
 
 

دراسة نظرية لبعض الخصائص الديناميكا الحرارية للصلب تحت الضغط العالي باستخدام 
 معادلات الحالة المعتمدة على المطاوعة المحددة

 
 2، ابتسام يحيى الكماش1حمدأجنان فخرالدين 

 
 ، كلية التربية، جامعة الموصل، العراق1قسم الفيزياء

 الموصل، العراق، كلية العلوم، جامعة 2قسم الفيزياء
 

 :الملخص
لمنيوم بعض خصائص الديناميكا الحرارية لمادة الأيتضمن هذا البحث دراسة تأثير الضغط العالي على 

 مرنكهان من المرتبة الثالثة والرابعة والمستندة على نظرية اويلر-باستخدام معادلة الحالة لبرخوذلك الصلب 
حجم الانضغاطية  فإن تغير ،20GPaلغاية الضغط لقد اظهرت نتائج الدراسة بأنه   .المحددة-للمطاوعة
قد اتفق  المرتبة الثالثة والرابعةمن مرنكهان-الحالة لبرخمع الضغط لمعادلتي ( 1-0..5) في المدىالنسبي 

ن هناك انحرافا بين كل أوجد ب، فقد 100GPaولغاية  20GPaولكن فوق  ،مع النتائج التجريبيةبشكل جيد 
 .النتائج التجريبيةو من معادلتي الحالة من المرتبة الثالثة والرابعة 

باستخدام معادلتي الحالة لبرخ  الايزوثرمي تم حساب معامل المرونة الحجمينه في هذه الدراسه، أكما 
ن هناك عدم توافق بين نتائج هاتين المعادلتين عند الضغوط أمرنكهان من المرتبة الثالثة والرابعة وأيضا وجد ب

 .20GPaالمرتفعة فوق 
نصهار للألمنيوم باستخدام معادلة لإدراسة تأثير الضغط العالي على درجة حرارة ايضا أتم وفي النهاية، 

وعلى معادلة  ديباي-مرنكهان من المرتبة الثالثة والرابعة والمستندة على نظرية ماي كرونيشن-الحالة لبرخ
 .حيث أظهرت النتائج المحسوبة توافق جيد مع النتائج التجريبية ،لندمان ومعادلة كومر
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Abstract This work involves the influence of high pressure on some thermodynamical properties

of solid aluminum (Al) using a 3rd and 4th order Birch–Murnaghan equation of state based on the

finite Eulerian strain theory.

The comparison results for relative compression volume in the range of 1–0.65 versus applied

high pressure for the 3rd and 4th order B–M EOS and experimental data indicated that up to

20 GPa are in good agreement. But beyond this and up to 100 GPa, the results for the 3rd order

B–M EOS do diverge from the 4th order B–M EOS as well as from the experimental data.

The isothermal bulk modulus (KT) has been worked out by using the 3rd and 4th order B–M

EOS. Results were not found in good agreement above 20 GPa. However, the data for first pressure

derivative (K0T) for both 3rd and 4th order B–M EOS show a big divergence starting from 20 GPa.

Finally, the effect of high pressure on (Al) melting temperature has been studied. The Mie–

Gruneison–Debye equation (based upon the 3rd and 4th order B–M EOS) and Lindemann and

Kumar’s equations were investigated. Comparison results for melting temperature as a function

of melting pressure by using the above mentioned equations and the experimental data have been

found to be in good agreement.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The equation of state (EOS) of a system basically describes the

relationships among thermodynamic variables such as pres-
sure, temperature and volume. The study of equation of state
for solids has been extremely useful in the field of geophysics

and condensed matter physics (Stacey et al., 1981; Anderson,
1995).

The isothermal EOS expresses the relation between
pressure and volume at constant temperature while the relation

between the volume and temperature at constant pressure is
known as the isobaric EOS. However, the isochoric EOS re-
lates temperature and pressure at constant volume (Tripathi

et al., 2006).
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It should be mentioned that the EOS expression for pres-

sure (P), bulk modulus (KT) and its derivatives (K0T) and
(K00T) are not easy to obtain (Sushil et al., 2004).

The EOS has been derived by many authors based on dif-
ferent physical assumptions. Among these assumptions, the

equation of state depends on finite-strain theory. This theory
has played a very significant role in the development of equa-
tion of state (EOS) for solid (Stacey et al., 1981).

Stacey recently developed a method for obtaining higher
order finite-strain equations which can be used for deriving
and obtaining EOS. Other researches have obtained the EOS

based on the finite Eulerian strain or the finite Lagrangian
strain theories (Stacey, 2001). The equation of state based on
the Eulerian strain yields good agreement with the EOS devel-

oped by Kushwah et al. (2007) and also with the generalized
Rydberg EOS (Shanker et al., 2009). It is well known that
the formulation based on the Eulerian strain is more appropri-
ate than that based on the Lagrangian strain, since the Taylor

series expansion for free energy in powers of the strain param-
eter is more convergent in the case of the Eulerian strain
(Birch, 1952, 1986). The Lagrangian strain is the strain relative

to the unstrained state, whereas the Eulerian strain represents
the strain relative to the strained state (Sushil et al., 2004). The
general form of strain (f) in terms of volume compression (V/

V0) is given by (Holzapfel, 1996)

f ¼ 1

n
x�n=3 � 1
� �

ð1Þ

where x = (V/V0), V0 is the volume at P0, V is the volume at

P. n is the power constant that depends upon the type of strain.
For example, the value of n for the Eulerian strain is equal to 2
(Stacey, 2001).

The aimof thiswork is to study some thermodynamical prop-
erties for solid aluminum (Al) under high pressure using the 3rd
and 4th order Birch–Murnaghan EOS based on the finite Eule-

rian strain theory. This study includes the variation of relative
compression volume, isothermal bulkmodulus (KT) and the first
derivative of bulkmodulus (K0T) with pressure.Moreover, the ef-
fect of high pressure on themelting temperature of solid (Al) was

investigated using the Mie–Gruneison–Debye equation based
upon the 3rd and 4th order Birch–Murnaghan EOS, Lindemann
and Kumar’s equations.

2. Theory

2.1. The isothermal Birch–Murnaghan EOS based on Eulerin

strain

The Birch–Murnaghan EOS (B–M EOS) based on the Eulerian
strain theory has been widely used for understanding high
pressure behavior of solids (Gaurav et al., 2002). The Eulerian

strain (fe) can be obtained from Eq. (1) by substituting n = 2.
Therefore

fe ¼
1

2

V0

V

� �2=3

� 1

" #
ð2Þ

The B–M EOS is obtained by expanding a series of powers of

the Eulerian strain (Birch, 1952).
The 2nd order isothermal EOS is a function of two measur-

able parameters, x and isothermal bulk modulus (K0) at

P = 0, so that P = f(x, K0).

Similarly, the 3rd and 4th order isothermal B–M EOS,

have the forms P ¼ fðx;K0;K
0
0Þ and P ¼ fðx;K0;K

0
0;K

00
0Þ,

respectively.
The coefficient of the term of degree 3 in the expansion can

be neglected in many cases (corresponding to K00 � 4) so that

the equation of state at the 2nd order is good enough. How-
ever Stacey et al. (1981) and Anderson (1995) remarked that
there is a truncation problem, since the coefficient of the term

of degree 4 of the expansion is larger than that of the term of
degree 3.

The 2nd, 3rd and 4th B–M EOS are written as below:

P ¼ 3K0

2
x�7=3 � x�5=3
� �

ð3Þ

P ¼ 3K0

2
x�7=3 � x�5=3
� �

1þ 3

4
ðK00 � 4Þ x�2=3 � 1

� �� �
ð4Þ

P ¼ 9K0

16
�B1x

�5=3 þ B2x
�7=3 � B3x

�3 þ B4x
�11=3� �

ð5Þ

where

B1 ¼ K0K
00
0 þ K00 � 4

� 	
ðK00 � 5Þ þ 59

9
ð6Þ

B2 ¼ 3K0K
00
0 þ ðK00 � 4Þð3K00 � 13Þ þ 129

9
ð7Þ

B3 ¼ 3K0K
00
0 þ ðK00 � 4Þð3K00 � 11Þ þ 105

9
ð8Þ

B4 ¼ K0K
00
0 þ ðK00 � 4ÞðK00 � 3Þ þ 35

9
ð9Þ

where K0 is the isothermal bulk modulus at P0, K
0
0 is the first

pressure derivative of bulk modulus and K000 is the second pres-
sure derivative of bulk modulus.

2.2. Isothermal bulk modulus (KT) of 3rd and 4th order Birch–
Murnghan EOS

Results obtained from the P–V relationship in a pressure study
give information regarding higher order thermodynamic
parameters. This isothermal P–V relationship yields bulk mod-

ulus and is defined as (Sushil et al., 2004)

KT ¼ �V
@P

@V

� �
T

ð10Þ

the bulk modulus for 3rd and 4th B–M EOS is written as
below:

KT ¼
1

2
K0 7x�7=3 � 5x�5=3
�

þ 3

8
K0ðK00 � 4Þ 9x�9=3 � 14x�7=3 þ 5x�5=3

� 	� �

ð11Þ

and

KT ¼
9

16
K0 �B1

5

3

� �
x�5=3 þ B2

7

3

� �
x�7=3 � B3ð3Þx�3

�

þB4

11

3

� �
x�11=3



ð12Þ

2.3. The pressure derivative of bulk modulus (K0T) at constant

temperature

The pressure derivative of KT for the 3rd and 4th order B–M
EOS is given:
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K0T ¼
K0

8KT

ðK0o � 4Þð81x�9=3 � 98x�7=3 þ 25x�5=3
�

þ 4

3

� �
49x�7=3 � 25x�5=3
� 	


ð13Þ

K0T ¼
�B1

5
3

� 	2
x�5=3 þ B2

7
3

� 	2
x�7=3 � B3ð3Þ2x�3 þ B4

11
3

� 	2
x�11=3

�B1
5
3

� 	
x�5=3 þ B2

7
3

� 	
x�7=3 � B3ð3Þx�3 þ B4

11
3

� 	
x�11=3

ð14Þ

3. Result and discussion

The pressure has been calculated at different relative compres-
sion volumes ranging from 1 to 0.65 for solid aluminum (Al)

using the 3rd and 4th order B–M EOS equations (4) and (5).
The input parameters V0 = 10 cm3/mole, isothermal bulk
modulus K0 = 72.7 GPa at P0 and its first pressure derivative
K00 ¼ 4:14 are taken from Hänström and Lazor (2000). The va-

lue of the second pressure derivative of K0 has been calculated
from the following equation (Stacey, 2000, 2001):

K000 ¼ �
K00
K0

ðK00 � K01Þ ¼ �0:0484GPa ð15Þ

where the value of K01 ¼ 3:29 is obtained from Hama and

Suito (1996).
Fig. 1 shows a comparison between the calculated pressure

(P) as a function of relative compression (V/V0) for the 3rd and

4th order B–M EOS with experimental data obtained from
Hänström and Lazor (2000) and Boehler and Ross (1997).

From this figure one can see that the relative compression

volume decreases continually with the increase in pressure. It
also indicates that up to 20 GPa, the compression curve coin-
cides with experimental data. Beyond this and up to 100 GPa,
the 3rd order B–M EOS diverges less than the 4th order B–M

EOS in which it satisfies Eq. (5) alongside experimental data.
The isothermal bulk modulus (KT) and its first pressure

derivative (K0T) have been calculated at different relative com-

pression volumes from 1 to 0.65 for solid Al using the 3rd and
4th order B–M EOS according to Eqs. (11)–(14). The same in-
put parameter values were used as above.

Fig. 2 shows the isothermal bulk modulus (KT) versus pres-
sure for the 3rd and 4th order B–M EOS at room temperature.

Fig. 2 shows that the isothermal bulk modulus (KT) in-
creases continuously with an increase in pressure and which
satisfies the equation of compressibility (10). The increase in

pressure at constant temperature will reduce the volume for
which dV will be negative. Thus KT is increased above
20 GPa, the 3rd order B–M EOS slightly differs from the 4th

order B–M EOS. This concept can be explained as due to
the pressure of the term K01 originally at the 4th order B–M
EOS, while the 3rd order B–M EOS does not contain that

term.
Fig. 3 shows the first pressure derivative (K0T) and isother-

mal bulk modulus (KT) as a function of pressure for the 3rd
and 4th order B–M EOS at room temperature.

This figure shows that the first pressure derivative of iso-
thermal bulk modulus (K0T) decreases as pressure increases
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Figure 1 Comparison between the calculated isothermal com-

pression curves for Al at room temperature using B–M EOS with

experimental data.
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for both Eqs. (13) and (14) and the results coincide with each

other. It has been seen that above 20 GPa, the results of these
equations do not coincide, but diverge away from each other.
We can interpret this as the original 3rd order B–M EOS does
not contain the term K01. The most important reason for this is

that K01 provides a close control of the curvature of the plot of
K0T versus P for the 4th order B–M EOS.

4. The effect of high pressure on melting temperature of solid

4.1. Preamble

The effect of pressure on melting temperature studied by Cla-

peyron was deduced a latent heat equation from Maxwell’s
thermodynamical relation to obtain the following equation
(Cohen and Weitz, 1996):

dP

dT

� �
¼ dH

TdV
ð16Þ

Determination of the pressure dependence of the melting tem-
perature of solids is so important in condensed matter. A num-

ber of different theoretical expressions for the pressure
dependence of melting temperature of solids have been dis-
cussed in the literature (Schlosser et al., 1989).

4.2. EOS of the melting curve of solid

Our calculation follows the recommendation of Gilvary
(1956), who suggested that Tm(P) could be found by first cal-
culating P(Vm) coupled with Tm(Vm), where Tm(Vm) is found
by the Lindemann law. Gilvary used the Murnghan EOS

and the Lindemann formula in its simplest form, i.e. where c
(first Grunisen parameter) is independent of Vm while in this
work we do not assume that c is independent of Vm.

The melting equation of state appropriate to temperature
above Tm0 (Tm0 is the temperature of melting at ambient pres-
sure, i.e. P = 0 GPa) is

PmðVm;TmÞ ¼ PðV; 300Þ þ PthðVm;TmÞ ð17Þ

which is the EOS of melting curve and called Mie–Grunisen–
Debye EOS where

PthðVm;TmÞ ¼
cmED

Vm

ð18Þ

where ED is the harmonic internal energy according to Debye
theory and here

PthðVm;TmÞ ¼ 3
cm
Vm

RðTm � Tm0Þ ð19Þ

is given by Anderson (1995), where R is the gas constant and
Tm is the melting temperature along melting curve at any P

cm ¼ cm0

Vm

Vm0

� �q

ð20Þ

where cm0 is the first Gruneisen parameter at zero pressure and

melting temperature (Tm0), q is the second Gruneisen parame-
ter = 1, the equation of state P(V, T300) (Hofmeister, 1993;
Hama and Suito, 1996) and equal isothermal EOS (4) and (5).

Vm is melting molar volume at Tm and Pm (GPa) and is
given by Kumer (1995, 1996) and is equal to

Vm ¼ Vm0 1� 1

A
ln 1þ A

B0

ðPmÞ
� �� 


ð21Þ

where Vm0 is melting molar volume at Tm0 and P = 0 GPa,
B0 is bulk modulus at P = 0 GPa, A= dT + 1 and dT is
Anderson Gruneisen parameter.

4.3. Lindemann’s equation

One of the oldest and most widely used attempts to predict the

melting curves of solids is the Lindemann (1910) equation.
Lindemann assumed that a solid melts when the mean-square
amplitude of vibrations of atoms about their equilibrium

position become larger than a certain fraction of the lattice
spacing. Lindemann then straightforwardly arrived at a rela-
tionship between the melting temperature (Tm) and melting
volume (Vm).
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Figure 4 Comparison between calculated melting temperature

versus Vm/Vm0 for Al with experimental data.
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versus melting pressure for Al with experimental melting data.
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The famous Lindemann’s equation is written as below:

Tm ¼ Tm0

Vm

Vm0

� �
exp

2cm0

q
1� Vm

Vm0

� �q� �� 

ð22Þ

The melting gradient (dTm/dPm) can be obtained from Eq. (22)
as

dTm

dPm

¼ 2Tm cm �
1

3

� �
=KT ð23Þ

where KT is the bulk modules of solid and is a function of com-

pression and temperature (Kumer, 1995, 1996).

5. Result and discussion

The melting pressure (Pm) and melting temperature (Tm) have
been calculated for solid Al using the 3rd and 4th order B–M
EOS.

To calculate the melting temperature (Tm), Eq. (22) has
been used. The melting pressure (Pm) has been worked out
using Eq. (17). The first term of Eq. (17) represented the va-

lue of P obtained from the 3rd and 4th order B–M EOS
which is illustrated in Fig. 1. The second term of Eq. (17)
Pth(Vth, Tm) has been calculated using Eqs. (19) and (20).

To calculate the melting volume (Vm), Eq. (21) has been used,
while the melting gradient has been calculated by using Eq.
(23). The basic physical specific values of Al are Vm

0 = 10.65 cm3/mol, Tm0 = 933 K, cm0 = 2.42, q= 1, Km

0 = 58.71 GPa obtained from Kumer (1995, 1996) and
R= 8.31 J/mole.

Fig. 4 shows a comparison between the calculated melting

temperature (Tm) versus (Vm/Vm0) using the 3rd and 4th order
B–M EOS with experimental data obtained from Hänström
and Lazor (2000) and Boehler and Ross (1997).

One can see from this figure that Vm/Vm0 decreases gradu-
ally with increasing melting temperature.

Fig. 5 shows a comparison between the calculated melting

temperature (Tm) versus melting pressure (Pm) for Al using
the Lindemann equation which involves the 3rd and 4th order
B–M EOS with experimental data obtained from Hänström
and Lazor (2000) and Boehler and Ross (1997).

Fig. 5 exhibited that the results obtained from the 3rd and

4th order B–M EOS are quite matchable and they fit with
experimental data.

Fig. 6 shows the melting gradient with melting pressure
(Pm) for Al using the 3rd and 4th order B–M EOS. In this fig-

ure we show that the rate of variation in melting temperature
with melting pressure decrease gradually with increases melt-
ing pressure and at a high melting pressure the rate of melting

gradient decreases.

6. Conclusions

The results for (V/Vo) versus (P) obtained for 4th order B-M
EOS are more agreement with experimental data than 3rd or-

der B-M EOS. The isothermal bulk modulus (KT) and its first
pressure derivative (K0T) for the 3rd and 4th order B–M EOS
give different results at high pressure, this difference is due

to the 4th order B–M EOS containing the term (K01).
It has been found that the 3rd and 4th order B–M EOS

gave same results with melting experiment data. The experi-
mental melting compression curve was found in good agree-

ment with the 3rd and 4th order B–M EOS. The melting
temperature value obtained from Eq. (22) as well as the
experimental data at 0–100 GPa are in good matching to

each other.
The Kumar equation gives the melting volume (Vm/Vm0) at

any high pressure and temperature, which is far better than the

other relation. At any high pressure the rate of variation of
melting temperature with pressure decreases.
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