B_{4n} \), \(R \) is a maximum radial range and \(\zeta_{n} \) are coefficients to be determined using the expression of \(f(r) \).

Since the Boubaker 4-order polynomials have the particular properties:

\[
\begin{align*}
 f(0) &= \lim_{N \to \infty} \left[\frac{1}{2N} \sum_{n=1}^{N} \zeta_{n} B_{4n} \left(\frac{r z_{n}}{R} \right) \right]_{|_{r=0}} = -\frac{1}{2} \sum_{n=1}^{N} \zeta_{n}, \\
 f(R) &= \lim_{N \to \infty} \left[\frac{1}{2N} \sum_{n=1}^{N} \zeta_{n} B_{4n} \left(\frac{r z_{n}}{R} \right) \right]_{|_{r=R}} = 0, \\
 \frac{\partial f(r)}{\partial r} = \lim_{N \to \infty} \left[\frac{1}{2N} \sum_{n=1}^{N} \frac{\partial B_{4n}(r z_{n})}{\partial r} \right]_{|_{r=0}} = 0.
\end{align*}
\]
2. The Boubaker polynomials

The first monomial definition of the Boubaker polynomials (Awojoyogbe and Boubaker, 2009; Boubaker, 2007; Chauachi et al., 2007; Labiad and Boubaker, 2007) appeared in a physical study that yielded an analytical solution to the heat equation inside a physical model (Labiad et al., 2008; Slamet et al., 2008a). This monomial definition is expressed by (2.1):

Definition 2.1. A monomial definition of the Boubaker polynomials is:

\[
B_n(X) = \sum_{j=0}^{\left\lfloor n/2 \right\rfloor} \left[b_n X^{n-2j} \right],
\]

where \(\xi(n) = \left\lfloor \frac{n}{2} \right\rfloor \) (The symbol \(\left\lfloor \cdot \right\rfloor \) designates the floor function). Their coefficients could be defined through a recursive formula (2.2):

\[
\begin{align*}
B_0(X) &= X, \\
B_1(X) &= X^2 + 2, \\
B_m(X) &= XB_{m-1}(X) - B_{m-2}(X), \quad \text{for } m > 2,
\end{align*}
\]

(2.3)

3. Riordan matrices of the Boubaker polynomials

In this section, we will present a Riordan matrices analysis of the Boubaker polynomials. The notations and the results of Luzon (2010a, 2008, 2009, 2010b) will be used extensively. We start with the following relation (demonstrated on page 25 in Luzon and Moron (2010b)):

\[
B_n(x) = U_n \left(\frac{x}{2} \right) + 3U_{n-2} \left(\frac{x}{2} \right), \quad \text{for } n \geq 2,
\]

(3.1)

where \(U_n \) denote the Chebyshev polynomials of the second kind. Then:

\[
B_{2m}(x) = U_{2m} \left(\frac{x}{2} \right) + 3U_{2m-2} \left(\frac{x}{2} \right) = 2 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right) + 6 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right)
\]

(3.2)

\[
= 8 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right) + 2T_{2m} \left(\frac{x}{2} \right) = 4 + 8 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right) + 2T_{2m} \left(\frac{x}{2} \right),
\]

(3.3)

where \(T_n \) denote the Chebyshev polynomials of the first kind. In a similar way:

\[
B_{2m+1}(x) = 8 \sum_{k=0}^{m-1} T_{2k+1} \left(\frac{x}{2} \right) + 2T_{2m+1} \left(\frac{x}{2} \right) = 8 \sum_{k=0}^{m-1} T_{2k+1} \left(\frac{x}{2} \right) + 2T_{2m+1} \left(\frac{x}{2} \right)
\]

(3.4)

so:

\[
B_{2m} \left(2 \cos t \right) = 4 + 8 \sum_{k=0}^{m-1} T_{2k} \left(\cos t \right) + 2T_{2m} \left(\cos t \right) = 4 + 8 \sum_{k=0}^{m-1} \cos(2kt) + 2 \cos(2mt),
\]

(3.5)

\[
B_{2m+1} \left(2 \cos t \right) = 8 \sum_{k=0}^{m-1} \cos((2k + 1)t) + 2 \cos((2m + 1)t).
\]

(3.6)

Now, consider another new polynomial class \(\tilde{B}_n \) defined by:

\[
\tilde{B}_n \left(2 \cos t \right) = \frac{B_n \left(2 \cos t \right) - 2T_n \left(\cos t \right)}{4}, \quad n > 1,
\]

(3.7)

or:

\[
\begin{align*}
\tilde{B}_0(x) &= \frac{B_0(x) - 2T_0(x)}{4}, \\
\tilde{B}_1(x) &= \frac{B_1(x) - 2T_1(x)}{4} = 1 + 2 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right). \\
\tilde{B}_2(x) &= \frac{B_2(x) - 2T_2(x)}{4} = 2 \sum_{k=0}^{m-1} T_{2k} \left(\frac{x}{2} \right).
\end{align*}
\]

(3.8)

In order to obtain a generating function and to make a polynomial sequence (i.e. the degree is the subindex) we consider:

\[
\tilde{B}_n(x) = \tilde{B}_{n-2}(x).
\]

So, symbolically:

\[
\begin{bmatrix}
\tilde{B}_0(x) \\
\tilde{B}_1(x) \\
\tilde{B}_2(x) \\
\vdots
\end{bmatrix} =
\begin{bmatrix}
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
\vdots
\end{bmatrix}
\begin{bmatrix}
\tilde{T}_0(x) \\
\tilde{T}_1(x) \\
\tilde{T}_2(x) \\
\vdots
\end{bmatrix}.
\]

(3.9)

We can write this in terms of Riordan matrices in the next way:

\[
\sum_{n \geq 0} \tilde{B}_n(t)x^n = T(1 + t)(1 + x^2) \left(\frac{1}{1 - tx^2} \right) T(2)(2) \left(\frac{1}{1 - tx} \right),
\]

(3.10)

or:

\[
\sum_{n \geq 0} \tilde{B}_n(t)x^n = T(1)(1 + x^2) \left(\frac{1}{1 - tx} \right).
\]

(3.11)

In fact we have the Riordan matrix:

\[
T(1)(1 + x^2),
\]

(3.12)

which is:
Hence, the few first \(\tilde{B}_n(x) \) are:

\[
\begin{align*}
\tilde{B}_0(x) &= 1, \\
\tilde{B}_1(x) &= x, \\
\tilde{B}_2(x) &= x^2 - 1, \\
\tilde{B}_3(x) &= x^3 - 2x, \\
\tilde{B}_4(x) &= x^4 - 3x^2 + 1, \\
\tilde{B}_5(x) &= x^5 - 4x^3 + 3x,
\end{align*}
\] (3.17)

with the recurrence (3.18).

\[
\tilde{B}_n(x) = x\tilde{B}_{n-1}(x) - \tilde{B}_{n-2}(x), \quad n \geq 2.
\] (3.18)

Note that this recurrence is the same as that for the Boubaker polynomials but with different initial conditions. In fact the relation between both families of polynomials is given by

\[
T(1 + 3x^2[1 + x^2]) = T(1 + 3x^2[1 + x^2]) T(1|1 + x^2).
\] (3.19)

Then, finally:

\[
\tilde{B}_n(x) = x\tilde{B}_{n-1}(x) + 3\tilde{B}_{n-2}(x), \quad n \geq 2.
\] (3.20)

4. Fermat-linked expressions

Using inversion of Riordan matrices we can get \(\tilde{B}_n(x) \) each as combinations of Boubaker polynomials.

Remark 4.1. Comparing the recurrence (3.20) with the one of the Chebyshev polynomials of the second kind, we can obtain an explicit expression of the new polynomials defined by (3.8) and (3.9)

\[
\tilde{B}_n(x) = \frac{\sin((n + 1)t)}{\sin t}, \quad x = 2 \cos t, \quad n = 0, 1, 2, \ldots
\] (4.1)

In other word, the new polynomial is the scaled Chebyshev polynomial \(U_n(x) \) of the second kind, since the relation between the two polynomials is related as:

\[
\tilde{B}_n(2x) = U_n(x), \quad n = 0, 1, 2, \ldots
\] (4.2)

Remark 4.2. By using (4.1) or (4.2), we can obtain some other relations. In fact the Fermat polynomials are obtained by setting \(p(x) = 3x \) and \(q(x) = -2 \) in the Lucas polynomial sequence, defined by (4.3).

\[
F_n(x) = p(x)F_{n-1}(x) + q(x)F_{n-2}(x).
\] (4.3)

As Luzon (2010a), Luzon and Moron (2008, 2009, 2010b) demonstrated, through the associated Riordan matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & -3 & 0 & 1 & 0 \\
0 & 3 & 0 & -4 & 0 & 1 \\
\end{bmatrix} .
\] (3.16)

That

\[
\begin{align*}
F_1(x) &= 1, \\
F_2(x) &= 3x, \\
F_3(x) &= 9x^2 - 2, \\
F_4(x) &= 27x^3 - 12x,
\end{align*}
\] (4.5)

and

\[
F_n(x) = \left(\sqrt{2} \right)^n U_n \left(\frac{3x}{2\sqrt{2}} \right).
\] (4.6)

Theorem 4.3. Let \((R, +, \cdot)\) be a commutative ring, \((D, +, \cdot)\) be an integral domain such that \(D\) is a subring of \(R\) whose zero is \(0_D\) and whose unity is \(1_D\), \(X \in R\) be transcendental over \(D, D[X]\) be the ring of polynomials forms in \(X\) over \(D\), and finally denote Boubaker polynomials and Fermat polynomials as \(B_n(x)\) and \(F_n(x)\) respectively, as polynomials contained in \(D[X]\), then:

\[
B_n(x) = \frac{1}{(\sqrt{2})^n} F_n \left(\frac{2\sqrt{2}x}{3} \right) + \frac{1}{(\sqrt{2})^{n-2}} F_{n-2} \left(\frac{2\sqrt{2}x}{3} \right), \quad n = 0, 1, 2, \ldots
\] (4.7)

Proof. Riordan matrices for Boubaker polynomials and Fermat polynomials (see Luzon, 2010a; Luzon and Moron, 2008, 2009, 2010b) are respectively:

\[
\sum_{n=0}^{\infty} B_n(x)^n = \left(1 + 3x^2[1 + x^2] \right) \left(\frac{1}{1 - x} \right) = \sum_{n=0}^{\infty} F_n(x)^n = \left(\frac{1 + x^2}{3} \right).
\] (4.8)

Let’s expand the inverse Riordan arrays:

\[
T(1 + 3x^2[1 + x^2]) = T(1 + 3x^2[1]) T \left(\frac{1}{3} \frac{1 + x^2}{2} \right) T(2|2),
\] (4.9)

which gives

\[
T(1 + 3x^2[1 + x^2]) = T(1 \\
+ 3x^2[1] T(1|\sqrt{2}) T \left(\frac{1}{3} \frac{1 + x^2}{3} \right) T \left(\frac{3}{\sqrt{2}} \right).
\] (4.10)

By identifying Riordan matrix for Fermat polynomials in the right term of Eq. (4.10), the desired equality holds. \(\square\)
Expressions (4.2) and (4.7) are very useful for developing the already proposed Boubaker polynomials expansion scheme (BPES).

5. Conclusion

The Boubaker polynomials have been investigated. Using a Riordan matrices (Shapiro et al., 1991) analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials has been obtained as guides to further studies (Yildirim and Ozis, 2009, 2010). The obtained expression are a meaningful supplement to recent applied physics studies (Ben Mahmoud, 2009; Lazzez et al., 2009; Fridjine et al., 2009; Khella et al., 2009; Ben Mahmoud and Amlouk, 2009; Dada et al., 2009; Rahmanov, xxx; Rahmanov, xxxx; Tabatabaie et al., 2009; Fridjine and Amlouk, 2009; Belhadj et al., 2009; Belhadj et al., 2009; Zhang and Li, 2009) using the Boubaker polynomials expansion scheme (BPES).

References

Rahmanov, H. Triangle read by rows: row n gives coefficients of Boubaker polynomial $B_n(x)$, calculated for $X = 2cos(t)$, centered by adding $-2cos(n+1)$, then divided by 4, in order of decreasing exponents. Encycloped. Integer Seq. A162024.

Rahmanov, H. Triangle read by rows: row n gives values of the 4q-28 Boubaker polynomials $B_{4q}(x)$ (named after Boubaker Boubaker (1897–1966)), calculated for $X = 1$ (or −1). Encycloped. Integer Seq. A162180.

