Abstract:
In this paper, an advanced-and-reliable vehicle detection-and-tracking technique is proposed and implemented. The Real-Time Vehicle Detection-and-Tracking (RT_VDT) technique is well suited for Advanced Driving Assistance Systems (ADAS) applications or Self-Driving Cars (SDC). The RT_VDT is mainly a pipeline of reliable computer vision and machine learning algorithms that augment each other and take in raw RGB images to produce the required boundary boxes of the vehicles that appear in the front driving space of the car. The main contribution of this paper is the precise fusion of the employed algorithms where some of them work in parallel to strengthen each other in order to produce a precise and sophisticated real-time output. In addition, the RT_VDT provides fast enough computation to be embedded in CPUs that are currently employed by ADAS systems. Each used algorithm is described in detail, implemented, its performance is evaluated using actual road images, and videos captured by the front-mounted camera of the car. The evaluation of the RT_VDT shows that it reliably detects and tracks vehicle boundaries under various conditions.