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Abstract The moment estimate of the correlation parameters using generalized estimating equa-

tions (GEE) is not guaranteed to exist or to be feasible. We introduce the Gaussian estimation

method and show that the estimate of the correlation parameters in longitudinal data setup is

asymptotically unbiased and feasible. We derive the large sample properties of the regression and

correlation estimates and we illustrate these estimators via real life data example.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Longitudinal or repeated measures data arise in several areas
of research including social, environmental, medical, biological
sciences where many experimental units (human, animals,

plants, schools, etc.) are measured repeatedly over time. The
broad goal of such studies is to assess changes over time within
units and relate them to the treatments, interventions and

other relevant covariates using the idea of regression. The dif-
ficulty in exact specification of the distribution of nonnormal
data (binary, count, etc.) precludes the use of maximum likeli-

hood for parameter estimation. However, the idea of quasi-
likelihood (QL) for independent observations (Wedderburn,
1974 and Heyde, 1997) requires only a model for the mean
and the relationship between the mean and variance. Liang

and Zeger (1986) generalized estimating equations (GEE)
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method extended the framework of QL estimation to depen-

dent longitudinal data by specifying models for the marginal
means and variances. They relied on a ‘working’ correlation
matrix with few parameters (say, a) to write an analog of the

generalized least squares normal equations. Some pitfalls and
limitations of the GEE estimator of a were pointed out by
Crowder (2001) and other researchers. For example, the

moment estimator of the correlation parameter may not exist
in some simple cases or it may not be feasible. Despite the list
of drawbacks of GEE, researchers insisted on the fact that
GEE usually works well in practice even in the misspecified

structures (Crowder, 2001). Several articles proposed alterna-
tive approaches based on minimizing objective functions
instead of solving some ad hoc estimating equations to obtain

efficient estimators of b and a (Chaganty, 1997; Chaganty
and Shults, 1999; Al-Rawwash, 2001; Crowder, 2001;
Al-Rawwash and Pourahmadi, 2006).

Chaganty (1997) relied on partial minimization of the gen-
eralized least squares criterion to introduce the quasi-least
squares (QLS) estimates where the covariance matrix is a func-
tion of both regression and correlation parameters (b, a). The
estimating equation for b is precisely the same as GEE, but the
estimating equation for a is new and different from all previ-
ously developed approaches (see Diggle et al., 1994). Shults

and Chaganty (1998) used the QLS method for certain
ier B.V. All rights reserved.
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correlation models and showed the importance of the QLS
compared to the GEE for unbalanced longitudinal data setup.
The fact that the QLS estimator of the correlation parameter is

asymptotically biased motivated Chaganty and Shults (1999)
to propose a method to eliminate this problem. They proposed
using a continuous, one-to-one transformation that depends

on the working correlation matrix under the QLS scheme.
They presented the method for different correlation structures
and obtained a bias corrected estimate of the correlation ma-

trix. Pourahmadi (2000) developed the maximum likelihood
estimators for the parameters of a generalized linear model
for the covariance matrix and discussed the asymptotic results
under normality condition. Al-Rawwash (2005) introduced a

nonparametric approach to estimate the parameters of interest
as an alternative to the classical parametric techniques.
Al-Rawwash and Pourahmadi (2006) introduced the general-

ized Gaussian likelihood function as their objective function
and they used data-driven approach to obtain estimates of
the parameters assuming minimal distributional requirements.

In this paper, we follow the footsteps of Al-Rawwash and
Pourahmadi (2006) and use the generalized Gaussian
likelihood function as the objective function to pursue the esti-

mation of the regression and the correlation parameters.
The history of Gaussian estimation (GE) goes back to

Whittle (1961) in the time series literature where the parameter
estimates are the values that maximize the Gaussian likelihood

function for certain correlation structures. Several articles
discussed the GE in longitudinal data literature where they
focused on obtaining the parameter estimates based on

minimizing an objective function even when the observations
are not normally distributed (Crowder, 1995; Crowder, 2001;
Al-Rawwash, 2001; Al-Rawwash and Pourahmadi, 2006). In

this article, we assume only the knowledge of the first two mo-
ments and not the exact specification of the distribution of the
data. The notion of Gaussian estimation is distinct from GEE

in that it minimizes an objective function rather than relying on
estimating equations that might produce flawed estimators
(Chaganty, 1997; Al-Rawwash, 2001; Crowder, 2001). Several
articles discussed the idea of modeling longitudinal data sets

including but not limited to Vonesh and Chinchilli (1997),
Lipsitz et al. (2000), Wang and Carey (2003), Pourahmadi
et al. (2007) and Buzkova and Lamley (2008).

The organization of the paper is as follows. In Section 2, we
introduce the Gaussian estimation and outline a Newton-
Raphson iterative method for computing the estimates. Some

closed form solutions for the estimates of the correlation
parameter a is given in Section 3 when the correlation structure
is AR(1). In Section 4, we establish the consistency and asymp-
totic normality of the regression and the correlation parameter

estimates under mild regularity conditions. In Section 5, we
provide a real life data analysis of the GE compared to other
well known estimation procedures. Finally, we outline the

proof of some results in the appendix.

2. The Gaussian estimation

To set the notation, we consider a random vector
Y ¼ ðy1; y2; . . . ; yniÞ

0
comprising the measurements taken on a

generic subject at times t ¼ ðt1; t2; . . . ; tni ) and the associated

covariates xj = (xj1, . . . ,xjp)
0, j= 1,2, . . . , ni, i= 1,2, � � � ,m.
We plan to make no distributional assumption about Y except
for its first twomoments. Firstly, themeans and variances of the
entries of the response are related to the covariates xj via

gðljÞ ¼ x0jb, var(yj) = /v(lj), where b = (b1, . . . , bp)
0 is the

regression parameters of primary interest, g is an invertible
known link function, v(Æ) is a known variance function and /
is a dispersion parameter not depending on b. The importance
of the parameter/ appears clearly whenwe handle a nonnormal
data set for it expresses the variability beyond the mean. The

setup may be carried out for unbalanced longitudinal data,
however we focus in this article on the balanced case where
ni = n. Secondly, we use the matrix R= R(a) to model correla-
tions among the measurements on the same subject. The matrix

R and its parameters a are usually viewed as nuisance, though in
some situations they are of primary interest. Now, if we define
l = l(b) = (l1, . . . ,ln)0 and A(b) = diag(v(l1), . . . ,v(ln)),

then the covariance matrix of Y is decomposed into

R ¼ /A1=2ðbÞRðaÞAðbÞ1=2:

In longitudinal data setup, we assume Yi, i= 1,2, � � � ,m, to
be the vector of repeated measures on the ith subject with

covariance Ri ¼ /A1=2
i RðaÞA1=2

i . The Gaussian estimates
(Al-Rawwash and Pourahmadi, 2006) of (b, a) are the
minimizers of the objective function

Gðb; aÞ ¼
Xm
i¼1

log jRij þ Z0iR
�1ðaÞZi

� �
; ð1Þ

where Zi ¼ A
�1=2
i ðbÞðYi � liðbÞÞ is the vector of partially stan-

dardized measurement on the ith subject. Even if G(.,.) is differ-
entiable, its differentiation with respect to b is complicated
because of the appearance of b inAi(b). This problem is avoided
by pretending that A

�1=2
i is a function of b* different from b

(sometimes called decoupling). Therefore, if we differentiate
(1) with respect to b, a and then substituting b for b* we arrive at:

D0ðbÞA�1=2ðbÞ eR�1ðaÞZ ¼ 0; ð2Þ
@

@a
log j eRðaÞj þ Z0

@ eR�1ðaÞ
@a

Z ¼ 0: ð3Þ

where D(b) = diag(D1,D2, � � � ,Dm), Di ¼ DiðbÞ ¼ @li
@b0 for 1

6 i 6 m, eR ¼ Im � RðaÞ, A(b) = diag(A1(b),A2(b), � � � ,
Am(b)), Z ¼ Z01; . . . ;Z0m

� �0
and � is the kronecker product.

The estimating Eqs. (2) are precisely the GEEs for b, but (3)
is different from the estimating equations developed in the liter-
ature to estimate the correlation parameter. Solving these two

equations for b and a could give the GE of (b,a). Since closed
form solution is not available in general, we suggest using the
Newton-Raphson iterative algorithm as follows. Firstly, we

choose an initial value ~b for b, then we evaluate the following

quantities: eAi ¼ Aið~bÞ, ~li ¼ lið~bÞ, eZi ¼ eA�1=2i ðYi � ~liÞ andeDi ¼ Dið~bÞ at ~b. Accordingly, we solve Eq. (3) for ~a, then we

compute eR ¼ Rð~aÞ and eR i ¼ eA1=2
i
eR eA1=2

i for 1 6 i 6 m and con-

struct the covariance matrix eR ¼ diag ðeR1; eR2; � � � ; eRmÞ as well
as Dð~lÞ and lð~bÞ. Hence, we update the value of b̂ using

b̂ ¼ ~bþ ð eD0 eR�1 eDÞ�1 eD0 eR�1ðY� ~lÞ. Finally, we repeat the pro-
cess until b̂ ’ ~b, then we take b̂ as an estimate of b and â as an

estimate of a. The least squares estimates ~b ¼ ðX0XÞ�1X0Y of b
are a good candidate for the initial value of b, while estimates of
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a must be chosen so that the positive definiteness of the

correlation matrix is guaranteed. The estimate of / depends
on the GE results of b and a obtained using Newton-Raphson

iterative method which is reduced to /̂ ¼ 1
mn

Pm
i¼1
cZ0icZi The

unbiasedness of the GE of (b,a) is not guaranteed when the
working correlation structure is misspecified. However, we

show in Section 4 that the GE of b and a is consistent when
the working correlation matrix is correctly specified.

3. Specific correlation structures

In this section, we present closed form solutions for the corre-
lation parameter of AR(1) correlation structure when the cor-

relation matrix is either misspecified or correctly specified.
These can be used in Newton–Raphson algorithm and hence
avoid an iterative cycle within this algorithm. The impact of

the correlation matrix misspecification on the degrees of esti-
mating equations and the form of their solutions are illumi-
nated. Chaganty (1997) and Chaganty and Shults (1999)

considered special correlation structures and they derived
closed form solutions for the estimator of the correlation
parameter using the the QLS and the C-QLS. The asymptotic
bias of the QLS estimator of the correlation parameter is cor-

rected by Chaganty and Shults (1999) using a continuous one-
to-one function that transformed the biased correlation matrix
to an asymptotically unbiased one. We show that GE of a is

asymptotically unbiased and feasible when the number of mea-
surements per subject n is greater than 3 or a slightly modified
(conditional) form of the Gaussian estimation is used.

In the following example we assume that the true correla-
tion matrix, denoted by R, is unstructured, and we intend to
give explicit formulas for the estimate of a by solving (3) for
the AR(1) ‘working’ correlation matrices.

Example 1. Let the working correlation structure of the
repeated measurements be the AR(1) matrix R(q) = (qŒi�jŒ)
with the parameter a = q2 (�1, 1). Note that

R�1ðqÞ ¼ 1

ð1� q2Þ ½In þ q2C2 � qC1�;

whereC1 is a tridiagonal matrix with 0 on the diagonal and 1 on
the first upper and lower diagonals andC2 = diag(0,1, � � � ,1,0).
Since the entries of (1 � q2)R�1 are quadratic functions of q,
the estimating Eq. (3) reduces to the quadratic equation

fðqÞ ¼ amq2 � 2bmqþ am ¼ 0;

where am ¼
Pm

i¼1Z
0
iðb̂ÞC1Ziðb̂Þ �mtrðC1RÞ , bm ¼

Pm
i¼1Z

0
iðb̂Þ

ðIn þ C2ÞZiðb̂Þ � 2mðn� 1Þ, b̂ is the current estimate of b
and Zi is defined in (1). Its (unique) feasible solution is given by

~q ¼
bm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m � a2m

q
am

¼ bm
am
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm
am

� �2

� 1

s
;

provided that ŒbmŒ > ŒamŒ. This is in sharp contrast to the

QLS estimate of the correlation parameter which is known
to be feasible all the time (Chaganty, 1997). The differences be-
tween the coefficients of the quadratic equations for GE and

QLS estimates of a are in the second terms in am and bm, for

which with R ¼ ðqi;jÞ we have jmtrðC1RÞj ¼ j2m
Pn�1

i¼1 qi;iþ1j 6
2mðn� 1Þ. Nevertheless, there are datasets for which
ŒbmŒ < ŒamŒ and the quadratic equation have complex roots.
It is important to mention that the working and the true
correlation matrices may have the same AR(1) structure which
consequently makes corr(Yi) correctly specified. In this case,

the estimating Eq. (3) is cubic in q, therefore we shall derive
closed formulas for its solutions and study their feasibility.

Example 2. Let both the working and true correlation

matrices have AR(1) structures with R(q) and R�1(q) given
in Example 1. Then, (3) reduces to the cubic equation

fðqÞ ¼ q3 � a1q
2 þ b1q� a1 ¼ 0; ð4Þ

where a1 ¼ d12
mðn�1Þ, b1 ¼ d11þd22

mðn�1Þ � 1
	 


and drs ¼
Pm

i¼1
Pn�rþ1

j¼s
zijzi;jþr�s with Z0i ¼ ðzi1; zi2; � � � ; zinÞ is defined in (1). To solve
the cubic Eq. (4), we follow the standard procedure and set

D ¼ v2

4
þ u3

27
; where

u ¼ 1

3
3b1 � a21
� �

; v ¼ 1

27
2a31 þ 9a1b1 � 27a1
� �

;

and for later use define

c ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffi
tan c1

3
p

; c1 ¼
1

2
arcctn �

ffiffiffiffiffiffiffiffiffi
27v2

4u3

r !
;

where the upper sign in c1 is used if v is positive and the low-
er sign if v is negative. The nature and number of feasible roots
of (4) depend on the signs of D and u as discussed below:

Case 1: If D > 0 and u > 0, then (4) has only one real fea-
sible root, given by

~q ¼ 2

ffiffiffi
u

3

r
ctn2cþ a1

3
:

Case 2: If D < 0 and u < 0 , then (4) has three real roots
given by

~qk ¼ 2

ffiffiffiffiffiffiffi
� u

3

r
cos

c
3
þ 2ðk� 1Þp

3

� �
þ a1

3
; for k ¼ 1; 2 and 3;

where cos c ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
� 27v2

4u3

q
, the upper sign in c is used if v is po-

sitive, otherwise, we use the lower sign. Notice that
~q1 < ~q2 < ~q3, but the number of feasible roots depends on
the data and cannot be decided in advance.

Case 3: If D = 0 and u < 0, then (4) has the unique feasible
closed form solution:

~q ¼ �2
ffiffiffiffiffiffiffi
� u

3

r
þ a1

3
;

where the upper sign in ~q is used if v is positive, otherwise we
use the lower sign.

3.1. Unique Feasible Solutions

In this section we show that when the number of subjects m is
large or when a modified (conditional) Gaussian estimate is
used, then a unique feasible correlation parameter estimate sat-

isfying (4) exists.
A number of simulations in Al-Rawwash (2001) corre-

sponding to different values of the triplet (m,n,q) revealed that
the cubic Eq. (4) has a unique feasible solution for m P 3. This

provided a clue that for m large (4) must have a unique feasible
solution in (-1,1), which we show next. From (4) and
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definitions of a1 and b1, it follows that f(�1) < 0 and f(1) > 0.
Thus, if we show that f(q) is monotone in (-1,1) when m fi1,
then existence of a unique feasible root follows. A sufficient

condition for f(q) to be monotone is for its derivative
f0(q) = 3q2 � 2a1q + b1 to have at most one real root. But,
this happens if and only if its discriminant Dm ¼ 4a21 � 12b1
is nonpositive. Now, applying the law of large numbers (as
m fi1) to a1 and b1, it follows that

lim
m!1

Dm ¼ 4q2 � 12
2ðn� 2Þ
n� 1

� 1

� �
;

and the latter is nonpositive if and only if n P 4.
Another situation that gives rise to a unique feasible corre-

lation parameter estimate for the AR(1) ’working’ correlation

structure is obtained by replacing the objective function (1) by
that corresponding to the conditional Gaussian likelihood
function.

4. Large Sample Properties

This section presents the large sample properties of the

Gaussian estimates b̂ and â. We establish their consistency
and asymptotic normality as m fi1, under certain regularity
conditions. Chaganty (1997) showed that the QLS estimate b̂m

is consistent, but âm is asymptotically biased and the joint dis-
tribution of ðb̂m; âmÞ is asymptotically normal. A corrected
version of the QLS to eliminate the bias problem is proposed

in Chaganty and Shults (1999) and they considered markov
and generalized markov structures to model the unbalanced
correlation matrix cases. Thus, compared to the QLS estimate
of a, our proposed GE of the correlation parameter is asymp-

totically unbiased and we intend to compare our results to the
QLS as well as the C-QLS estimates. Our proofs are in the
spirit of Chaganty (1997); and Sen and Singer (1993, p.

206). Crowder (2001) has presented an alternative proof
establishing consistency of the GE, but only asymptotic nor-
mality of b̂.

We start by introducing some preliminary facts and nota-
tion about the components of (1). Let Yi = (yi1,yi2, � � � ,
yin)

0,i= 1,2, � � � ,m be independent random vectors with

E(Yi) = li(b) and cov(Yi) = Ri(b,a) where the expectation
and the covariance are taken under the true probability distri-
bution. Also, let R(a) be the working correlation matrix and let
R be the true correlation matrix.

Theorem 1. Let h = (b,a)0, Zðb�; bÞ ¼ A
�1=2
i ðb�Þðyi � liðbÞÞ

and set

viðb�; hÞ ¼ logjRij þ Z0iðb
�; bÞR�1ðaÞZiðb�; bÞ: ð5Þ

If �vi(h) and �2vi(h) exist everywhere and satisfy
0 < E(�2vi(h)) <1, then

(a) E(�vi(h)) = 0,
(b) cov(�vi(h)) = wi(h),
(c) E(�2vi(h)) = ni(h),

where

niðhÞ ¼
ni11ðhÞ 0

0 n22ðhÞ

� �
;wiðhÞ ¼

wi11ðhÞ wi12ðhÞ
w0i12ðhÞ w22ðhÞ

� �
;

with the entries of the above matrices given by

ni11ðhÞ¼2DiðbÞA�1=2i ðbÞR�1ðaÞA�1=2i ðbÞD0iðbÞ;
wi11ðhÞ¼4DiðbÞA�1=2i ðbÞR�1ðaÞRR�1ðaÞA�1=2i ðbÞD0iðbÞ;

wi12ðhÞ¼2trðfe0jDiðbÞA�1=2i ðbÞR�1ðaÞ� @

@aj

R�1ðaÞgEðZi�ZiZ
0
iÞÞ:

Assume that if as m fi1, we have

1

m

Xm
i¼1

niðhÞ ! nðhÞ; 1

m

Xm
i¼1

wiðhÞ ! wðhÞ; ð6Þ

where

nðhÞ ¼
n11ðhÞ 0

0 n22ðhÞ

� �
; wðhÞ ¼

w11ðhÞ w12ðhÞ
w012ðhÞ w22ðhÞ

� �
:

Then,

n22ðhÞ ¼ tr R�1
@2RðaÞ
@aj@ak

� �
� tr R�1

@RðaÞ
@aj

R�1
@RðaÞ
@ak

� �
þ 2tr R�1

@RðaÞ
@aj

R�1
@RðaÞ
@ak

R�1R

� �
� tr R�1

@2RðaÞ
@aj@ak

R�1R

� �
w22ðhÞ ¼ tr

@

@aj

R�1ðaÞ � @

@ak

R�1ðaÞ

 ��

� E ZiZ
0
i �ZiZ

0
i

� ��
�MjðaÞMkðaÞ;

where MjðaÞ ¼ tr @
@aj

R�1ðaÞR
	 


; ej is a (p · 1) column vector

with one at the jth row and zero elsewhere, R is the true corre-
lation structure and � is the Kronecker product. It is assumed

throughout that components of E Zi � ZiZ
0
i

� �
and

E ZiZ
0
i � ZiZ

0
i

� �
are finite.

Next, we present our results on the large sample properties
of the GE of (b,a). The regularity conditions (6) needed to

establish the consistency and asymptotic normality are similar
to those used in the multivariate central limit theorem for inde-
pendent but not identically distributed random vectors.

Theorem 2. Let h = (b,a)0 and assume that (6) holds and as

d fi 0 we have

Ef sup
ðh:khk<dÞ

jr2viðhþ hÞ � r2viðhÞjg ! 0:

Then, the Gaussian estimate ðb̂m; âmÞ is consistent for (b,a) and

we conclude that

ðĥm � hÞisAN 0;
1

m
n�1ðhÞwðhÞn�1ðhÞ

� �
:

Theorem 2 establishes the consistency and asymptotic normality
of the GE of (b,a) and we outline the proof in the Appendix.

Theorem 3. The marginal distributions of the Gaussian esti-
mates b̂m and âm are asymptotically correlated and

b̂m is AN b;
1

m
n�111 ðhÞw11ðhÞn�111 ðhÞ

� �
;

âm is AN a;
1

m
n�122 ðhÞw22ðhÞn�122 ðhÞ

� �
:

In view of the previous theorems, we notice that if R(a) is
correctly specified and is equal to R, then we have wi11(h) = 2-

ni11(h), w11(h) = 2n11(h), and the asymptotic covariance of b̂m

reduces to
2n�111 ðhÞ

m
: Also, the asymptotic distribution of b̂m
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depends on the parameters b,a, / and R while the asymptotic
distribution of âm depends on a and R but not on b. It also de-
pends on the third and fourth moments of Yi, which may cause

a loss of efficiency if these moments are misspecified. The sand-
wich-type covariance estimator protects against the impact of
misspecification of R(a), however, we may lose some efficiency

when using this estimator.
5. Data analysis

Consider the dataset from Potthoff and Roy (1964) that con-
sists of 27 subjects in a dental study (16 boys and 11 girls).

The response yij is the distance, in mm, from the center of each
subjects’ pituitary to pteryomaxillary fissure recorded at the
age of 8, 10, 12 and 14. We treat the data set as normally dis-

tributed with a mean vector of l = Xb and covariance matrix
R. Also, we consider the models used by Chaganty and Shults
(1999) and analyze the data using the GE and compare the re-

sults with those in Chaganty and Shults (1999). First, we fit the
model:

lij ¼ b1xi1 þ b2xi2 þ c1xi1 � xi3 þ c2xi2 � xi3; 1 6 j 6 4;

1 6 i 6 27

where, xi1,xi2 are indicator variables for the two genders: boys

and girls, respectively. The covariate xi3 is the subject’s age at
the jth measurement time. The estimates of (b,a,/) are com-
puted using the Newton-Raphson iterative method assuming
working correlation structures to be:

1. AR(1) structure,
2. An unstructured correlation matrix.

Table 1 contains the estimates and the standard errors for
the parameters using the GEE, C-QLS and the GE with

AR(1) working correlation structure. Similarly, Table 2 con-
Table 1 Parameter estimates of the dental data using AR(1) struct

Parameter GEE C-Q

Est. Std. Est.

b1 16.5946 1.2788 16.5

b2 17.3213 0.7780 17.3

c1 0.7965 0.1050 0.76

c2 0.4838 0.0629 0.48

/ 4.9107 4.91

Table 2 Parameter estimates of the dental data using unstructured

Parameter GEE C-Q

Est. Std. Est.

b1 16.3236 1.1701 16.0

b2 17.3973 0.7244 17.4

c1 0.7881 0.0983 0.81

c2 0.4781 0.0639 0.47

/ 4.9058 4.90
tains the estimates when the working correlation matrix is
unstructured. The standard error in both Tables were
computed using the model-robust, sandwich-type estimator.

From Tables 1 and 2, it can be seen that the estimates of the
regression parameters are in a reasonable agreement, but the
standard errors are slightly different. Overall, the GE and C-

QLS have smaller standard errors than the GEE also the GE
has a smaller standard errors for all estimates except for the
estimate of c2 in Table 2. Finally, Tables 3 show the estimates

of the working correlation matrices using the GE for the
AR(1) and the unstructured correlation matrix.

Appendix A. Consider the objective function
viðb�; hÞ ¼ logjRij þ Z0iðb
�; bÞR�1ðaÞZiðb�; bÞ

where, ŒRiŒ = det(Ri), h = (b,a)0, R(a) is the working correla-
tion matrix, Zðb�; bÞ ¼ A

�1=2
i ðb�Þðyi � liðbÞÞ and b is a (p · 1)

vector of unknown regression parameters while a is a (q · 1)

vector of unknown correlation parameters. In this proof, we
use arguments similar to those found in Sen and Singer
(1993, p. 206).

Define em(t,h) by

�mðt; hÞ ¼
Xm
i¼1

vi b�; hþ tffiffiffiffi
m
p

� �
� viðb�; hÞ


 �
:

Under certain regularity conditions and using the Taylor

series expansion for vi b�; hþ tffiffiffi
m
p

	 

around h and for iti 6 K,

0 < K<1, we can rewrite em(t,h) as:

�mðt; hÞ ¼
1ffiffiffiffi
m
p

Xm
i¼1

t0rviðhÞ þ
1

2m

Xm
i¼1

t0r2viðh�Þt;

where h* is a point on the line joining h and hþ tffiffiffi
m
p .

Now, adding and subtracting the term 1
2m

Pm
i¼1t

0r2viðhÞt, we
get:
ure.

LS GE

Std. Est. Std.

931 1.2781 16.5925 1.2778

215 0.7776 17.3216 0.7774

95 0.1049 0.7696 0.1049

37 0.0629 0.4837 0.0629

06 4.9105

correlation.

LS GE

Std. Est. Std.

523 1.1288 15.8841 1.1232

018 0.6972 17.4103 0.6944

22 0.0939 0.8276 0.0929

70 0.0632 0.4760 0.0642

76 4.9101



Table 3 Estimated correlation matrix using GE.

AR(1) Unstructured

– 0.6082 0.3700 0.2250 – 0.5201 0.6135 0.4873

0.6082 – 0.6082 0.3700 0.5201 – 0.5218 0.7433

0.3700 0.6082 – 0.6082 0.6135 0.5218 – 0.6921

0.2250 0.3700 0.6082 – 0.4873 0.7433 0.6921 –
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�mðt; hÞ ¼
1ffiffiffiffi
m
p

Xm
i¼1

t0rviðhÞ þ
1

2m

Xm
i¼1

t0r2viðhÞtþ
1

2
t0gmðt; hÞt

ðA:1Þ

where,

gmðt; hÞ ¼
1

m

Xm
i¼1
fr2viðh�Þ � r2viðhÞg:

Given d > 0, there exists an integer m0 = m0(d) such that

1ffiffiffiffi
m
p ktk 6 1ffiffiffiffi

m
p K < d;

for all m P m0. Therefore, for sufficiently large m, we have

jgmðtÞj 6
1

m

Xm
i¼1

sup
h:khk6ktkffiffi

m
p

n ojr2viðhþ hÞ � r2viðhÞj

6
1

m

Xm
i¼1

supfh:khk6dgjr2viðhþ hÞ � r2viðhÞj

Hence, using Khintchine strong law of large numbers (Sen

and Singer, 1993, p 69) and assuming that E(�2vi(h)) is finite,
we have

1

m

Xm
i¼1

sup
h:khk6ktkffiffi

m
p

n ojr2viðhþ hÞ � r2viðhÞj ! 0;

almost surely as dfi 0, therefore we have sup {Œgm(t)Œ,iti 6
K} fi 0 almost surely as m fi1.

This will be true since the value of h* lies on the line joining
h and hþ tffiffiffi

m
p . Now

�mðt; hÞ ¼
1ffiffiffiffi
m
p

Xm
i¼1

t0rviðhÞ þ
1

2m

Xm
i¼1

t0niðhÞtþ
1

2m

Xm
i¼1

t0fr2viðhÞ

� niðhÞgtþ
1

2
t0gmðtÞt:

Hence, using the weak law of large numbers, we get

1

2m

Xm
i¼1

t0fr2viðhÞ � niðhÞgt ¼ opð1Þ:

Therefore,

�mðt; hÞ ¼
1ffiffiffiffi
m
p

Xm
i¼1

t0rviðhÞ þ
1

2m

Xm
i¼1

t0niðhÞtþ opð1Þ:

In order to find the value of t that minimizes the term em(t,

h), we will find the first derivative of em(t, h) with respect to t
and disregarding the term op(1), hence this will give us the
following

t̂m ¼ �
1

m

Xm
i¼1

niðhÞ
 !�1

1ffiffiffiffi
m
p

Xm
i¼1
rviðhÞ

 !
þ opð1Þ: ðA:2Þ
Notice that using the definition of em(t,h), we conclude that t̂m
will also correspond closely to the Gaussian estimate of h,
which is attained at ĥm, therefore we conclude that ĥm can be
written as follows

ĥm ¼ hþ t̂mffiffiffiffi
m
p þ op

1ffiffiffiffi
m
p
� �

: ðA:3Þ

But since 1
m

Pm
i¼1rviðhÞÞ ! ErviðhÞ ¼ 0 and using Theorem 1,

(A.2), (A.3) and using the weak law of large numbers, we con-
clude that:

ĥm � h! 0 ðA:4Þ

in probability as m fi1.

The consistency of Gaussian estimates could be easily con-
cluded from (A.4). Finally, under the assumptions of A.2 ,A.3,
A.4 and (6), the results in Theorem 1, the multivariate central

limit theorem and Slutsky’s theorem, we conclude that

ĥm � h ¼ t̂mffiffiffiffi
m
p

þ op
1ffiffiffiffi
m
p
� �

is AN 0;
1

m
n�1ðhÞwðhÞn�1ðhÞ

� �
; ðA:5Þ

which is the end of the proof.
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