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Abstract The moment estimate of the correlation parameters using generalized estimating equa-
tions (GEE) is not guaranteed to exist or to be feasible. We introduce the Gaussian estimation
method and show that the estimate of the correlation parameters in longitudinal data setup is
asymptotically unbiased and feasible. We derive the large sample properties of the regression and
correlation estimates and we illustrate these estimators via real life data example.

© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal or repeated measures data arise in several areas
of research including social, environmental, medical, biological
sciences where many experimental units (human, animals,
plants, schools, etc.) are measured repeatedly over time. The
broad goal of such studies is to assess changes over time within
units and relate them to the treatments, interventions and
other relevant covariates using the idea of regression. The dif-
ficulty in exact specification of the distribution of nonnormal
data (binary, count, etc.) precludes the use of maximum likeli-
hood for parameter estimation. However, the idea of quasi-
likelihood (QL) for independent observations (Wedderburn,
1974 and Heyde, 1997) requires only a model for the mean
and the relationship between the mean and variance. Liang
and Zeger (1986) generalized estimating equations (GEE)
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method extended the framework of QL estimation to depen-
dent longitudinal data by specifying models for the marginal
means and variances. They relied on a ‘working’ correlation
matrix with few parameters (say, o) to write an analog of the
generalized least squares normal equations. Some pitfalls and
limitations of the GEE estimator of « were pointed out by
Crowder (2001) and other researchers. For example, the
moment estimator of the correlation parameter may not exist
in some simple cases or it may not be feasible. Despite the list
of drawbacks of GEE, researchers insisted on the fact that
GEE usually works well in practice even in the misspecified
structures (Crowder, 2001). Several articles proposed alterna-
tive approaches based on minimizing objective functions
instead of solving some ad hoc estimating equations to obtain
efficient estimators of f and « (Chaganty, 1997; Chaganty
and Shults, 1999; Al-Rawwash, 2001; Crowder, 2001;
Al-Rawwash and Pourahmadi, 2006).

Chaganty (1997) relied on partial minimization of the gen-
eralized least squares criterion to introduce the quasi-least
squares (QLS) estimates where the covariance matrix is a func-
tion of both regression and correlation parameters (5, o). The
estimating equation for f is precisely the same as GEE, but the
estimating equation for « is new and different from all previ-
ously developed approaches (see Diggle et al., 1994). Shults
and Chaganty (1998) used the QLS method for certain
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correlation models and showed the importance of the QLS
compared to the GEE for unbalanced longitudinal data setup.
The fact that the QLS estimator of the correlation parameter is
asymptotically biased motivated Chaganty and Shults (1999)
to propose a method to eliminate this problem. They proposed
using a continuous, one-to-one transformation that depends
on the working correlation matrix under the QLS scheme.
They presented the method for different correlation structures
and obtained a bias corrected estimate of the correlation ma-
trix. Pourahmadi (2000) developed the maximum likelihood
estimators for the parameters of a generalized linear model
for the covariance matrix and discussed the asymptotic results
under normality condition. Al-Rawwash (2005) introduced a
nonparametric approach to estimate the parameters of interest
as an alternative to the classical parametric techniques.
Al-Rawwash and Pourahmadi (2006) introduced the general-
ized Gaussian likelihood function as their objective function
and they used data-driven approach to obtain estimates of
the parameters assuming minimal distributional requirements.
In this paper, we follow the footsteps of Al-Rawwash and
Pourahmadi (2006) and wuse the generalized Gaussian
likelihood function as the objective function to pursue the esti-
mation of the regression and the correlation parameters.

The history of Gaussian estimation (GE) goes back to
Whittle (1961) in the time series literature where the parameter
estimates are the values that maximize the Gaussian likelihood
function for certain correlation structures. Several articles
discussed the GE in longitudinal data literature where they
focused on obtaining the parameter estimates based on
minimizing an objective function even when the observations
are not normally distributed (Crowder, 1995; Crowder, 2001;
Al-Rawwash, 2001; Al-Rawwash and Pourahmadi, 2006). In
this article, we assume only the knowledge of the first two mo-
ments and not the exact specification of the distribution of the
data. The notion of Gaussian estimation is distinct from GEE
in that it minimizes an objective function rather than relying on
estimating equations that might produce flawed estimators
(Chaganty, 1997; Al-Rawwash, 2001; Crowder, 2001). Several
articles discussed the idea of modeling longitudinal data sets
including but not limited to Vonesh and Chinchilli (1997),
Lipsitz et al. (2000), Wang and Carey (2003), Pourahmadi
et al. (2007) and Buzkova and Lamley (2008).

The organization of the paper is as follows. In Section 2, we
introduce the Gaussian estimation and outline a Newton-
Raphson iterative method for computing the estimates. Some
closed form solutions for the estimates of the correlation
parameter o is given in Section 3 when the correlation structure
is AR(1). In Section 4, we establish the consistency and asymp-
totic normality of the regression and the correlation parameter
estimates under mild regularity conditions. In Section 5, we
provide a real life data analysis of the GE compared to other
well known estimation procedures. Finally, we outline the
proof of some results in the appendix.

2. The Gaussian estimation

To set the notation, we consider a random vector
Y= (y,5,,...,»,) comprising the measurements taken on a
generic subject at times ¢ = (¢, f,...,1,) and the associated
covariates x; = (xj1,...,x;), j = 1,2,..., n, i =12,--- m.

We plan to make no distributional assumption about Y except
for its first two moments. Firstly, the means and variances of the
entries of the response are related to the covariates x; via
g(w) = x;B, var(y) = ¢v(y), where g = (B1,..., B,) is the
regression parameters of primary interest, g is an invertible
known link function, v(*) is a known variance function and ¢
is a dispersion parameter not depending on f. The importance
of the parameter ¢ appears clearly when we handle a nonnormal
data set for it expresses the variability beyond the mean. The
setup may be carried out for unbalanced longitudinal data,
however we focus in this article on the balanced case where
n; = n. Secondly, we use the matrix R = R(«) to model correla-
tions among the measurements on the same subject. The matrix
R and its parameters o are usually viewed as nuisance, though in
some situations they are of primary interest. Now, if we define

= pup) = (u,....p) and  A(P) = diag(v(ur), . .. .v(tn))s
then the covariance matrix of Y is decomposed into

z = pA P (BR(2)A(B)".

In longitudinal data setup, we assume Y, i = 1,2, --- ,m, to
be the vector of repeated measures on the ith subject with
covariance X, = pA/*R(x)A}>. The Gaussian estimates
(Al-Rawwash and Pourahmadi, 2006) of (B, «) are the
minimizers of the objective function

G(B, o) = i[log IZi| + ZR () Z1], (1)

where Z; = 4. "2(B)(Y: — u,(B)) is the vector of partially stan-

dardized measurement on the ith subject. Even if G(.,.) is differ-
entiable, its differentiation with respect to f is complicated
because of the appearance of §in A/f). This problem is avoided
by pretending that Afl/z is a function of B different from f
(sometimes called decoupling). Therefore, if we differentiate
(1) with respect to f3, x and then substituting f for * we arrive at:

D' (B4 *(B)R™ (0)Z =0, (2)
%10g\§(o¢)\+2’81§7a(a)2=0. 3)

where D(f) = diag(D,D, - --

<i<m,  R=1,®R(x), Ap) = diag(4i(p).42(p). -,
A B), Z=(Z,,...,Z,) and @ is the kronecker product.
The estimating Eqs. (2) are precisely the GEEs for f, but (3)
is different from the estimating equations developed in the liter-
ature to estimate the correlation parameter. Solving these two
equations for  and o could give the GE of (f,). Since closed
form solution is not available in general, we suggest using the
Newton-Raphson iterative algorithm as follows. Firstly, we

aDm)a Dl:Dt(ﬂ)_% for 1

—of

choose an initial value f8 for f, then we evaluate the following
quantities: A; = 4,(B), = w(B), Z;=A;"* (Y, — ) and
D; = D;() at . Accordingly, we solve Eq. (3) for &, then we
compute R = R(&) and T, = 4)/*R A" for 1 < i< mand con-

struct the covariance matrix & = diag (il, I %) as well
as D(jt) and u(B) Hence, we update the value of B using
B=p+ (D'E'D)"'D'S'(Y — [i). Finally, we repeat the pro-
cess until B ~ B, then we take B as an estimate of f and & as an

estimate of «. The least squares estimates f = (X'X) ' X'Y of
are a good candidate for the initial value of f§, while estimates of
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o must be chosen so that the positive definiteness of the
correlation matrix is guaranteed. The estimate of ¢ depends
on the GE results of # and o obtained using Newton-Raphson
iterative method which is reduced to ¢ = %ZZZI/ZT/Z\, The
unbiasedness of the GE of (f5,z) is not guaranteed when the
working correlation structure is misspecified. However, we
show in Section 4 that the GE of f# and « is consistent when
the working correlation matrix is correctly specified.

3. Specific correlation structures

In this section, we present closed form solutions for the corre-
lation parameter of AR(1) correlation structure when the cor-
relation matrix is either misspecified or correctly specified.
These can be used in Newton—Raphson algorithm and hence
avoid an iterative cycle within this algorithm. The impact of
the correlation matrix misspecification on the degrees of esti-
mating equations and the form of their solutions are illumi-
nated. Chaganty (1997) and Chaganty and Shults (1999)
considered special correlation structures and they derived
closed form solutions for the estimator of the correlation
parameter using the the QLS and the C-QLS. The asymptotic
bias of the QLS estimator of the correlation parameter is cor-
rected by Chaganty and Shults (1999) using a continuous one-
to-one function that transformed the biased correlation matrix
to an asymptotically unbiased one. We show that GE of « is
asymptotically unbiased and feasible when the number of mea-
surements per subject # is greater than 3 or a slightly modified
(conditional) form of the Gaussian estimation is used.

In the following example we assume that the true correla-
tion matrix, denoted by R, is unstructured, and we intend to
give explicit formulas for the estimate of « by solving (3) for
the AR(1) ‘working’ correlation matrices.

Example 1. Let the working correlation structure of the
repeated measurements be the AR(1) matrix R(p) = (p| ”ﬁ)
with the parameter « = pe (—1, 1). Note that

Ril(p) = [1:1+PZC2_PC1]»

1
(1-p%)
where C| is a tridiagonal matrix with 0 on the diagonal and 1 on
the first upper and lower diagonals and C, = diag(0,1, ---,1,0).
Since the entries of (I — p>)R™" are quadratic functions of p,
the estimating Eq. (3) reduces to the quadratic equation

f(P) = ampz - 2bmp +a, = 07

where a, = 1, Z{(B)C1 Zi(B) — mx(C/R) , by =31, Zi(B)
(I, + C)Zi(p) —2m(n— 1), B is the current estimate of f
and Z; is defined in (1). Its (unique) feasible solution is given by

~ bm - bfn - afn bm (bm)z
p=—r Vm m Dm J(2m)

[ ay am

provided that |5, > |a,,,|. This is in sharp contrast to the
QLS estimate of the correlation parameter which is known
to be feasible all the time (Chaganty, 1997). The differences be-
tween the coefficients of the quadratic equations for GE and
QLS estimates of « are in the second terms in «,, and b,,, for
which with R = (p;,;) we have |mtr(C\R)| = [2m30) pin| <
2m(n —1). Nevertheless, there are datasets for which
|b,) <la, and the quadratic equation have complex roots.

It is important to mention that the working and the true
correlation matrices may have the same AR(1) structure which
consequently makes corr(Y;) correctly specified. In this case,
the estimating Eq. (3) is cubic in p, therefore we shall derive
closed formulas for its solutions and study their feasibility.

Example 2. Let both the working and true correlation
matrices have AR(1) structures with R(p) and R'(p) given
in Example 1. Then, (3) reduces to the cubic equation

fp)=p"—arp” +bip—a; =0, 4)

where @ = i b= (45— 1) and dy = 37, 0
ZyZijar—s With Z) = (za,zp, -+, 2zs) 18 defined in (1). To solve
the cubic Eq. (4), we follow the standard procedure and set

2 3
A = +755, where

%(31). —a%), v :%7(251? +9a,b, —27a1),

u=

and for later use define

1 [27v?
y = arctan y/tany,, y, = Earcctn (; e ),

where the upper sign in vy, is used if v is positive and the low-
er sign if v is negative. The nature and number of feasible roots
of (4) depend on the signs of A and u as discussed below:

Case 1: If A > 0 and u > 0, then (4) has only one real fea-
sible root, given by

b= 2\/§ctn2y +%.

Case 2: If A < 0 and u < 0, then (4) has three real roots
given by

Dk :2“7%605(%4’@) +%, for k=1,2 and 3,

where cosy = F4/— %, the upper sign in y is used if v is po-

sitive, otherwise, we use the lower sign. Notice that
p1 < pa < p3, but the number of feasible roots depends on
the data and cannot be decided in advance.
Case 3: If A = 0 and u < 0, then (4) has the unique feasible
closed form solution:

- u a

=72, /242
p=F 3 + 3
where the upper sign in p is used if v is positive, otherwise we
use the lower sign.

3.1. Unique Feasible Solutions

In this section we show that when the number of subjects m is
large or when a modified (conditional) Gaussian estimate is
used, then a unique feasible correlation parameter estimate sat-
isfying (4) exists.

A number of simulations in Al-Rawwash (2001) corre-
sponding to different values of the triplet (m2,n,p) revealed that
the cubic Eq. (4) has a unique feasible solution for m > 3. This
provided a clue that for m large (4) must have a unique feasible
solution in (-1,1), which we show next. From (4) and
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definitions of @y and by, it follows that f{(—1) < 0 and f{1) > 0.
Thus, if we show that f{p) is monotone in (-1,1) when m — oo,
then existence of a unique feasible root follows. A sufficient
condition for f{p) to be monotone is for its derivative
f(p) = 3p> — 2a;p + b, to have at most one real root. But,
this happens if and only if its discriminant A,, = 4a} — 12b,
is nonpositive. Now, applying the law of large numbers (as
m — oo) to a; and by, it follows that

2n—2
limAm:4p2712{ ( 1)71},

m—oo n—

and the latter is nonpositive if and only if n > 4.

Another situation that gives rise to a unique feasible corre-
lation parameter estimate for the AR(1) 'working’ correlation
structure is obtained by replacing the objective function (1) by
that corresponding to the conditional Gaussian likelihood
function.

4. Large Sample Properties

This section presents the large sample properties of the
Gaussian estimates f§ and 4. We establish their consistency
and asymptotic normality as m — oo, under certain regularity
conditions. Chaganty (1997) showed that the QLS estimate Bm
is consistent, but 4, is asymptotically biased and the joint dis-
tribution of (Bm,&m) is asymptotically normal. A corrected
version of the QLS to eliminate the bias problem is proposed
in Chaganty and Shults (1999) and they considered markov
and generalized markov structures to model the unbalanced
correlation matrix cases. Thus, compared to the QLS estimate
of a, our proposed GE of the correlation parameter is asymp-
totically unbiased and we intend to compare our results to the
QLS as well as the C-QLS estimates. Our proofs are in the
spirit of Chaganty (1997); and Sen and Singer (1993, p.
206). Crowder (2001) has presented an alternative proof
establishing consistency of the GE, but only asymptotic nor-
mality of B

We start by introducing some preliminary facts and nota-
tion about the components of (1). Let Y; = (yi,yi, ">
V)i = 1,2,--- m be independent random vectors with
E(Y) = w(f) and cov(Y;) = E(f,) where the expectation
and the covariance are taken under the true probability distri-
bution. Also, let R(«) be the working correlation matrix and let
R be the true correlation matrix.

Theorem 1. Let 0 = (B,a), Z(f*, ) = A;l/z(ﬁ*)()’i )]
and set

vi(B*,0) = log|%i| + Zi(B", B)R™" () Zi(B", B).- (5)

If Vv(0) and V?(0) exist everywhere and satisfy
0 < E(V*v(0)) < oo, then

(a) E(Vvi(0)) =0,
(b) con(Vvi(0)) = i(0),
(©) E(V2v(0)) = &40),

where

with the entries of the above matrices given by

En(0)=2D,(B)A; A (PR ()4, (B)DI(P),
Vi (0)=4D,(p)A; > (B)R ' ()RR (@) A; > (B)D/(B),
Vs (0) =20 (D, (B AT 2 (B) R (2) -2 R (@)} E(Z,0 2,2)).

Ou;
Assume that if as m — oo, we have
1 m 1 m
E;@(ﬁ) — £(0), E;dn(@ — y(0), (6)
where
<u(0 0 ) (l//u(9) 1//12(9))
0) = 0) = .
=" o) 0= o
Then,
o L R(2) _LOR(2) __, OR(r)
+or [R—‘ Lgi@ R Lg;o‘) R“ﬁ} —r {R‘l 72;%? R“ﬁ}

Val0) = era%R”(a) ®8%R”<a>}

X E(Z:Z,® Z,-Z;)} — M;(0) My (2),

where M;(a) = tr(%R’l(a)ﬁ),q is a (px 1) column vector
with one at the j’/’ row and zero elsewhere, R is the true corre-
lation structure and ® is the Kronecker product. It is assumed
throughout  that components of E(Z;® ZZ,) and
E(Z,Z;® Z,Z) are finite.

Next, we present our results on the large sample properties
of the GE of (f,a). The regularity conditions (6) needed to
establish the consistency and asymptotic normality are similar
to those used in the multivariate central limit theorem for inde-
pendent but not identically distributed random vectors.

Theorem 2. Let 0 = (f,o) and assume that (6) holds and as
0 — 0 we have

E{ sup |[V*0i(0+h) — V?ui(0)[} — 0.
CED)

Then, the Gaussian estimate (ff,,,, 8y) is consistent for (o) and
we conclude that

(0 = 05N (0.1 00 0)).

Theorem 2 establishes the consistency and asymptotic normality
of the GE of (B,a) and we outline the proof in the Appendix.

Theorem 3. The marginal distributions of the Gaussian esti-
mates f3,, and &,, are asymptotically correlated and

[}m is AN(ﬁ7 %6171] (e)lpl 1 (0)5171] (0)> )

&m is AN(OC7 %éz}l (0)[#22(0)6272] (0)) .

In view of the previous theorems, we notice that if R(e) is
correctly specified and is equal to R, then we have y;;,(0) = 2-
£11(0), 1//”(07)&7]: 2&11(0), and the asymptotic covariance of ,{)’m

reduces to 2u? Also, the asymptotic distribution of f,,
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depends on the parameters f,a, ¢ and R while the asymptotic
distribution of &,, depends on « and R but not on f. It also de-
pends on the third and fourth moments of Y;, which may cause
a loss of efficiency if these moments are misspecified. The sand-
wich-type covariance estimator protects against the impact of
misspecification of R(x), however, we may lose some efficiency
when using this estimator.

5. Data analysis

Consider the dataset from Potthoff and Roy (1964) that con-
sists of 27 subjects in a dental study (16 boys and 11 girls).
The response y;; is the distance, in mm, from the center of each
subjects’ pituitary to pteryomaxillary fissure recorded at the
age of 8, 10, 12 and 14. We treat the data set as normally dis-
tributed with a mean vector of ¢ = X and covariance matrix
X. Also, we consider the models used by Chaganty and Shults
(1999) and analyze the data using the GE and compare the re-
sults with those in Chaganty and Shults (1999). First, we fit the
model:

Wy = Bixit + BaXiy + y1Xa x Xz + Paxp kX, L <j< 4,
1<ig<27

where, x;1,x;, are indicator variables for the two genders: boys
and girls, respectively. The covariate x;; is the subject’s age at
the /” measurement time. The estimates of (f,a,¢) are com-
puted using the Newton-Raphson iterative method assuming
working correlation structures to be:

1. AR(1) structure,
2. An unstructured correlation matrix.

Table 1 contains the estimates and the standard errors for
the parameters using the GEE, C-QLS and the GE with
AR(1) working correlation structure. Similarly, Table 2 con-

tains the estimates when the working correlation matrix is
unstructured. The standard error in both Tables were
computed using the model-robust, sandwich-type estimator.
From Tables 1 and 2, it can be seen that the estimates of the
regression parameters are in a reasonable agreement, but the
standard errors are slightly different. Overall, the GE and C-
QLS have smaller standard errors than the GEE also the GE
has a smaller standard errors for all estimates except for the
estimate of 7y, in Table 2. Finally, Tables 3 show the estimates
of the working correlation matrices using the GE for the
AR(1) and the unstructured correlation matrix.

Appendix A. Consider the objective function

vi(B",0) = log|Zi| + Z(B", B)R™' () Zi(B", B)

where, | =] = det(%)), 0 = (B,0), R(x) is the working correla-
tion matrix, Z(8", ) = 4;"*(B") (v, — w(B)) and Bis a (px 1)
vector of unknown regression parameters while « is a (¢ x 1)
vector of unknown correlation parameters. In this proof, we
use arguments similar to those found in Sen and Singer
(1993, p. 206).

Define €,,(z,0) by

m

en(1,0) = Z{v,- (ﬁ*,@ +ﬁ> - v,-(ﬁ*,@)}.

i=1

Under certain regularity conditions and using the Taylor
series expansion for v;( f7,0 + ) around 0 and for 7] < K,
0 < K < oo, we can rewrite €,,(¢,0) as:

1 m 1 m .
en(t,0) = ﬁzz/w(e) + %Zﬂvzvi(ﬁ*)z,
i=1 i=l1

where 0" is a point on the line joining 0 and 6 + ﬁ

Now, adding and subtracting the term ﬁz;’;lz'vzv,(e)t, we
get:

Table 1 Parameter estimates of the dental data using AR(1) structure.

Parameter GEE C-QLS GE

Est. Std. Est. Std. Est. Std.
b1 16.5946 1.2788 16.5931 1.2781 16.5925 1.2778
B> 17.3213 0.7780 17.3215 0.7776 17.3216 0.7774
71 0.7965 0.1050 0.7695 0.1049 0.7696 0.1049
V2 0.4838 0.0629 0.4837 0.0629 0.4837 0.0629
) 4.9107 4.9106 4.9105
Table 2 Parameter estimates of the dental data using unstructured correlation.
Parameter GEE C-QLS GE

Est. Std. Est. Std. Est. Std.
b1 16.3236 1.1701 16.0523 1.1288 15.8841 1.1232
B> 17.3973 0.7244 17.4018 0.6972 17.4103 0.6944
71 0.7881 0.0983 0.8122 0.0939 0.8276 0.0929
Y2 0.4781 0.0639 0.4770 0.0632 0.4760 0.0642
[0} 4.9058 4.9076 4.9101
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Table 3 Estimated correlation matrix using GE.

AR(1) Unstructured

= 0.6082 0.3700 0.2250 = 0.5201 0.6135 0.4873
0.6082 — 0.6082 0.3700 0.5201 — 0.5218 0.7433
0.3700 0.6082 = 0.6082 0.6135 0.5218 = 0.6921
0.2250 0.3700 0.6082 = 0.4873 0.7433 0.6921 =

1 m 1 m 1
(1, 0) = WZI’VV,-((?) + %Zz’vzv,(e)z + 300 (1, 0)1
i=1 i=1
(A1)

where,

(1, 0) = Z{V2 (07) = V2v(0)}-

Given § > 0, there exists an integer my = mg(J) such that

1
=l < =K<,

S Um

for all m > myg. Therefore, for sufficiently large m, we have
- su V(0 + h) — V(0
05> s P i) 7O ) =)

1 m
< a;Sif{p{h:\\thé}'Vzvi(g +h) = Vvi(0)|

Hence, using Khintchine strong law of large numbers (Sen
and Singer, 1993, p 69) and assuming that E(V>v,(0)) is finite,
we have
1 m
— “sup [V20,(0 4 h) — V2v;(0)| — 0,
me—= {h \|11H<W}
almost surely as d— 0, therefore we have sup {| 1,,(0) ||t <
K} — 0 almost surely as m — oo.

This will be true since the value of 8" lies on the line joining
0 and 0 + \/4_ Now

1 & )
Zth, +%;téi(0)
1
- 61(9)}1 +§[/nm([)l'

en(t,0) =

1 m , )
z+%;z {V2(0)

Hence, using the weak law of large numbers, we get

] m , 2

%;t {V20,(0) = &(0)}1 = 0,(1).

Therefore,

em(t,0) = Zth +—Zz 0)t + 0,(1).

In order to find the value of t that minimizes the term e,,(z,
0), we will find the first derivative of €,,(¢, 0) with respect to t
and disregarding the term o,(1), hence this will give us the
following

Notice that using the definition of €,,(z,0), we conclude that 7,
will also correspond closely to the Gaussian estimate of 0,
which is attained at @m, therefore we conclude that @m can be
written as follows

0, =0+ 4 :

m — = Op\ —F=—1-
vm - T\ym

But since L 3" V;(0)) — EVv;(#) = 0 and using Theorem 1,

(A.2), (A.3) and using the weak law of large numbers, we con-

clude that:

(A.3)

bm - 0 - 0 (A4)

in probability as m — oo.

The consistency of Gaussian estimates could be easily con-
cluded from (A.4). Finally, under the assumptions of A.2 ,A.3,
A.4 and (6), the results in Theorem 1, the multivariate central
limit theorem and Slutsky’s theorem, we conclude that

tm

1 1
+ 0p (ﬁ) is AN(O, E

which is the end of the proof.

»:*%f))ww)c*(e)), (A5)
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